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PROLOGUE:
. Models Matter!
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Wednesday, October 24: ESRL’s FIM predicts 948 mb low into northern New Jersey.



Some Examples of Global Icosahedral Models

Model - Origin - Nonhydro - Arak Grid - GPU? - Vertical -

FIM ESRL No A Yes Isentropic
ICON DWD Yes C Unknown SigmaZ
MPAS NCAR Yes C Yes Sigma Z
NICAM JAMSTEC  Yes A Unknown Sigma P,Z

NIM ESRL Yes A Yes Sigma Z

FV or FF

FV

FF

FF

FV

FV



2001: ESRL began design of a new generation of global models.

Initial Design: Alexander MacDonald and Jin Luen Lee.
Key decision: Icosahedral grid point model, finite volume (D Randall, SJ Lin)
Key Innovation: Method for coding on irregular grids — MacDonald et al .



http://fim.noaa.gov
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ESRL's Nonhydrostatic Icosahedral Model (NIM)
Flux form GEs on 3-D control volume on height coord.
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Important Design Considerations for Global Models

* Numerical accuracy over space and time.

e Uniformity and isotropy of grid formulation.

* Conservation of tracers, dynamic variables, and entropy.
e Cloud permitting (nonhydrostatic, < 4 km resolution).

* Energy and enstrophy cascades and effective resolution.

 Amenability to advanced high performance computers.
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Lat/Lon Model Icosahedral Model

Matsuno’s groundbreaking analysis of tropical waves showed . ...
That tropical storms and extended predictions depend on getting the tropics right.
Icosahedral models have excellent properties for the tropics.
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Important Design Considerations for Global Models

Numerical accuracy over space and time.

e Uniformity and isotropy of grid formulation.

e Conservation of tracers, dynamic variables, and entropy.
* Cloud permitting (nonhydrostatic, < 4 km resolution)

* Energy and enstrophy cascades and effective resolution.

 Amenability to advanced high performance computers.
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Equatorial Waves
Wavenumber-Frequency Spectral Analysis
* Decompose into Symmetric and Antisymmetric Fields about
the Equator

Symmetric Antisymmetric

(n=-1), k*=1, Kelvin
T T I

Mixed Rossby—gravity
I I I [ I

3~ —

" | - “n/2 0 p— =

Matsuno, 1967. Grid properties and convection crucial.



FREQUENCY (CPD)

OLR total/background power spectrum, 159S-152N, 1983-2005 (Symmetric)
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OLR Hovmoller showing MJO simulation

NICAM dx=3.5 km
(Non-hydrostatic ICosahedral Atmospheric Model)

DX7 average{10S—10N)
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Courtesy of Prof. Satoh (Science, Dec. 7, 2007)



Atmospheric Kelvin Wave/MJO propagates
across the American Tropics (blue line).
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FREQUENCY (CPD)

OLR power spectrum, 1979-2001 (Antisymmetric)
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Enhanced IR Satellite Image at 0000 UTC 21 Nov 2002
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EPAC/LANT 2013 HWRF v GFS v FIM9 v ECMWF
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Important Design Considerations for Global Models
 Numerical accuracy over space and time.

e Uniformity and isotropy of grid formulation.

* Conservation of tracers, dynamic variables, and entropy.
* Cloud permitting (nonhydrostatic, < 4 km resolution)

* Energy and enstrophy cascades and effective resolution.

 Amenability to advanced high performance computers.
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Numerical Uncertainties in the Simulation of Reversible Isentropic
Processes and Entropy Conservation
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ABSTRACT

A challenge common to weather, climate, and seasonal numerical prediction is the need to simulate accurately
reversible isentropic processes in combination with appropriate determination of sources/sinks of energy and
entropy. Ultimately, this task includes the distribution and transport of internal, gravitational, and kinetic energies,
the energies of water substances in all forms, and the related thermodynamic processes of phase changes involved
with clouds, including condensation, evaporation, and precipitation processes.

All of the processes noted above involve the entropies of matter, radiation, and chemical substances, con-
servation during transport, and/or changes in entropies by physical processes internal to the atmosphere. With
respect to the entropy of matter, a means to study a model’s accuracy in simulating internal hydrologic processes
is to determine its capability to simulate the appropriate conservation of potential and equivalent potential
temperature as surrogates of dry and moist entropy under reversible adiabatic processes in which clouds form,
evaporate, and precipitate. In this study, a statistical strategy utilizing the concept of “pure error” is set forth
to assess the numerical accuracies of models to simulate reversible processes during 10-day integrations of the
global circulation corresponding to the global residence time of water vapor. During the integrations, the sums
of squared differences between equivalent potential temperature 6§, numerically simulated by the governing
equations of mass, energy, water vapor, and cloud water and a proxy equivalent potential temperature 76,
numerically simulated as a conservative property are monitored. Inspection of the differences of 6, and 76, in
time and space and the relative frequency distribution of the differences details bias and random errors that
develop from nonlinear numerical inaccuracies in the advection and transport of potential temperature and water
substances within the global atmosphere.

A series of nine global simulations employing various versions of Community Climate Models CCM2 and
CCM3—all Eulerian spectral numerics, all semi-Lagrangian numerics, mixed Eulerian spectral, and semi-La-
grangian numerics—and the University of Wisconsin—Madison (UW) isentropic-sigma gridpoint model provides
an interesting comparison of numerical accuracies in the simulation of reversibility. By day 10, large bias and
random differences were identified in the simulation of reversible processes in all of the models except for the
UW isentropic-sigma model. The CCM2 and CCM3 simulations yielded systematic differences that varied
zonally, vertically, and temporally. Within the comparison, the UW isentropic-sigma model was superior in
transporting water vapor and cloud water/ice and in simulating reversibility involving the conservation of dry
and moist entropy. The only relative frequency distribution of differences that appeared optimal, in that the
distribution remained unbiased and equilibrated with minimal variance as it remained statistically stationary,
was the distribution from the UW isentropic-sigma model. All other distributions revealed nonstationary char-
acteristics with spreading and/or shifting of the maxima as the biases and variances of the numerical differences
of 6, and 70, amplified.

Corresponding author address: Dr. Donald R. Johnson, Space Science and Engineering Center, University of WisconsinfMadisznZIZZS
W. Dayton Street, Madison, WI 53706.
E-mail: donj@ssec.wisc.edu



NIM Strategy for Entropy Conservation
Use of exact same (divergent) equation form for all
variables participating in Reversible Isentropic Processes
(Pressure, potential temperature, and water vapor).
No diffusion for thermodynamic variables.

Finite volume formulation with fixed control volumes.

Full three dimensional advection (Gauss divergence
theorem on the control volume).

High resolution in the vertical (192 levels).




Important Design Considerations for Global Models
 Numerical accuracy over space and time.

e Uniformity and isotropy of grid formulation.

e Conservation of tracers, dynamic variables, and entropy.
* Cloud permitting (nonhydrostatic, < 4 km resolution)

* Energy and enstrophy cascades and effective resolution.

 Amenability to advanced high performance computers.
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Interlude: Importance of cloud-resolving nonhydrostatic models.

Observed Radar
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High Resolution Rapid Refresh Model run on ESRL Supercomputer
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Global satellite analysis key tocloud and precip initialization.

VIIRS 2012-08+29.06:56:46 UTC - Image Display

Soumi NPP visible image at midnight!



NCAR’s MPAS
model
demonstrates
realistic
supercell
simulation.

60
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F1G. 5. Maximum vertical velocity for the supercell simulations using
MPAS (perfect hexagonal mesh) and a rectangular-mesh model.

A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi

Tesselations and C-Grid Staggering

WILLIAM C. SKAMAROCK, JOSEPH B. KLEMP, MICHAEL G. DUDA, LAURA D.

FOWLER,
AND SANG-HUN PARK

National Center for Atmospheric Research,* Boulder, Colorado

TODD D. RINGLER

Los Alamos National Laboratory, Los Alamos, New Mexico

(Manuscript received 17 August 2011, in final form 6 March 2012)
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Important Design Considerations for Global Models
 Numerical accuracy over space and time.
* Uniformity and isotropy of grid formulation.

* Conservation of tracers, dynamic variables, and entropy.

* Energy and enstrophy cascades and effective resolution.

 Amenability to advanced high performance computers.
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NIM Test, per Skamarock: No divergence damping, high effective resolution.
2" R =Vek Vi, 4": A =VekV(a?)
k. =C2l 2[(ux —vy)2 + (uy +v, f ]1/2 (Smagorinsk y,1963 )
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Important Design Considerations for Global Models
 Numerical accuracy over space and time.

e Uniformity and isotropy of grid formulation.

e Conservation of tracers, dynamic variables, and entropy.
* Cloud permitting (nonhydrostatic, < 4 km resolution)

* Energy and enstrophy cascades and effective resolution.

 Amenability to advanced high performance computers.
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Computer Chip Technologies

 GPU Compute cores Power Performance (Tflops)
— NVIDIA Kepler 2880 250w 4.2
— AMD FireStream ~3000 225w 3.2
* Many Integrated Core (MIC)
— Intel Xeon Phi 61 300w 2:1
* CPU
— Intel SandyBridge 16 125w 0.15
— Intel lvyBridge 24 0.21
e 5 - Chip Performance
S 4
o
Ew3-
£ Q2 - ==CPU
ety —GPU
© 0 - ——
= 2008 2010 2012 2014

NIM has been developed to run on MPFG — benchmarking 4X performance gain. 31



Non-Hydrostatic Icosahedral (NIM)

Uniform, global, hexagonal-based icosahedral grid
Designed for GPU and MIC

— Scientists, parallel programmers, computer scientists £

Targeting 3.5KM or finer resolution

— Estimate 2500 GPU or MIC processors for forecastmg

Dynamics: parallelization complete

CPU OpenMP
GPU F2C-ACC, PGI, Cray
MIC OpenMP + extensions

MPI

Scalable Modeling System

Single source code for CPU, GPU, MIC using d,p_re,ctives

b

Code Structure
NIM: a [ k, indx)

lat=lon a ( k, i, 3 )

— Parallel runs to 7.5KM resolution on 5120 GPUs of Tltan
* Similar tests have been done on the TACC MIC system

— Demonstrated good performance and scaling
Physics: parallelization in progress

NIM goal is 3.5 km global weather model running in 2% of realtime in 2016.
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Real Weather:
ESRLs FIM for the

case of October
21, 2010.

Downstream
energy generated
the deepest low
ever recorded in
the US northern
plains.

Displayed on ESRL’s
NOAA Earth
Information
System.




