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a b s t r a c t

A multistep flux-corrected transport (MFCT) scheme is developed to achieve conservative
and monotonic tracer transports for multistep dynamical cores. MFCT extends Zalesak two-
time level scheme to any multistep time-differencing schemes by including multiple high-
order fluxes in the antidiffusive flux, while computing the two-time level low-order mono-
tone solution. The multistep time-differencing scheme used in this study is the third-order
Adams–Bashforth (AB3) scheme implemented in a finite-volume icosahedral shallow-
water model. The accuracy of AB3 MFCT is quantified by the shape-preserving advection
experiments in non-divergent flow, as well as a cosine bell whose shape changes during
advection in shear flow. AB3 MFCT has been shown to be insensitive to time step size. This
make AB3 MFCT an attractive transport scheme for explicit high resolution model applica-
tions with small time step. MFCT is tested in shallow-water model simulations to demon-
strate that the use of MFCT maintains positive-definite tracer transport, while at the same
time conserving both fluid mass and tracer mass within round-off errors in the AB3
dynamic core.

Published by Elsevier Inc.
1. Introduction

Many monotonic transport schemes have been developed to prevent spurious oscillations near sharp gradients in tracer
concentration fields. These monotonic schemes may be grouped into two primary categories: two-stage flux-corrected trans-
port (FCT) schemes, and one stage flux limiter schemes [1]. The two-stage FCT schemes, e.g. [2–5], include a diffusive and an
antidiffusive steps. In the first step, a diffusive monotonic scheme is used for tracer transports. Then, in the second step, anti-
diffusive fluxes are restored to the maximum allowable amounts without violating the monotonic constraint. Antidiffusive
fluxes can also be restored by applying antidiffusive velocities to reverse the diffusive effect of low-order advection schemes
[6]. The FCT algorithm is designed such that it limits fluxes in strong gradient regions where under- or over-shoots are most
likely to occur. Over gently varying parts of the solution, the flux correction effects are kept to a minimum.

The single stage approach, which does not require the antidiffusive flux correction step, constraints total fluxes to achieve
monotonic tracer transports with carefully designed flux limiters. These flux limiters may be constructed based on the one-
dimensional monotonic subgrid distributions on the fixed (Eulerian) grid [7,8]. Efficient one-dimensional limiters have been
used to decompose multidimensional tracer problems to a sequence of one-dimensional tracer problems [9]. These relatively
simple one-dimensional flux limiters have been extended in recent years to more complex remapping schemes based on up-
stream control volume along Lagrangian trajectories. An incremental remapping is developed to simplify the departure re-
gions by limiting trajectories to the nearest neighbor cells on a Cartesian mesh [10]. It has been extended to the icosahedral-
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hexagonal grid [11]. A shape-preserving advection scheme is developed by carefully interpolating interface tracer mixing
ratio [1]. This scheme has been further simplified by a local linear approximation [12]. Flux limiters are also constructed
by the streamline subgrid integration method [13]. Recently, a conservative multi-tracer transport algorithm which approx-
imates the upstream Lagrangian cell with line integrations has been developed [14]. Flux limiters are also developed for
unrestricted-time-step transport schemes suitable for time-split operator [15]. Generally speaking, it is difficult to construct
high-order monotonic remapping schemes. Thus, high-order advection schemes tend to use two-stage FCT schemes whose
accuracies depend primarily on the order of accuracy in advection schemes.

Boris and Book [2] and Book et al. [3] developed renowned flux-corrected transport schemes in one dimension based on a
two-time level time-differencing scheme. Zalesak [4], hereafter referred to as Z79, extended the one-dimensional FCT into
multiple dimensions, still based on the two-time level scheme. In the last two decades, several multistage and multistep
schemes have been proposed and shown to possess better numerical properties than the traditional two-time level scheme
adopted in the aforementioned FCT applications. Durran [16] extensively analyzed time-differencing schemes and recom-
mended the third-order Adams–Bashforth (AB3) scheme as one of the best choices among the multistage and multistep
schemes. Since then, AB3 has been used to discretize dynamical cores in many numerical models [17,18]. In such models,
the mass fluxes used to transport tracers are computed using the AB3 multistep scheme. The use of traditional Z79 FCT
schemes in multistep dynamical cores causes inconsistency between the continuity and tracer equations. To be consistent,
it is necessary to discretize tracer equations using the same multistep time-differencing scheme as the dynamical cores.
However, the AB3 multistep scheme is not a total variation diminishing (TVD) scheme [19]. Thus, the AB3 low-order solution
consisting of first order upwind fluxes at multiple time steps may not preserve positivity. The purpose of this study is to ex-
tend the two-time level Z79 scheme into a multistep FCT scheme by using the traditional two-time level monotone low-or-
der solution, and multistep high-order fluxes to determine the antidiffusive flux in the same manner as the multistep
dynamical cores. In other words, the multistep FCT approximates strong gradients with low-order monotonic fluxes, and
the smooth solution with the AB3 multistep tracer fluxes which are consistent with the AB3 mass fluxes calculated in
dynamical cores.

A recent important global modeling advance is the exploitation of icosahedral grids [17,20]. By virtue of their local spatial
operators, icosahedral models run more efficiently than spectral models in very high resolution simulations on massively
parallel processors [21]. Unlike the traditional latitude/longitude grid whose convergent meridians create numerical prob-
lems near the poles, the icosahedral grid is free of pole problems. However, the icosahedral-hexagonal grid cells generally
do not line up perfectly with their neighbors. Thus, the Z79 multidimensional algorithm is more suitable for this grid than
the one-dimensional algorithm [2,3], which relies on directional splitting suitable for orthogonal grids.

In this study, the AB3 multistep FCT scheme (hereafter referred to as MFCT) is applied to the tracer equation in the ico-
sahedral SWM described in Lee and MacDonald [22] which is referred to as LM09 hereafter. Section 2 describes the flux for-
mulations in the continuity and tracer equations in the icosahedral SWM. Section 3 shows the numerical implementation of
MFCT formulated on the icosahedral-hexagonal grid. In Section 4, numerical experiments are used to test the monotonicity
constraint and accuracy of the MFCT scheme. Conclusions are given in Section 5.

2. Continuity and tracer equations

In this study, the MFCT scheme is applied to the tracer equation in the icosahedral SWM described in LM09. Readers are
referred to LM09 for numerical details of the SWM including a description of the icosahedral grid. In the following, we will
focus our discussion on the continuity and tracer equations which are written in the SWM as follows:
@ðd/Þ
@t
þm2r � U

!
d/

m

0@ 1A ¼ 0

@ðqd/Þ
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where t denotes time, m is a map scale factor, and U
!

is the horizontal wind vector. The fluid layer thickness, d/, is defined as
/ � /b where / and /b denote, respectively, the geopotential of the upper interface and the underlying surface in the SWM.
Variable q represents tracer mixing ratio and (qd/) is for tracer mass.

The mass and tracer flux divergences are formulated, respectively, in terms of the following integrals of layer thickness
and tracer mass:
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Fig. 1. The schematic diagram of model variables defined on the icosahedral cell. Variables with the subscript k are the mean variables over the cell k, while
those with the subscript (k, i) are defined at the middle of the edge segment of i.
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where A is the area of the target icosahedral cell, and F(d/), F(qd/) denote, respectively, the mean mass and tracer flux diver-
gence over the target cellular area. The velocity vector V

!
is U
!

scaled by the map factor, m, to simplify flux calculations. The
area integration of these flux operators can be further simplified by Gauss’ theorem and reduced to line integrals as follows:
1 In t
Fðd/Þ ¼ 1
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where S in the above integrals stands for a line integral along the perimeter of the target cell, and the vector,~n, is defined as
the outward pointing unit vector normal to the perimeter S. It is important to note that the tracer flux in Eq. (2) becomes the
mass flux shown in Eq. (1) for a constant field of q, e.g. q = 1. Mutually consistent formulation of the flux expressions in the
two equations is generally referred to as the consistency condition [8], which should be satisfied in any tracer flux
calculation.

The above line integrals are discretized on the icosahedral grid as follows:
Fkðd/Þ ¼ 1
Ak

Xns

i¼1

d/k;iV
!

k;i �~nk;iDSk;i ð3Þ

Fkðqd/Þ ¼ 1
Ak

Xns

i¼1

qk;id/k;iV
!

k;i �~nk;iDSk;i ð4Þ
where subscripts i and k denote the ith edge segment of cell k. The area of cell k is denoted as Ak, while V
!

k;i; ~nk;i are, respec-
tively, the velocity and the unit vector normal to the ith edge vector of cell k. Edge variables, d/k,i and qk,i, are layer thickness
and tracer mixing ratio at the ith edge of cell k. The length of the ith segment that circumscribes cell k is denoted as DSk,i.
Note that V

!
k;i; ~nk;i; Ak and DSk,i are defined and calculated on a locally projected plane (see LM09 for details). Summation

extends over the total number of edge segments in the kth cell, with ns = 5 for a pentagonal cell (of which there are 12 in
the icosahedral grid) and ns = 6 for a hexagonal cell. Variables are defined at cell centers in a manner analogous to the Arak-
awa A grid. Edge variables such as V

!
k;i and qk,i are estimated by interpolation. For the sake of clarity, schematic diagram of

model variables is shown in Fig. 1.
To simplify the presentation, the quantities inside the above summations are denoted as line integral segments of the

edge flux1, Fek,i, as follows:
Fek;iðd/Þ ¼ d/k;iV
!

k;i �~nk;iDSk;i ð5Þ

Fek;iðqd/Þ ¼ qk;id/k;iV
!

k;i �~nk;iDSk;i ð6Þ
where Fek,i(d/) and Fek,i(qd/) represent, respectively, the mass and tracer fluxes across the edge i of icosahedral cell k. The
sign of Fek,i, determined by the inner product of V

!
k;i and ~nk;i, is positive for outflow. The flux divergence averaged over the

icosahedral cell, k, is the sum of the edge fluxes, Fek,i, across the cell edges, i.e.,
he following presentation, the line integral segments of the edge flux,Fek,i, will be referred to as edge fluxes for simplicity.
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Fkðd/Þ ¼ 1
Ak

Xns

i¼1

Fek;iðd/Þ ð7Þ

Fkðqd/Þ ¼ 1
Ak

Xns

i¼1

Fek;iðqd/Þ ð8Þ
It is important to note that the tracer flux, Fek,i(qd/), can be expressed in terms of mass flux (Fek,i(d/)) multiplied by the tracer
mixing ratio (q). It means the mass fluxes calculated in the dynamical core for thickness changes are used to advect tracer
mixing ratio in the tracer equation. Note that for a constant tracer field, e.g. q = 1, any interpolation schemes will produce
qk,i = 1 as well. Thus, the consistency condition between the continuous equations of (1) and (2) is trivially satisfied between
the discretized Eqs. (3) and (4) if they are discretized with the same time-differencing scheme. In the following section, we
design a general multistep FCT scheme which discretizes tracer equations using the same time-differencing scheme as mul-
tistep dynamical cores.
3. MFCT discretization

The purpose of this section is to formulate the MFCT scheme for tracer transports whose mass flux is discretized with the
AB3 discretization scheme for the continuity equation. The continuity equation discretized by AB3 is written as follows:
ðd/Þðnþ1Þ
k ¼ ðd/ÞðnÞk þ a1FðnÞk ðd/Þ þ a2Fðn�1Þ

k ðd/Þ þ a3Fðn�2Þ
k ðd/Þ ð9Þ
where n denotes the time level, and a1 ¼ 23Dt
12 ; a2 ¼ � 16Dt

12 ; a3 ¼ 5Dt
12 , with Dt denoting the length of the time step, and

FðnÞk ðd/Þ; Fðn�1Þ
k ðd/Þ, and Fðn�2Þ

k ðd/Þ are mass fluxes of the icosahedral cell k at time levels n, n � 1, and n � 2, which determine
the new layer thickness. The consistency requirement stated in the previous section requires the discretized tracer equation
to become the continuity equation as q equals to one. Thus, the tracer equation in the AB3 dynamical core is written as:
ðqd/Þðnþ1Þ
k ¼ ðqd/ÞðnÞk þ a1FðnÞk ðqd/Þ þ a2Fðn�1Þ

k ðqd/Þ þ a3Fðn�2Þ
k ðqd/Þ ð10Þ
where F(qd/) is the tracer flux which becomes the mass flux for constant mixing ratio. Note that the tracer equation includes
tracer tendencies at three consecutive time steps as opposed to the two-time level scheme which require tendencies only at
the current time step.

In traditional FCT schemes, two-time level low-order solutions obtained by upwind piecewise constant method (PCM) or
donor-cell schemes preserve monotonicity. Since AB3 multistep is not a TVD scheme [19], its low-order solutions consisting
of PCM fluxes at multiple time steps may not be positivity-preserving, a violation of FCT monotone low-order solutions. In
other words, the AB3 low-order solution may produce under- and/or over-shoots in strong gradient regions where the tracer
solution converges to the low-order solution. To obtain low-order monotone solutions, MFCT calculates low-order solutions
with traditional two-time level monotonic schemes, while computes antidiffusive fluxes with multistep high-order fluxes to
meet the consistency requirement. It is discretized as follows2:
ðqd/ÞLðnþ1Þ
k ¼ ðqd/ÞðnÞk þ FLðnÞ

k Dt

ðqd/Þðnþ1Þ
k ¼ ðqd/ÞLðnþ1Þ

k þ Ck
eF n

kDteF n
k ¼ ða1FðnÞk þ a2Fðn�1Þ

k þ a3Fðn�2Þ
k Þ=Dt � FLðnÞ

k

8>><>>: ð11Þ
where ðqd/ÞLðnþ1Þ
k is the low-order monotonic solution obtained by the first-order piecewise constant flux divergence FLðnÞ

k at
the current time step, and eF is the antidiffusive flux divergence which is defined by subtracting the low-order flux from the
sum of the AB3 high-order fluxes. The above MFCT formulation can be easily extended to any multistep schemes by replacing
the three AB3 fluxes in the antidiffusive flux with proper multistep high-order fluxes. The clipping coefficient, Ck, is derived
in such a way that Ck is zero in regions where solution is poorly resolved or discontinuous, and Ck equals 1 in regions where
solution is smooth. Note that the MFCT Eq. (11) equals to Eq. (10) of the AB3 tracer equation for Ck = 1. In other words, the
MFCT approximates the discontinuous solution with the low-order monotonic fluxes, and the smooth solution with the AB3
multistep tracer fluxes which are consistent with the AB3 mass fluxes calculated in dynamical cores.

The FCT achieves the monotonicity by imposing limits on the antidiffusive edge flux which is defined as the difference
between high- and low-order edge fluxes expressed as:
eFeðnÞk;i ¼ FeH;ðnÞ
k;i � FeL;ðnÞ

k;i

FeH;ðnÞ
k;i ¼ ða1FeðnÞk;i þ a2Feðn�1Þ

k;i þ a3Feðn�2Þ
k;i Þ=Dt
where fFeðnÞk;i ; FeH;ðnÞ
k;i and FeL;ðnÞ

k;i denote, respectively, the antidiffusive, high-order, and low-order fluxes across edge i of icosa-
hedral cell k. Low-order fluxes are based on the piecewise constant upwind scheme which preserves the spatial monotonic-
ity. High-order fluxes in this study are determined by the piecewise linear fluxes at the AB3 multiple time steps. Similar to
he following presentation, the argument (qd/) in the flux tendency functions will be omitted for simplicity.
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the AB3 scheme, the edge flux calculated at time step n, i.e., FeðnÞk;i , is saved and reused in the subsequent two-time steps as
Feðn�1Þ

k;i and Feðn�2Þ
k;i . The antidiffusive flux, in analogy to the regular flux, is positive if directed out of the cell. These antidiffusive

edge fluxes around the five or six icosahedral cell edges constitute the antidiffusive divergence over the area of icosahedral
cell k, i.e.,
eF ðnÞk ¼
Xns

i¼1

eFeðnÞk;i
The MFCT scheme limits these antidiffusive edge fluxes to achieve the monotonic constraint.
In the following, we describe the MFCT clipping steps which are basically the same as those described in Z79 except that

flux calculations are performed on the icosahedral grid. First, we define Pn
�;k as the sum of all positive and negative antidif-

fusive edge fluxes for grid cell k at time step n. They are expressed as:
Pþ;k ¼
Xns

i¼1

max 0;�eFeðnÞk;i

� �
P�;k ¼

Xns

i¼1

max 0; eFeðnÞk;i

� �

Note that P+,k and P�,k defined as positive values contribute, respectively, to the positive and negative tracer tendency for grid
cell k. These antidiffusive fluxes are subjected to flux clipping based on the maximum allowable tracer amounts which set
limits to which the composite antidiffusive fluxes must adhere in order to avoid under- and over-shoots. These maximum
allowable tracer amounts are set as follows:
Qþ;k ¼ qmax
k d/ðnþ1Þ

k � ðqd/ÞLðnþ1Þ
k

h i
Ak ð12Þ

Q�;k ¼ ðqd/ÞLðnþ1Þ
k � qmin

k d/ðnþ1Þ
k

h i
Ak ð13Þ
where Q+,k and Q�,k define the maximum allowable tracer mass change, and qmax
k and qmin

k are the maximum and minimum
permissible tracer mixing ratios for cell k. The maximum allowable Q+,k and Q�,k are evaluated separately to limit the incom-
ing and outgoing antidiffusive fluxes respectively. For example, to prevent tracer overshoot, it is sufficient to use Q+,k to limit
the incoming fluxes because the outgoing fluxes reduce tracer mass and thus will not result in overshoot. Similarly, it is suf-
ficient to limit the outgoing fluxes with Q�,k to prevent undershoot. Note that the low-order solution ðqd/ÞLðnþ1Þ

k

� �
as well as

the layer thickness d/ðnþ1Þ
k

� �
must be updated prior to estimating Q±,k. The strategy of tracer clipping is to enforce the mono-

tonic constraint on the tracer mixing ratio q rather than the tracer mass qd/. Thus, MFCT limits the antidiffusive fluxes across
cellular edges so that the predicted tracer mixing ratio at time step (n + 1) satisfies
qmin
k 6 qðnþ1Þ

k 6 qmax
k ð14Þ
The choice of the maximum and minimum limiters follows that of Eq. (17) in Z79, i.e., qmax
k and qmin

k are chosen, respectively,
as the local maximum and minimum tracer values from the previous time step, as well as those produced by the current low-
order solution, in the immediate vicinity of the cell in question.

The final step in MFCT is to infer from P±,k and Q±,k the fraction of the antidiffusive fluxes whose use will avoid generating
new maxima or minima. The fractional factor is defined as follows:
Rþk ¼
minð1;Qþ;k=Pþ;kÞ if Pþ;k > 0
0 if Pþ;k ¼ 0

�
R�k ¼

minð1;Q�;k=P�;kÞ if P�;k > 0
0 if P�;k ¼ 0

�

where Rþk represents the ratio by which the antidiffusive fluxes directed into cell k must be multiplied to avoid creating a
new maximum in this cell. Similarly, R�k must be applied to the outgoing antidiffusive fluxes so that no new minimum
can occur in icosahedral cell k. Note that each antidiffusive flux is directed away from one cell and into an adjacent cell.
In order to simultaneously satisfy monotonicity and tracer conservation constraints, it is necessary to choose the smaller
of the two ratios computed for a given edge. Thus, the flux limiter Ck,i that has to be applied to the antidiffusive flux at each
edge is defined as
Ck;i ¼
minðRþadj;R

�
k Þ if eFeðnÞk;i P 0

minðRþk ;R
�
adjÞ if eFeðnÞk;i < 0

8<: ð15Þ
where R�adj represents the incoming and outgoing fraction factors derived from conditions in the cell located on the other side
of the ith edge segment of cell k. Multiplying the antidiffusive fluxes by the flux limiters, Ck,i, finally yields the flux-limited
tendency functions
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Ck
eF ðnÞk ¼

Xns

i¼1

Ck;i
eFeðnÞk;i
needed in Eq. (11).
The above flux-limiting procedure developed for the tracer equation is easily applicable to the continuity equation to

avoid negative layer thickness by setting q to one and enforcing the minimum permitted zero layer thickness to the outgoing
antidiffusive fluxes.
4. Numerical results

In this section, MFCT tracer transports are tested with analytical advection cases in non-divergent flow, in which analyt-
ical solutions exist to quantify the MFCT accuracy. For practical applications, MFCT is also tested in an icosahedral SWM sim-
ulation in which tracer distribution is constantly reshaped in time-dependent divergent flow forced by a growing seamount
on a rotating earth. Numerical experiments were performed on the icosahedron bisected five, six and seven times (i.e., on G5,
G6, and G7 grids). The total number of grid points in G5, G6 and G7 is 10,242, 40,962, and 163,842, respectively. Their aver-
age grid lengths are approximately 240 km, 120 km, and 60 km, respectively. The icosahedral grids and mathematical
expressions of l1, l2 and l1 norms used in this study are the same as those used in LM09.

4.1. Tracer transport in non-divergent flow

In the following, the accuracy in the MFCT tracer equation is quantified for the analytical cases of solid-body cosine bell
and slotted cylinder advection in which tracer functions do not change shape given that advection takes place in solid-body
non-divergent flow. The scheme is also tested with a cosine bell whose shape changes in incompressible deformation flow
during the integration. The effect of monotonic constraints on smooth and discontinuous solutions is examined by compar-
ing the analytical test cases with and without MFCT at different resolutions.

4.1.1. Cosine-Bell Advection
In the cosine bell advection experiment, a cosine bell is advected by a prescribed non-divergent flow field along a great

circle. It returns to the original location without changing shape after one revolution over a 12-day period. The bell-shaped
cosine function and winds prescribed in Williamson et al. [23] are given as follows:
hðk; hÞ ¼ ðh0=2Þ 1þ cos pr
R

� �� �
if r 6 R

0 otherwise

(
us ¼ u0ðcoshcosaþ sinhcosksinaÞ
v s ¼ �u0sinksina
where h0 = 1000 m and r is the great circle distance between any given point at (k,h) and the center of the cosine bell whose
initial location is given as (kc,hc) = (3p/2,0). The radius R is chosen as R = a/3 (a being the earths radius), and the velocity
parameter u0 is specified as u0 = 2pa/(12 � 86,400) to give a 12-day period for the cosine bell to revolve around the sphere
once. The orientation of the cosine bell advection is determined by a, e.g. a ¼ p

2 for advection along a great circle passing
through the poles.

In this study, a cosine bell, initially located at the equator and 90� longitude, is advected northward along the 90� longi-
tude, passing the North Pole and continuing along the 270� southward, passing the equator and the South Pole, and finally
returning nearly to the original location over a 12-day period. Table 1 shows the sensitivities of the error norms and max-
imum function values to model time step size for the cosine bell advection with a ¼ p

2 on the G5 grid after one revolution.
Table 1 shows that the maximum function values and l1, l2 and l1 error norms are insensitive to the model time step. These
results show that AB3 numerical property differs from that in other upwind-biased advection schemes whose dispersion er-
rors increase with decreasing time step (see e.g. Fig. 3 of [12]). Table 1 is consistent with Fig. 1 of [16] which shows that the
amplification factor for the AB3 scheme is close to one for small Dt. In the limit of Dt� 1, both computational modes are
bell advection with a ¼ p
2 on G5 grid with different time steps

step (s) Function value Error norms

Minimum Maximum l1 l2 l1

0 969 0.207 0.191 0.222
0 965 0.202 0.184 0.203
0 962 0.202 0.182 0.199
0 961 0.203 0.183 0.198
0 960 0.204 0.183 0.198



Fig. 2. The cosine bell error norms after one revolution at different resolutions for (a) idealized curve (b) l1 (c) l2 and (d) l1.
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strongly damped while the amplification of the physical mode is close to one. This makes AB3 an attractive time differencing
scheme for explicit high resolution model applications whose small time steps are imposed by acoustic waves rather than
the advection speed.

In the following, we compare the MFCT accuracy of cosine bell advection and slotted cylinder advection with that shown
in [11] using the same 50 s time step. Numerical experiments for solid-body cosine bell advection are undertaken with three
resolutions provided by the G5, G6 and G7 grids. Fig. 2 shows l1, l2 and l1 norms for the truncation errors (TE) as function of
grid resolution from G5 to G7. Note that the grid resolution of G6 is twice that of G5, and G7 doubles the resolution of G6.
Curve A in Fig. 2 shows the perfect 2nd-order TE convergence rate whose error reduced by a factor of 4 as the model reso-
lution doubled. Curves B, C, and D show, respectively, l1, l2 and l1 error norms. These curves show that TEs represented by
three error norms reduce as the resolution increases. The slopes of curves B, C, and D similar to that of curve A show the TE
convergence rate of MFCT scheme is close to the 2nd-order scheme3. Figs.3(a) and (b) show, respectively, the final states of
cosine bell height fields with and without MFCT running on the G5 grid. Note that negative values at the wake of the cosine
bell exist in Fig. 3(b), but not in Fig. 3(a). This shows that the MFCT monotonic constraint successfully maintains non-negative
function values. The maximum height field in Fig. 3(a) and 3(b) is about 960 and 885 m with and without MFCT, respectively.
This demonstrates that the monotonic scheme is better than the non-monotonic scheme in maintaining the maximum cosine
bell function value at the G5 resolution.
4.1.2. Slotted-cylinder advection
The cosine bell is a smooth function not well-suited for testing FCT algorithms designed to prevent spurious oscillations

near sharp gradients. Thus, a slotted cylinder with steep gradients is used to test the MFCT scheme. The slotted cylinder has
3 Since the two-stage MFCT algorithm is not based on the Taylor series expansion which dictates the proper TE convergence rates, we consider the MFCT TE
convergence rate to be reasonable.



(a)

(b)

Fig. 3. The cosine bell simulated height fields after one revolution for (a) with MFCT, and (b) without MFCT. Contour interval is 100 m with additional
negative 10 contour to show the area of negative values.
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an initial height of h0 = 1000 m and R = a/2 with a slot width of a/6 and length of 5a/6. The slotted cylinder is the same as that
used in [11] except that the long axis of the slot is parallel to the equator for advection over the poles. Fig. 4 shows the slotted
cylinder solutions on G6 grid at day 0 and day 12. Although dispersive near sharp gradients, the solution does not show spu-
rious oscillations. This is expected since monotonic schemes typically change strong gradients into smooth slopes sustain-
able by model resolution. The unevenly distributed red colors in Fig.4(b) indicate that FCT imposes heavier constraints in the
wake of the two semi-cylinders than near their forward edges. This is consistent with the undershoots in the wake of the
cosine bell as shown in Fig. 3(b). The important point made by Fig. 4 is that the MFCT solution away from sharp gradient
regions remains close to the true solution.

Fig. 5 shows cosine bell and slotted cylinder cross sections centered at k ¼ 3p
2 which coincides with their initial centers on

the G6 grid. The cross sections on day 0 are superimposed on those after the 12-day integration. Note that the cosine bell is a
smooth function and the slotted cylinder has sharp gradients at the edges around the cylinder and slot. Both cosine bell and
slotted cylinder solutions on day 12 remain positive without spurious oscillations near strong gradients, and maximum val-
ues are less or equal to those in the true solutions. Fig. 5(b) shows the dispersive regions near the sharp gradients to be rel-
atively narrow. Figs. 5(a) and 5(b) show that MFCT works not only for the smooth cosine bell function, it also works well for
the slotted cylinder with sharp gradients. The minimum value inside the slot in Fig. 5(b) is less than 100 m.
4.1.3. Deformed Cosine-Bell advection
The above numerical experiments are carried out with flow fields that retain the shape of the solution. Yeh [13], hereafter

referred to as Y07, extends the solid-body cosine bell case to advection by an incompressible deformational flow field by
varying the rotation frequency with latitude. In this particular flow field, the cosine bell changes its shape with intensifying



Fig. 4. The slotted cylinder height fields for (a) true solution, and (b) numerical solution after one revolution. Direction of transport is upward over the
visible part of the sphere.
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gradients in the shear zone during the first half revolution, and then resumes its original shape during the second half rev-
olution. The 2-dimensional deformational flow specified in Eq. 12 of Y07 is used here to test MFCT on the G5, G6 and G7
grids. The time steps for these grids are 600, 300 and 150 s, respectively. In this test case, the initial cosine bell function,
the center location, and the advection direction a ¼ p

2

� �
are the same as those used in the solid-body cosine bell advection

case.
Fig. 6 shows the deformed cosine bell obtained with MFCT on the G7 grid at every quarter revolution, i.e., on days 3, 6, 9

and 12. The initial cosine bell shape is deformed into an arrow shape on day 3 with intensified gradients near the front-left
and front-right. The bell continues to be deformed with strong gradients near the front-left and front-right on day 6 at which
time the deformation is strongest. In the second half revolution, the deformation effect reverses its course by decreasing the
gradients in the shear zone. The shape at day 9 is similar to that of day 3. The solution on day 12 returns to the cosine bell
shape. The evolution of the deformed cosine bell shown in Fig. 6 is similar to analytic solutions shown in Fig. 13 of Y07. The
l1, l2 and l1 errors for G5 are 0.342, 0.284 and 0.293 which are comparable to the values 0.324, 0.236, and 0.215 shown in
Table 5 of Y07. The l1, l2 and l1 errors for G6 and G7 are larger than those shown in Y07. The maximum values at G5, G6, and
G7 grids are 970, 991, and 997 m, respectively. These maximum values are better than those shown in Table 5 of Y07.
4.1.4. Monotonicity in smooth and discontinuous functions
To assess the effect of FCT on smooth and discontinuous solutions, it is important to recognize that the steepness of

smooth solutions in discrete space is relative to grid resolutions. For example, the cosine bell function with R = a/3 may
be too steep for G5 grid to accurately represent the strong gradients. Insufficient resolution causes difficulties for advection
schemes to accurately approximate solutions with steep gradients and result in undershoot at the wake of cosine bell. In the
following, we compare FCT and non-clipping (i.e., without FCT) tracer transports for the smooth cosine bell and discontin-
uous slot-cylinder solutions at different resolutions.



(a)

(b)

Fig. 5. Longitudinal cross sections of numerical and true solutions for (a) Cosine bell, and (b) Slotted cylinder cases. The X-axis is along the latitude shown in
radians. Curves A and B denote the true and numerical solutions, respectively, after one revolution.

J.-L. Lee et al. / Journal of Computational Physics 229 (2010) 9284–9298 9293
Table 2 compares the error norms, minimum and maximum function values for the cosine bell advection with and with-
out MFCT at different model resolutions. In the following tables, ‘‘M” stands for the MFCT scheme, and ‘‘N” for the non-clip-
ping scheme, i.e., the same advection scheme without MFCT. Comparisons of minimum and maximum function values
between the column of ‘‘M” and ‘‘N” show that the MFCT scheme successfully prevents the negative values, while the neg-
ative values in non-clipping scheme become smaller at G7 than G5. The maximum value of 885 m for non-clipping case at G5
is substantially smaller than 960 m for the MFCT. However, at G6 and G7 resolutions the maximum values for the non-clip-



Fig. 6. Numerical solutions of the deformed cosine bell with a ¼ p
2 at every quarter revolutions on days 3, 6, 9 and 12. The contour interval is 100 m.

Table 2
Cosine bell advection with and without MFCT on different resolutions

DX Function value Error norms

Minimum Maximum l1 l2 l1

M N M N M N M N M N

G5 0 �58 960 885 .204 .284 .183 .216 .198 .204
G6 0 �28 982 988 .067 .093 .056 .061 .058 .053
G7 0 �12 996 999 .021 .025 .017 .017 .018 .013
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ping case are slightly better than those of MFCT. Comparisons of l1, l2 and l1 norms show MFCT produces substantial smaller
error than the non-clipping scheme at G5 because large undershoots in the regions of steep gradients where coarse grid have
difficulties to resolve the solution. Their TEs, however, become closer as the resolution increased. For example, at relatively
high resolution of G7, the errors in MFCT and non-clipping schemes are similar. These comparisons show that increase model
resolution better resolves the steep gradients of smooth solutions, and reduces the undershoot problems even without FCT.
However, this conclusion can not apply to discontinuous solutions such as the slot-cylinder function whose derivatives do
not exist at discontinuous edges, i.e., the limits of Dx? from different directions do not converge to the same function value.

Table 3 is the same as Table 2 except for the discontinuous slot-cylinder advection. Note that the MFCT successfully pre-
vents negative values and maintains the maximum function value of 1000 m for the discontinuous slot-cylinder function
throughout the whole integration period. As expected, the non-clipping schemes generate undershoot negative values
and overshoot values exceeding 1000 m. Unlike the smooth cosine bell advection, the undershoots of �149 m, �145 m
and �201 m at G5, G6 and G7 do not decrease as the resolution increased, and neither do the over-shoots reduce with
the increase of model resolution. Comparisons of l1, l2 and l1 norms show the errors are smaller in MFCT than non-clipping
cases even at the high resolution G7. The dependence of error norms on the resolution for MFCT and non-clipping schemes is
similar, i.e., they both show slight improvement on l1 norm as resolutions increased. The l2 and l1 norms in both methods are
insensitive to model resolutions because of unresolved gradients near discontinuous edges.

Table 4 is the same as Table 2 except for the deformed cosine bell advection. The impact of resolution on the continuous
deformed solution is similar to that of the non-deformed cosine bell advection. Comparisons of Tables 4 and 2, the depen-
Table 3
Slot-cylinder advection with and without MFCT on different resolution

DX Function value Error norms

Minimum Maximum l1 l2 l1

M N M N M N M N M N

G5 0 �149 1000 1176 .379 .469 .402 .424 .950 .852
G6 0 �145 1000 1198 .302 .390 .407 .435 1.00 1.02
G7 0 �201 1000 1190 .257 .321 .411 .438 1.00 1.20



Table 4
Deformed cosine bell advection with and without MFCT on different resolution

DX Function value Error norms

Minimum Maximum l1 l2 l1

M N M N M N M N M N

G5 0 �321 970 1134 .342 .926 .284 .378 .293 .430
G6 0 �78 991 1065 .141 .258 .116 .129 .106 .105
G7 0 �22 997 1012 .042 .074 .035 .038 .038 .037

(a)

(b)

Fig. 7. The change of tracer extrema in time for (a) the maximum, and (b) the minimum tracer values.
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dence of solution on the resolution is quite similar except the errors are larger in the deformed case because of the defor-
mation effect. For example, the negative values in the non-clipping solution improve as resolution increased. Also, error
norms for both MFCT and non-clipping cases decrease as the resolution increased. At the G7 resolution, MFCT and non-cli-
ping results have similar error norms. The MFCT l1, l2 and l1 TE convergence rates from G6 to G7 in Table 4 are close to 3
which is similar to what we found in Table 2 for the non-deformed cosine bell advection.

4.2. MFCT in a SWM simulation

In real applications, the flow which transports tracers has a divergent component and is almost always strongly deformed.
It is desirable to test the MFCT tracer equation in SWM simulations in which tracers are transported by constantly changing
divergent flows. In this study, we simulate a seamount rising in the icosahedral SWM on a G6 grid from the initially flat bot-
tom of a homogeneous, single-layer ocean initially at rest. The seamount is bell-shaped and takes 24 h to grow from zero to a
2.5 km height in water 3 km deep, The flow pattern evolves during this event as follows. The fluid lifted by the seamount is
initially accelerated outward. Due to the effect of the earths rotation, the outflow quickly evolves into an anticyclonic vortex
in Southern Hemisphere. Rossby and gravity waves emanate from the disturbed region, giving rise to strongly varying layer
thickness and flow fields in a region much larger than that occupied by the seamount.

The seamount is defined as:
Zm ¼ Hmexp � rðh; kÞ � rcðhc; kcÞ
R

� �2
" #

FðtÞ

FðtÞ ¼ exp �4:5ð1�minð1; t=TÞÞ2
h i
where Zm is its radially symmetric profile and Hm = 3 km. Latitude and longitude are denoted as h and k. The center of the
mountain, (hc = �45�,kc = 180�), is located at mid-latitudes in the Southern Hemisphere. The distance between any point
at (h,k) and (hc,kc) is represented by [r(h,k) � rc(hc,kc)] which is scaled by the half width of the Gaussian mountain, R, chosen
as 2000 km. The scaling parameter T is chosen as 1 day. At t = T, corresponding to F(t) = 1, the mountain stops growing.

The single-layer model is integrated with a time step of 150 s for ten days from the initial state of rest and constant water
depth. To test the tracer advection, we chose a potential vorticity-like quantity, jf jd/, on day 1 as the initial condition for q and
treated it thereafter as a passive tracer. The absolute value of the Coriolis parameter, f, is used to convert negative tracer to
positive values in Southern Hemisphere. Due to the local minimum in layer thickness, tracer values are large over the moun-
tain and decrease outward. Tracers are carried away from the mountain by the flow excited by the growing seamount. Dur-
ing the course of the nine-day integration, from day 1 when the tracer field was generated to day 10, the tracer remains
positive at all times. Fig. 7 shows the evolution of tracer extrema. The maximum tracer values gradually decreases while
the minimum increases due to the effect the MFCT monotonicity constraint. The relatively fast rise of the tracer minimum
compared to the maximum is due to the specification of initial tracer field which exhibit relatively narrow band of zero tra-
cer values near the equator. The initial tracer field away from the seamount is roughly proportional to absolute value of the
sine function of latitude and hence is truly zero only in grid cells directly on the equator. The equatorial wave guide appar-
ently allows wave disturbances created by the growing seamount to propagate fast enough in the zonal direction to allow
off-equatorial air to seep into equatorial cells at all longitudes within a matter of days.

We examined the conservation of fluid mass and tracer mass (q multiplied by fluid depth and integrated globally) by con-
ducting the seamount experiment once with 32-bit and once with 64-bit machine precision. The relative change in total tra-
cer mass is on the order of 10�8 in the single precision (32-bit) run and 10�15 in the double precision (64-bit) run. These
errors are commensurate with round-off errors associated with 32-bit vs 64-bit machine accuracy. Similarly, mass is also
conserved to within round-off errors. This experiment shows that the use of MFCT successfully maintains positive-definite
tracer transports and simultaneously conserves both fluid mass and total tracer mass to within machine round-off errors in
SWM simulations.
5. Concluding remarks

In this study, we develop a general MFCT transport algorithm to be used in conjunction with any multistep dynamical
cores. The MFCT algorithm, which extends traditional two-time level Z79 schemes to multistep schemes, has been success-
fully tested in the AB3 multistep dynamical core in an icosahedral shallow-water model. MFCT calculates the low-order
monotone solution using the two-time level upwind piecewise constant scheme and incorporates the multistep tendency
functions into the antidiffusive flux in the same manner as multistep dynamical cores. The flux-corrected limiter is applied
to the antidiffusive flux consisting of multiple high-order fluxes so that the MFCT tracer transport will not create new max-
ima or minima at the new time level.

A step-by-step MFCT procedure is given in section 3. The accuracy of the MFCT transport scheme is quantified by analytic
solutions in 2-dimensional, non-deformational flow. These analytical test cases include a smooth cosine bell and a slotted
cylinder with sharp gradients at the edges. In both the cosine bell and the slotted cylinder experiments, MFCT scheme does
not generate spurious oscillations near the sharp gradients. We also tested the MFCT transport scheme with a cosine bell
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whose shape changes during the 12-day integration in incompressible deformational flow. TEs are larger in the deformed
cosine bell case than those in the non-deformed case because strong gradients in the former. However, the TE convergence
rates are similar in both cases. This indicates that the MFCT transport algorithm is relatively insensitive to the flow specifi-
cation. The accuracy of AB3 MFCT is comparable to other FCT transport schemes at similar resolutions implemented in ico-
sahedral models.

AB3 MFCT is not sensitive to time step size which is consistent with the known numerical property of the AB3 scheme.
This makes AB3 MFCT an attractive tracer transport scheme for explicit high resolution model applications whose small time
steps are imposed by fast acoustic waves whose phase speed is typically one magnitude order larger than the advection
speed. Smooth and discontinuous solutions obtained with and without MFCT at different resolutions are compared. MFCT
prevents negative values to occur and maintains maximum function values for both smooth and discontinuous solutions.
For smooth solutions, the under- and over-shoots in non-clipping schemes may be improved by increasing model resolution
or constructing high-order numeric to better resolve the strong gradients. However, for discontinuous functions, non-clip-
ping schemes generate large under- and over-shoots which can not be reduced by the increase of resolution. Also, MFCT pro-
duces substantially more accurate solutions than the non-clipping scheme at the marginal resolution, e.g. G5 for the non-
deformed smooth cosine bell case. Certainly, the marginal resolution in real applications depends on the steepness of func-
tions and the order of accuracy in advection schemes.

A rising seamount experiment was designed to test MFCT in SWM simulations in which layer thickness and tracer dis-
tributions are constantly changed by time-varying horizontal mass fluxes. The seamount generates divergent mass fluxes
and ensuing circulations that carry a potential vorticity-like tracer westward (this being the direction of Rossby wave prop-
agation). Numerical results show that in the course of a nine-day integration (from day 1 when the tracer field is initialized
to day 10), the tracer remains positive with the maximum (minimum) tracer amount decreases (increase) in time. The sea-
mount experiment demonstrates that the MFCT scheme allows us to achieve an important goal in icosahedral SWM simu-
lations, which is to maintain positive-definite tracer transport, while at the same time conserving both fluid mass and total
tracer mass within round-off errors.

Computational cost is higher for MFCT than for the two-time level FCT scheme because of multiple fluxes are needed for
the antidiffusive flux. The flux-corrected algorithm between MFCT and the two-time level schemes are similar except for the
calculation of antidiffusive flux. AB3 MFCT computes the antidiffusive flux with three high-order fluxes at consecutive time
steps as opposed to the two-time level scheme which uses the flux at the current time step. Since the fluxes calculated in the
previous two-time steps are reusable, MFCT can substantially reduce its computational cost at the expense of memory stor-
age. With reusable previous fluxes, MFCT is slightly more computationally expensive than the two-time level scheme with a
few additional simple algebraic calculations in determining the antidiffusive flux.
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