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Introduction

A key aim of this research is to further understanding of global water
vapor and inert trace constituent transport in relation to climate change
through analysis of simulations produced by the global University of
Wisconsin (UW) hybrid isentropic-sigma coordinate models. Advancing
the accuracy of the simulation of water substances, aerosols, chemical
constituents, potential vorticity and stratospheric-tropospheric exchange are
all critical to DOE’s goal of accurate climate prediction on decadal to
centennial time scales and assessing anthropogenic effects. Research has
established that simulations of the transport of water vapor, and inert and
chemical constituents are remarkably more accurate in hybrid isentropic
coordinate models than in corresponding sigma coordinate models.

Primary Objectives:

=Advance the modeling of climate change by developing an isentropic
hybrid model for global and regional climate simulations.

=Advance the understanding of physical processes involving water
substances and the transport of trace constituents.

=Diagnostically examine the limits of global and regional climate
predictability imposed by |nherent limitations in the simulation of trace
ituent transport, hydrologic pi and cloud life-cycles.

Key Findings:

=The results demonstrate the viability of the UW 6-n model for long
term climate integration, numerical weather prediction and chemistry.

=The studies document that no insurmountable barriers exist for
realistic simulations of the climate state with the hybrid vertical
coordinate.

=Experiments reported here demonstrate a high degree of numerical
accuracy for the UW 6-n model in simulating reversibility and potential
vorticity transport over 10 day period that corresponds to the global
residence time of water vapor.

=The UW hybrid 6-n model 5|mulates seasonally varylng and interannual
climate scales reali: y, ions associated
with EI Nino/La Nina events.
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A. Design of Model Vertical Coordinate
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Fig. 4. Bivariate distributions of ozone and a proxy trace ozone. The “Day 10" distributions from
the UW 6-n model, UW 6-c model, and T42 CCM3 are shown in panels (A)-(C) respectively.

o
Fig. 1. Schematic of meridional cross sections along 104E for 05 August 1981. The red lines represent

potential temperature; the black lines represent UW 6-n model surfaces; the green lines represent scaled sigma

model surfaces.
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Fig. 2. The top two panels show zonal cross sections of the difference between 0e and trace e
(CI=2 K) from the UW 6 model at day 10. Panel C shows a bivariate distribution of fe and trace
e at day 10, panel D shows a relative frequency distribution of simulated differences between 6e
and trace be at days 2.5, 5, 7.5 and 10, and panel E shows a vertical profile of the differences at day
10.
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Table 1. Results from analysis of variance globally for the difference of equivalent potential temperature
minus ts trace (Oe-t 6e) and three components at day 10. Units of variance are the square of Kelvin
temperature (K?). Quantity in parenthesis is the RMS temperature difference (+K).
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The first three columns respectively list the variances of 1) the differenoes about the area mean
difference, 2) area mean differences about the grand mean difference and 3) the variance of the grand
mean difference. The last column lists the total variance of the differences.

C. UW 8-n Climate Simulations
Table 2. A comparison of annually averaged fields from the 13-year UW 6-n model climate simulation to
observed values. Observational estimates are from a summary by Hack et al. 199
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Fig. 3. Same s Fig. 2 except for CCMS3 running at T42 horizontal resolution.
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Fig. 7. The distribution of annual vertically averaged healmg (101 KIDay) from the
last 13 years of a 14 year climate run with UW 8- model

Fig. 8. The time averaged distributions of precipitation (mm/day) from the 13 year
UW 6-1 model climate simulation for DJF (A) and JJA (B) and from the Xie and

AArkin precipitation climatology for 1979-99 for DJF (C) and JJA (D).
D. NCEP and NASA Collaborative Studies
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Fig. 9. Fifteen month record of Anomaly Correlation from the UW 6-r model
and NCEP Global Forecast System.

Regional Air Quality Modeling System (RAQMS)
Collaboration - NASA Langley and the University of Wisconsin - Madison
Multi-scale (global/regional) chemical modeling and data assimilation system

UW Hybrid 6-n Model UW - N
Global model Regional non-hydrostatic model

Tropospheric Ozone Residual (TOR)
Estimate of tropospheric ozone burden

Fig. 6. Global distributions of the difference (DJF 1987-88 minus DJF 1988-89) between seasonally average precipitationFig 10. The UW hybrid model forms the global component of the RAQMS data

for DJF 1987-88 and DJF 1988-89 (mm/day) from the (A) Xie and Arkin (1997) climatology
and (B) UW 06— model climate simulation.

assimilation system. Figure B shows tropospheric ozone burden (DU) for June-July
1999 from the RAQMS assimilation while Fig. A is the satellite observed estimate.




The presentation is dedicated to the memory of Professor Heinz Lettau,

who within his lectures presented the derivation of the Navier Stokes equations
based on the Maxwell-Boltzmann velocity distribution law from the kinetic
theory of gases.

Professor Lettau not only authored the first book on atmospheric turbulence

in 1939, but demonstrated understanding of the 2" Law by estimating

the global dissipation of kinetic energy though assessing the increase of entropy.
Throughout his career he demonstrated his command of the

underlying principles in enumerable applications ranging from micro to

global scales of atmospheric circulation.
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Schematic of Atmospheric Energy Reservoirs and Renewal

Prepared by Professor Heinz Lettau, University of Wisconsin-Madison and shared
with Donald Johnson in the mid 1960’s. (See note dated without year)

ATMOSPHERIC ENERGY RESERVOIRS and RENEWAL—PERIODS [Watt—hours/m2; days ]

Reservoir Renewals and R I Indicated Pr 2 Watt/m2

+340 —102 -238
Intercepted Rejected Removal by Long—Wave Radiation to Space
Insolation Insolation —156 —82

238
Available Solar Renewal
6 62

Production of Sensible Emission at Temperature Emission following
Heat by Absorption of Absorption Convective Cycles
y I I
+162 —156 -
SENSIBLE HEAT = INTERNAL ENERGY [500,000; 88 days)
+76 -8.4 +6.4
* b
Production of Release of
Latent Heat by Sensible Heat by
Evaporation Precipitation
+70 ~76
RESERVOIR OF LATENT HEAT
{17,000; 9 days}

[ Production of Mechanical Energy l Dissipation of Mechanical Energy I

ZONAL AVAILABLE POTENTIAL E +56 I4_
-3 {800; 6 days] -53

A
| EDDY AVAILABLE POTENTIALE +53 +8
- [200; 1.5 days) —58

r EDDY KINETIC ENERGY (200; 15 days] *>®  —~58 |——
Y

|‘.3 +3 ZONAL KINETIC ENERGY [300; 20 days) -8 l

Schematic of Atmospheric Energy Reservoirs and Renewal
(Continued)

Two references to Professor Lettau’s interests in the balance of mass, momentum
and energy for the global atmosphere circulation are:

Lettau, H. (1954a). A study of the mass, momentum and energy budget of the
atmosphere. Archiv. Meteor. Geophys. Bioklima., A, 7, 133-157.

Lettau, H. (1954b). Notes on the transformation of mechanical energy from eddying
motion. J. Meteorol., 11, 196-201.

Discussions in the 60’s focused on the thermal forcing of the atmosphere’s global
circulation and its maintenance against kinetic energy dissipation. These discussions
were crucial to the development of isentropic perspectives of global monsoonal
circulations.

Note from Professor Lettau.
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Caratheodory’statement of the Second Law
(Sommerfeld 1950)

“In the neighborhood of every state which can be
reached reversible , there exists states which cannot
be reached along a reversible adiabatic path, or in
other words, which can only be reached irreversible
or which cannot be reached at all.”

Is Caratheodory’s statement of the Second Law relevant to
modeling of the climate state? If so, are there robust means to
assess the accuracies of model in appropriately simulating
reversibility, or alternatively to avoid adjacent states that
should not be reached by irreversible processes?



Predictive Variables Tracers
O=T(Ps ! P)" o

0, = Go[(T IT)(Po / P)*] \

0p, =To(Poo / Po)”*
1 K’H
T,05.6) R




The Extended Proportion Defining Carathéodory’s Admissible Surfaces *

01200 = (o o) (eiTo % ard) = (caTy | PF) < (CaTo ! P )] = (caers pY ™) : (Cato P *) = (01 6y,)

Carathéodony's T aoz‘oz—CZ(T/P")_Cz/lz _0ca. T, p%) _ 0, (€2.To, Po)
= =2y = /1 arathéodory’s Two - - - - -
90, = o, 0, 0, 0, Dimensional Surface O o o bo

Carathéodory’s Two
Dimensional Surface
as a function of

e as a function of (T, p,6)

¢, = (P /R)*

C, = (pgo)

Cl)?ﬁé:i?::g’ssutfzge R ¢ PN ooty (e a pEF)  Or (€000, 5 ) The Two Dimensional surface
03 =03 = _Cafs _ - _
as a functon of (g, p, ) o, o, o, % For the Ideal Gas Law R=(palT)

&0 ¢ =(Pw/R)

o
——

* Extracted from manuscript in preparation, Johnson (2007)



Now consider the global mean energy balance for the true atmosphere under the
constraint of energy conservation as expressed by

¢=[Q-d(K)], (11)

where € (t) is the sum of the time dependent global mean specific Lagrangian time rate
of change of specific internal (u=c,T), geopotential (¢)and kinetic (k)energies while

5(k) Is the time dependent global mean kinetic energy dissipation.

Q={{e? ~[V[H,, + V[H,, + V[H, +p%<Lq)]}/p}

S={(e*+Tu*)-[Ve I:II +VeH +p%(Lq)]+TVO[k(€nT)]}/Tp



$=d(k)/T >0
§ =

[d(k)/T1>0

AT = A(T) =[ET)-T]

TL=T - (AT/T)

§ = [d(K) /T (AT /T)] >0
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<T § )> d(K)
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(15a)
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<5(k)>=<c§>=<@ s>=T:s=sT+<ﬁ§'**s’“‘*> (18)

(d)=(Q)=(T s)=T §=§T:+<?**s'“*>. (19)
Fot +<‘?’“§’“‘*>/s§, (31a)
T_=T:+<‘g“s'“*>/s?, (31b)



Now a rearrangement of (32a) in the form of
T [<@**§“*>/(T? /A K]

followed by its substitution into (32b), an alternate relation corresponding with (32c)
emerges as

1)

. [<J“?’**§“*>/('I?—T)]

§:[<*r3**s“*>/(f _TY]=d (k)N M- (AT/T)]  (34)

O

(k)}

Now under the condition of equality of the kinetic energy dissipation in the true and
model states, (34) simplifies to

S

[<*r3“s'***>/(T‘—T:)] :[<@*§“>/(TT—TE)] [1— (AT /Y]



Now by addition and subtraction of the equilibrium temperature TeAg within the

deviation temperature (T —T ), the three dimensional deviation temperature defined by
(37) is expressed by

T =[0-T, )" +(T, ~T") "1+ (@% -T¢) (39)

Within Lorenz’s concept of available potential TeAg is the equilibrium

temperature defined by a virtual isentropic distribution of mass to a horizontally invariant
reference state with uniformity of temperature and hydrostatic pressure relative to
geopotential surfaces. In this study with its focus on internal energy and entropy,
recognize that uniformity of temperature and entropy requires uniformity of pressure.
Then the introduction of the hydrostatic equilibrium demands uniformity of pressure
relative to geopotential surfaces. Interestingly, Chandrashkar’s definition of local
thermodynamic equilibrium of uniformity of internal energy and entropy only requires
uniformity of pressure. However, when his definition of local thermodynamic
equilibrium is combined with the hydrostatic constraint, the uniformity of geopotential
energy as a requirement for local thermodynamic equilibrium enters. Thus the concept of
Lorenz’s reference state, which defines a minimum state for the sum of the internal and
geopotential energies under the equilibrium of a hydrostatic constraint attained by a
virtual isentropic redistribution of mass is actually a special case of local equilibrium of
internal energy and entropy as defined by Chandrashkar. Concerning the relevance of the
definition of local equilibrium states whether by Chandrashkar or Lorenz, it is extremely
Important to recognize that both are artifacts of the actual processes involved, however
both serve to provide understanding of the relevance of just how the combination of
internal energy as a state variable and entropy sources/sinks as internal processes
maintain atmospheric circulation.



Now consider the efficiency factor (Dutton and Johnson 1967) determined by a
virtual isentropic displacement of mass to a horizontally invariant reference state defined

by

£ =[- (T, ITI=[L-(p,, /P)*] (40)
Then recognize that &~ is positive and negative when the temperature T (o, S8,7,t) is
respectively greater or less than the reference state temperature T% [a, B,0(x, f,7),1].
Also consider that that the magnitude of the efficiency whether positive or negative is
greater the greater the magnitude of the temperature deviations, that is the greater the
magnitude of the efficiencies within the climate state, the greater is the thermal

disequilibrium and the greater will be the impact of differential heating..
A multiplication of (40) by temperature and substitution into (39) yields

T ={leN) "+ (T, ~T") "1+ (@7 -T%)} (41)

Within this definition of efficiency as defined through the entropy principle, the paired
variables (Tepﬂ’ peA,7) respectively represent the temperature and pressure of the time

dependent areally invariant equilibrium state of available potential energy theory as
determined by the internal energy and entropy distributions within the climate state.



Also by combining the second and third terms, and simple considering their sum as the
deviation of the Lorenz reference state from the globally averaged internal energy in the

- I
form of % (T, ~T®)" and T% ~T®)" , (47) reduces to

(57te, 1y 8, Ty pT 1)
A (48)
:{<[+(5A9T~)*** +T~% —fG)*> H(T -T)H1- (AT /T)

Now under the condition that the cold bias AT as defined is invariant in space and time

under the condition of statistical equilibration, the difference (T_—f) within the model

atmosphere is equal to the true state difference ('F—f) , thus (48) simplifies to

(e, (3, T

(49)
:{<(5J)*“>+<(ﬁ% —'FG)*> i (AT /T)



Now the condition of statistical stationarity as expressed within isentropic corrdinates
requires the isentropically area average entropy source $* to vanish throughout the
global domain. As such, with M equal to zero throughout the climate state domain, the

vertical deviation of §* is identically zero. From a physical perspective, this condition
simply requires the increase of entropy within each isentropic layer by solar absorption,
sensible and latent heating plus frictional dissipation to be equal to the loss of entropy
from the climate system by infrared emission. Now under these conditions, the impact of
the cold bias on the model state reduces to

(SRR

(5, T - (aT )
As the result reveals, when the internal energy distribution is expressed relative to the
entropy structure as determined by casting the results determined for generalized
coordinates in isentropic coordinates, the impact of the mean cold bias is to amplify the
generation of the reversible component of total energy. Clearly the greatest amplification
will occur where the positive and negative efficiencies are the largest, that is the upper
troposphere of polar latitudes, and the lower troposphere of the atmosphere on all
isentropic surfaces which intersect the earth’s surface. Such amplification will extend
into the lower troposphere of the extratropical latitudes such as over the Southern Ocean,
where the cold air draining from the Antarctic Continent is heated by sensible heat

addition over an extremely intense circumpolar circulation surrounding the Antartic
Continent..

(50)



Isentropic Efficiency Factor




Air Temperature Differences
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the ordinate passing though the origin in relation to the mean cold bias



Now compare the ratio of a model’s mean entropy source to its kinetic energy
dissipation to the true state ratio by the substitution of (14a) into (25), in the form of

[S/d(k)] [g ds(k)](l—(A'r/'F)]>[§ ds(k)] (27)

and then note from (27) that a cold bias requires the ratio of the model’s entropy source
to its kinetic energy dissipation to be defined as R must be greater than the

corresponding true state ratio to be defined as R .

Note that (27) may be expressed as

R=R (1-(AT /T)]>[s/d(k)]
where Rand R are defined by R—s/d(k) and R -

O
~
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Scatter Plots of 6 - 6,

UW 0-n model with NCEP Physics
2.8125 lat - long
28 layers
CAM 3 (Eulerian Spectral)
T42 (~2.8 resolution)
26 layers
CAMa3 (Finite Volume)

2 x 2.5 lat — long
26 layers
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10 day Component Variance and RMS differences of Potential Temps- initial day 15 Dec. 1998,
(eL = e|_o) (9 - eo) (eL - 9) (eo - 0Lo)
UW 6-n Model, 14 theta, 14 eta layer, 2.8125 deg

CCM3 NO PHYS 1.12 (1.06)  0.02 (0.14)  0.28 (0.53)  0.28 (0.53)

CCM3 ALL PHYS  130.52 (11.43) 115.37 (10.74) 1.79 (1.34) 1.82 (1.35)

NCAR FV 26 layers,2x2.5 deg

CAM3 NOPHYS 6.93 (2.63) 1.00 (1.00) 1.54 (1.24) 1.53 (1.24)

CAM3ALL PHYS  210.97 (14.53) 156.99 (12.53) 6.52 (2.55) 6.18 (2.49)

30 day Component Variance and RMS differences of Potential Temps- initial day 15 Dec. 1998,

UW Model, CCM3 All Physics, 14 theta, 14 eta layer, 2.8125deg
6. - 6.0 © - 96) . - 0 ©, - 0,

UW 0-n Model 477.52 (21.85) 402.89 (20.07) 8.27 (2.88) 9.17 (3.03)

UW Sigma Model 1752.90 (41.87) 661.55 (25.72) 181.95 (13.49) 118.11 (10.87)
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5 Day Simulation of 292 K Specific
Humidity Superimposed on 292 K
Pressure Topography

00:00:00
|
1 of 20

MMMMMM




N W S TET. N
— .

Fig. 13. Vertical-azimuthal distribution of azimuthal component of pressure stress on isentropic
surfaces (solid) and potential temperature (dashed) for the radius of 9.0° within the Alberta cy-
clone at 1200 UTC 31 March 1971 (10® kg s™%) (Katzfey, 1978). The cyclonic rotation («) goes from
the north (N) to the west (W), to the south (S), to the east (E) and back to the north.
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Figure 22.2 A vertical meridional distribution of mass weighted temporally, zonally averaged isentropic efficiency {units 102 ) defined by
& equal to < (/ =T,/ T) = [see Eq. (44)] and potential temperature #], PA (8] (K) as determined from the isentropic temporally, zon-
ally averaged pressure distribution, p7 (b, 8. Unshaded and shaded regions denote positive and negative eflficiencies., respectively. The isen-
tropic layers shaded red identify the atmospheric region within which the covariance of entropy sources and sinks with positive and negative
efficiencies, respectively, are most effective in the generation for maintaining the atmosphere’s circulation. The nonlinearity of this process
is evident from the consideration that a cooling rate of 1 K day™! in the high polar troposphere with & < 0.25 is four times as effective in
generation as a heating rate of 1 K day-! in the low to mid tropical troposphere with & == 0.06, Alternatively, the nondimensional efficien-
cies ay indicated may be considered to be percentages of the heating/cooling that generates a reversible component. For example, in high
polar troposphere in the northern hemisphere, the generation contribution @, means that 275 of the cooling rate with @,, << O and & << 0
is a positive generation contribution to the reversible component equal to 275 of |@,,|.
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A Reviewers Comment

It is doubtful that strict global conservation of energy and entropy by a
numerical scheme plays a significant role in weather prediction. The
advantage of center difference schemes like Arakawa and Lamb (1977)
In conserving energy and entropy are often over-stated while its
shortcomings (e.g., numerical instability near poles; degradation in
vorticity advection in divergent flows which results in poor correlation
between potential vorticity and passive tracers) being ignored. All
models need sub-grid damping mechanisms. How this can be achieved
can be very different among models. It should be noted that even the
Arakawa and Lamb scheme needs artificial smoothing/filtering (in time
and in space) renders all GCMs effectively non-energy conserving and
irreversible. In standard CCMa3 the total energy is nearly conserved
because, 1) the lost Kinetic energy due to hyper-viscosity is added back
to the thermodynamic equation and also due in part, 2) a lucky cancel-
lation between the energy conserving errors in dynamics and physics.
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The Extended Proportion Defining Carathéodory’s Admissible Surfaces *

0y 200 = (o o) (eiTo " ard) = (caTy | PE) = (caTo ! P )] = (caets by ™) : (Cato P *) = (01 6y,)

Carathéodony's T a02—02_02(T/p")_c2/12 _0(c2. T, p¥) _ 0, (€2.To, Po)
= =2y = /1 arathéodory’s Two - - - - -
90,7 o, 0, 0, 0, Dimensional Surface O o o bo

Carathéodory’s Two
Dimensional Surface
as a function of

e as a function of (T, p,6)

¢, = (P /R)*

C, = (pgo)

Cl)?ﬁé:i?::g’ssutfzge N ¢ PN ooty (e a pEF)  Or (€000, 5 ) The Two Dimensional surface
03 =03 = _Cafs _ - _
as a functon of (g, p, ) o, o, o, % For the Ideal Gas Law R=(palT)

&0 ¢ =(Pw/R)

o
——

* Extracted from manuscript in preparation, Johnson (2007)
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