

The U.S. West Coast Network of Atmospheric River Observatories: Tools for Improving Situational Awareness in Operational Forecasting

Allen B. White, Daniel J. Gottas, Lisa S. Darby, Thomas E. Ayers, and Jesse L. Leach

NOAA Earth System Research Laboratory, Physical Sciences Division

Boulder, Colorado

Atmospheric Rivers (ARs)

ARs Provide beneficial rain and snow for water supply

25% - 45% of annual precip. in the U.S. west coast states falls in association with ARs, and ARs are a major source (up to 99%) of property losses due to flood damages, especially along the U.S. West Coast.

Corringham et al., 2019, Science Advances

2.5

3.0

IVVV (cm)

r = 0.90

3.5 4.0 4.5

Neiman et al., Water

Management, 2009

- NOAA's Hydrometeorology Testbed (HMT) has installed a "picket fence" of atmospheric river observatories (AROs) along the U.S. West Coast for weather and wind energy applications.
- Funding for the network was provided by the California Department of Water Resources (CA-DWR) and the U.S. Department of Energy.

Location	ID	Lat. (°)	Lon. (°)	Elev. (m)
Forks, WA	FKS	48.97	-124.40	95
Astoria, OR	AST	46.16	-123.88	3
North Bend, OR	ОТН	43.42	-124.24	5
McKinleyville, CA	ACV	40.97	-124.11	56
Bodega Bay, CA	BBY	38.32	-123.07	15
Point Sur, CA	PTS	36.30	-121.89	10
Santa Barbara, CA	SBA	34.43	-119.85	2

In California, a multi-decade collaboration between CA-DWR and NOAA-HMT has created a more comprehensive statewide observing network

Atmospheric River Observatory (6)

Snow-level Radar (10)

GPS-Met (52)

Soil Temp. & Moisture and Surface Met. (40)

For further details, see White et al., 2013, JTech

The successful collaboration between NOAA-HMT and CA-DWR has lead to the ongoing **Advanced Quantitative Precipitation** Information (AQPI) project, designed to improve the spatial/temporal resolution and accuracy of rainfall measurements and forecasts for the San Francisco Bay region.

Precipitation Information

Initial & Lateral undary Conditi

Forecast Length Changes at NWS

Now -> May 2020

39 hrs -> 51 hrs 36 hrs -> 48 hrs

AQPIKEY FEATURES

oundary Condition

3-km High-Resolution Rapid Refresh (HRRRv3

3-km HRRR-Smoke

(VIIRS fire data)

RAP/HRRR Model Forecast Suite

13-km Rapid Refresh (RAPv4)

130°W 120°W 110°W 100°W 90°W

EIRA

AROs measure the forcings in atmospheric rivers that lead to heavy precipitation and flooding

Wind and temperature profiles plus snow level

Surface meteorology including integrated water vapor and rainfall

ESRL Physical Sciences Division 449MHz Radar and HRRR Model Wind Comparison

		Wind-Pro	ofiler/HRRR	Oblique Bea	m Velocity C	Comparison S	Statisitics			
12/30/2019 19:00 UTC - 01/01/2020 19:00 UTC			Average			Standard Deviation				
Radar Site Information			Radar Low Mode Radar High Mode		Radar Low Mode Radar High Mod		gh Mode			
City & State	ID	Freq	Oblique 1	Oblique 2	Oblique 1	Oblique 2	Oblique 1	Oblique 2	Oblique 1	Oblique 2
McKinleyville, CA	acv	449	-0.98	0.66	-1.47	0.68	4.76	3.75	5.13	4.46
Astoria, OR	ast	449	-1.43	0.42	-1.26	0.17	4.59	4.85	6.25	5.46
Bodega Bay, CA	bby	449	3.18	4.36	4.71	6.36	4.73	4.77	6.15	5.40
Courtland, AL	ctd	449	-0.33	-1.58	-0.34	-1.45	2.87	3.56	2.62	3.03
Forks, WA	fks	449	-0.28	0.30	0.16	0.12	4.49	4.74	5.08	6.10
North Bend, OR	oth	449	-0.42	1.20	-0.59	1.38	4.71	4.92	4.88	5.98
Platteville, CO	pvl	449	-2.95	-3.39	-1.15	-1.48	14.82	15.62	7.16	5.93
Santa Barbara, CA	sba	449	0.11	0.40	-0.23	0.63	5.32	4.69	5.20	4.15
Fort Ord, CA	nps	915	1.18	-0.12	-1.05	0.24	3.27	3.84	2.82	3.71
Oroville, CA	ove	915	0.87	0.34	0.76	1.17	4.70	5.60	4.85	5.87
Visalia, CA	vis	915	0.21	2.53	0.17	1.33	2.76	3.75	3.46	4.80

	V THE STATE OF THE	
Speed (Radar - HRRR) Azimuth 3° Height (km)	5	16 20
÷ က (ဥ		寸 12 공 10
(Radar - H Azimuth 3° Heicht (km)		10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<u> </u>		4
8		-20
\overline{\sigma}		30
	0	•
RR)	5	16 30
Speed (Radar - HRRR) Azimuth 93° Height (km)		
(Radar - F Azimuth 93 Height (km)	3 -	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Razimi	2	8 (6) -10
gg ∃		+ , -
<u>B</u>		3 4 -20
(O)		-30
	23 20 17 14 11 08 05 02 23 20 17 14 11 08 05 02 23	_ `
	01-JAN-20 Time (UTC) 30-DEC-	19
	Forks,WA (FKS)	

47.9745 N, 124.3981 W, 95 m

Wind comparison product allows users to compare observed wind profiles with HRRR analyzed winds. Bottom panels show speed differences (radar-HRRR) for the horizontal wind components measured with each oblique radar beam and the table above allows users to see quick look statistics of wind comparisons at all of PSD's wind profiler sites.

HRRR snow-level verification product allows users to view snow-level forecasts and obs for the prior 4-day period, the current snow-level forecasts, and the snow-level forecast performance over the past year for different forecast verification times.

Orographic Precipitation in the Western U. S.

Source: Western Region Climate Center

ESRL Physical Sciences Division

Coastal Atmospheric River Monitoring and Early Warning System

HRRR forecast provided by the NWS National Centers for Environmental Prediction

- The ARO Water Vapor Flux Tool displays the AR forcings and thresholds that lead to heavy orographic precipitation.
- The tool also allows users to validate NOAA's operational NWP models (RAP or HRRR) or the research version of the HRRR.
- Right of vertical line shows obs and prior 3hr forecasts every hr for 36 hr. Left of line shows the current forecast out to 12 hr.

Top panel	Right of line	Observed wind profiles and snow level; forecast freezing level	
	Left of line	Forecast wind profiles and freezing level	
Middle panel	Right of line	Observed and forecast upslope component of wind in controlling layer and integrated water vapor (IWV)	
	Left of line	Forecast upslope component of wind in controlling layer and IWV	
Bottom panel	Right of line	Observed and forecast bulk IWV flux, coastal and mountain precipitation	
	Left of line	Forecast bulk IWV flux, coastal and mountain precipitation	

ESRL Physical Sciences Division

Coastal Atmospheric River Monitoring and Early Warning System

New option with the ARO Water Vapor
 Flux Tool incorporates GFS forecasts to
 provide a longer look ahead.

- Obs and GFS forecasts are displayed every three hours for a total of 72 hr of observations and 204 hr (8.5 dy) of the current GFS forecast.
- Obs are compared to prior 6-hr GFS forecasts and the plot is updated with each new GFS model run (i.e., every 6 hr).
- Rainfall observations and forecasts are also 3-hr accumulations.

SUMMARY Russian River flooding - 27 Feb. 2019, Guerneville, CA **ESRL Physical Sciences Division** Coastal Atmospheric River Monitoring and Early Warning System HRRR forecast provided by the NWS National Centers for Environmental Prediction 44 OTH Mercury News RAP Precipitation Coastal rain (BBY) Mountain rain (CZC) Score requency 6 27-FEB-19 Time (UTC) Bodega Bay,CA (BBY) 38.3191 N, 123.0728 W, 15 m Upslope Direction = 230 deg BBY 36-hr obs precip: 4.66 in -123 -122 -121 -120 T and -- = Model Forecast CZC 36-hr obs precip: 15.28 in Cazadero,CA (CZC) 38.6107 N, 123.2152 W, 478 m Obs/Fcst Verification: 3 hours BBY 12-hr fcst precip: 1.38 in $0.0_{00} \, {}_{0.254} \, {}_{0.508} \, {}_{0.762} \, {}_{1.016} \, {}_{1.27} \, {}_{1.778} \, {}_{2.286} \, {}_{2.794} \, {}_{3.302} \, {}_{3.81} \, {}_{4.318} \, {}_{4.826} \, {}_{5.334} \, {}_{5.842} \, {}_{6.35} \, {}_{6.858} \, {}_{7.966} \, {}_{7.874} \, {}_{8.382} \, {}_{10.922} \, {}_{13.462} \, {}_{13.842} \, {}_{10.822}$ Fost Init: 26-FEB-19 22 UTC

SUMMARY

- ♣ HMT operates a picket fence of coastal atmospheric river observatories (AROs) along the U.S. West Coast stretching from NW Washington to SW California. These AROs provide the first ground truth data on landfalling ARs that can be used to verify weather forecasts.
- In California, the network is enhanced by other sensors to monitor the inland impacts of ARs.
- The ARO Water Vapor Flux Tool gives forecasters and other users a quick glimpse of the conditions in ARs that could lead to heavy orographic precipitation, flooding, and other hazards.
- This tool can now be viewed with GFS forecasts to increase the forecast lead time to 8.5 days.
- Evaluation of HRRR and RAP forecasts using the Flux Tool indicate that the models predict winds and water vapor fairly well but still underestimate precipitation, especially precipitation enhanced by orogrphay.