
Smart Tools and Procedures Training Guide

Edit Actions
Edit Actions are operators that can modify many grids in a single operation, thus potentially saving you time. The GFE
has two kinds of Edit Actions:

Smart Tools: bits of code which perform operations on a grid-by-grid basis. Smart Tools are written in a language
called, Python.

Procedures: bits of code which can perform operations on many grids and may call Smart Tools and other useful
commands which can create, interpolate, and delete grids.

The combination of Smart Tools and Procedures is very powerful. However, be careful. It's easy to unintentionally modify
grids, too. The next section describes how you control which grids get modified.

Before you actually execute an Edit Action you must first indicate the grids that you wish to modify. There are two ways
to indicate which grid(s) you wish to edit. One uses the Spatial Editor Time and the other uses the Selected Time Range in
the Grid Manager.

Using the Spatial Editor Time to Identify Editable Grids
If you want to edit a single grid, the simplest way is to MB1 press over that grid in the Grid Manager. This will make the
grid "Editable" and set the Time Range to that of the grid. To edit your selected grid using the Edit Actions, follow the
steps below. The grid you wish to modify should now be displayed in the Spatial Editor and the label for that grid should
start with the word "(edit)".

1. Make any grid you choose editable by moving the cursor over that grid in the Grid Manager pressing MB1.
Alternatively, you can MB2 click on the Spatial Editor label that corresponds to that grid.

2. In the Spatial Editor, pick the Select Points tool and create an edit area on the display.
3. On the button bar, MB1-click on the button that looks like the icon to the right. A list dialog will appear

looking similar the figure below containing items such as SetValue, AdjustValue_Up,
AdjustValue_Down, and Smooth.

4. MB1 press and hold on the AdjustValue_Up entry. Look at the corresponding grid in the Grid Manager. Note that
the color of this grid has changed, indicating which grid is about to be modified.

5. Now release MB1 and watch your selected area change in value.
6. For more practice, select a different edit area and operate on the gridded data using different edit actions.

Once you have selected an edit area, you can execute any of these Smart Tools in any order. (Sometimes the Edit Actions
Dialog appears in an inconvenient location such as on top of the data you wish to edit. The Edit Actions Dialog is easily
moved by holding down the ALT key, pressing MB1 on the menu and dragging the menu to a more desirable location.
Moving the cursor over the title bar of this menu and MB1 dragging will move this dialog as well.)

When a grid is "Editable", the Smart Tools that apply to it will appear in the Edit Actions Dialog. If no grid is editable, all
tools will appear. However, to execute a tool, the Weather Element to be modified by it, MUST be "Editable". The tools
that apply to the "Editable" Weather Element also appear and can be executed from the MB3 pop-up menu over the
Spatial Editor. In addition, keyboard shortcuts can be set up for Smart Tools and Procedures (see gfeConfig Keyboard
Shortcuts).

Using the Selected Time Range to Identify Editable Grids
Since editing one grid at a time would be too cumbersome, the GFE allows you to edit many grids at once. However, this
powerful capability must be used with great care or you could modify grids unintentionally. To learn how to modify many
grids at once, follow the steps below.

1. Make the Weather Element you wish to modify "Editable" as described above.
2. In the Grid Manager, select a time range that spans across as many grids for the weather element that you wish to

modify. To accomplish this, press and drag MB1 in the Time Scale or the weather element data pane.
3. Now that you've identified the grids you wish to edit, press and hold MB1 on either the SetValue,

AdjustUp(Down), or the Smooth edit actions.
4. While holding down MB1, look at the Grid Manager and notice that the grids that you previously selected have

changed color, indicating that those grids are about to be modified.
5. Release MB1 and a warning message will appear.
6. Click Yes and watch the data change as defined by the edit action that you chose.

Examine all of the grids that you modifed until you convince yourself that you did modify all the grids that you intended.

Procedures may also depend upon the Spatial Editor time and Selected Time Range. However, they have the
capability of internally defining the grids and time range upon which they operate.

In summary, the Grid Manager's selected time range is used to indicate which grids will be modified by a Smart Tool. If
no selected time range is defined, the Spatial Editor time is used. Pressing MB1 over a Smart Tool is the best way to know
which grids will be edited before the operation is executed. If you decide NOT to perform the edit, simply move the
mouse off the Smart Tool before releasing MB1.

The list of Smart Tools may include items that are defined at the local site. These Smart Tools can use previously defined
fields to modify new fields. Algorithms that incorporate the local terrain can be included as well. This paradigm allows for
extensibility so that the local office can create their own tools customized for their office.

Edit Action Warnings
There are two types of warnings you might see when performing Edit Actions: Empty Edit Area Warning and Time
Range Warning. These can both be turned on or off from the Main Menu or from the Warning itself.

The Time Range Warning cautions you that multiple grids will be modified and will not appear if only one grid will be
affected. Also, if the user is performing the same Edit Action (same weather element, tool or procedure, time range, and
edit area), no warnings will appear. This way someone can smooth or adjust repeatedly without the warnings. The pickup
value is not checked, so one can also perform Assign_Value repeatedly and change the pickup value in between without
getting a warning message.

Smart Tools
Smart Tools are Edit Actions that you create. These tools allow you to write an equation that modifies forecast grids in a
meteorologically consistent way. The following sections will show how to execute smart tools and then how to create and
modify them.

Executing Smart Tools
To execute any Smart Tool, you must perform these steps:

1. Set the Weather Element you wish to modify "Editable" by clicking MB2 over it on the Legend or MB1 in the
Grid Manager. Note that the Edit Action Dialog displays only the tools which can operate on the "Editable"
Weather Element.

2. Select the set of grids you wish to modify by defining the Spatial Editor time or the Grid Manager's selected time
range as described in the previous section.

3. Select the area over which you want the Smart tool to apply using the Select Points tool or by executing an edit
area query, both described in previous sections.

4. Open the Edit Actions Dialog and Execute the desired Smart Tool by clicking on the Smart Tool label with MB1.
You may also execute a Smart Tool by clicking MB3 over the Spatial Editor and selecting the desired tool.

5. Some Smart Tools display a dialog allowing you to choose various options prior to running the tool. In this case,
select the desired options. You may then choose to simply "Run" the tool (in which case the dialog will remain for
further executions of the tool) or to "Run/Dismiss" (in which case the dialog will disappear as the tool executes).

As the Smart Tool executes, you will see its progress indicated on the Progress Bar located on the bottom right of the GFE
window.

If you are unclear at all about Step 1 or Step 2, we strongly recommend that you review those sections of this document. It
is very important that you understand how to identify the specific grids and the area you wish to modify before executing
any Smart Tool. Without this understanding it is very easy to modify grids in ways you do not intend.

The following exercises take you through the execution of Smart Tools in the context of two forecasting scenarios. The
exercises are presented in a visual format that shows how the Background weather situation, the GFE simple tools and the
GFE Smart Tools interact within the Scenario. These exercises give you the "Big Picture" for using the GFE in a Forecast
situation and bring much of what you have learned to culmination. They are meant to stimulate your thinking about how
Smart Tools can be used at your particular site. The exercises are challenging as all steps are not detailed. Feel free to
refer back to previous sections if necessary to perform an instruction.

Convective Scenario
The following diagram shows the forecast situation which is addressed in the Convective Scenario. If the
"Convective_SmartTool" does not appear in the list of Edit Actions, follow the instructions in the section Creating a
Smart Tool from an Existing File to install it from the examples/smartTools directory of your release.

Follow the instructions below to see how Smart Tools might be applied in this kind of situation.

Winter Scenario

The following Scenario is meant for areas with diverse terrain, but will serve as an illustration of the power and flexibility
of Smart Tools and perhaps give ideas for other forecast situations. Follow the instructions in the Scenario.

Creating and Modifying Tools
Now we will look behind the scenes to see how Smart Tools work, how they can be modified and created. The following
diagram depicts the Smart Tool architecture within the GFESuite software. It shows Smart Tools as meteorological
algorithms which modify the Forecast database. These algorithms are written in a simple, intuitive language called Python
and have access to Numerical Models, Observations, and Topography data. The Smart Script Library is a set of
convenient library functions available to simplify the job of tools. Through it, Smart Tools access data, create soundings,
and perform unit conversion. The GFESuite software locates the tool, sets up information to be passed to it, and calls it to
obtain revised grid values.

In the following sections, we will see how to create and modify tools and procedures through the Edit Action
Dialog. We will demonstrate the use of the Smart Tool Framework and Smart Script Library through a set of
exercises and tutorials. The following sections assume that you have knowledge of Python and its Numerical
Python extension which are covered in the GFESuite Python Tutorial and Programming Guidelines.

Edit Action Button 3 Pop-up Menu
Pressing MB3 over each of the Smart Tools listed in the Edit Actions Dialog opens a pop-up menu. This menu is
described in the Editable Listbox description.

Creating a New Tool
The following exercises will show you how to create and modify tools. We will build a tool to produce SnowAmt grid
values. We will proceed in steps, building more functionality into the Tool at each step.

Exercise Tool-1 -- Creating a new tool
Create a Smart Tool to yield a SnowAmt equal to the current QPF value multiplied by 10.

1. Select New... on the MB3 popup over the Smart Tools window. The New Tool Dialog appears into which you
will enter:

• Name of the Tool: The Name of the Tool cannot have spaces or special characters except an underline. Enter
the name: SnowAmt_LearningTool.

• The Weather Element it modifies. Select SnowAmt.
• Tool Type is set to "numeric." For information on point-based tools, see the Appendix .

2. Press OK and a Python Editor will appear with a template Python module for your Tool.

• There are lines to specify that this is a "numeric" type tool and to import the Numeric library.
• Another line specifies the WeatherElementEdited. This may be changed if you ever wish to modify the

element edited by the tool.
• Notice that the Python module has a class named "Tool" and several methods. The "execute" method is

mandatory and the one with which we will be concerned. The "execute" method may have weather element
arguments plus various special arguments which will be supplied by the system when it is called.

• You will notice a funny argument, "self". This refers to this Tool class instance. You don't need to understand
much about this now. All you need to do is make sure you leave it as the first argument to your "execute"
method.

• If desired, a VariableList can define run-time variables that will be solicited from the user when the Tool is
executed. These variables will be passed to the method.

• We'll explore the various arguments and VariableList later, but for this tool, you need only one argument (in
addition to "self"): QPF.

3. Remove the sample arguments from the "execute" definition, leave the "self" argument, and enter the argument,
QPF in the parentheses. When the tool executes, this argument will contain a Numeric Array representing the
Fcst QPF grid.

4. Type in a description of your tool below the "execute" definition. This description will appear when you click
MB3 --> Info over your new tool.

5. Insert a line to multiply the QPF values by 10:

 SnowAmt = QPF * 10
This line produces a Numeric Array named "SnowAmt" which has values 10 times the corresponding QPF values.

6. Save the Python module. Select File-->Save.
7. Execute the new tool to see that it works. If you encounter errors when executing your tool, a dialog will appear to

help you locate the problem. After successfully executing the tool, the QPF grid appears. Examine the data by
sampling the QPF values and the SnowAmt values. If your results seem confusing, check to see that the QPF and
SnowAmt grids are aligned in the Grid Manager. If not, you will be getting time averaged QPF values over
multiple grids.

8. Close the Python Editor. Select File-->Close.

Description of Tool Arguments
Here is a complete description of the various arguments that you can receive into your Smart Tool methods. To receive a
particular argument, simply list it between the parentheses in the method definition. For example:

 def execute(self, QPF, Topo, SnowAmt_DeltaValue, FzLevel, varDict):

• <weName> -- the value for a given weather element. If you want to base the new value for an element on its
current one, you must include it in the argument list. You may also include other weather elements. A Numeric
Array representing the grid values for the weather element is returned. Weather element values are as follows:

o Scalar value: floating point values,
o Vector value: two-tuple of magnitude and direction numeric arrays, for example:

 mag = Wind[0]
 dir = Wind[1]

o Weather value: A Wx argument represents a 2-tuple:
 wxValues : numerical grid of byte values
 keys : list of "ugly strings" where the index of the ugly string corresponds to the byte value in the

wxValues grid.

See the section Working with Weather Data in the GFESuite Python Tutorial for more information.

Weather elements do not need to be loaded in the GFE to be accessible to Smart Tools. The weather
element is assumed to come from the Fcst database unless you specify a more complete name of the
form:

 elementName_level_siteID_type_model_modeltime

The "type" is an empty string for GFE Fcst data and is "D2D" for D2D data.

 MaxT_SFC_BOU__NAM12_Mar2912 : gets MaxT from the March 29 12Z NAM12 run
created by GFE initialization.
 MaxT_SFC_BOU_D2D_NAM12_Mar2912 : gets MaxT from the March 29 12Z original NAM12
run from D2D.

If you omit the "modeltime", the most recent model run will be selected. For example:

 MaxT_SFC_BOU__NAM12 : gets MaxT from the most recent NAM run created by GFE
initialization.
 MaxT_SFC_BOU_D2D_NAM12 : gets MaxT from the most recent original NAM12 run from
D2D.
 rh_MB300_BOU_D2D_GFS40 : gets rh from the most recent original GFS40 run from D2D.

If you request a weather element value other than the one you are editing, it is possible that the system
will encounter multiple corresponding grids. For example, if you are editing a 6-hour QPF grid, there
may be multiple Wind grids that fall within the QPF time range. In this case, the system will
automatically return the time-weighted average value of the multiple grids. This means that the values in
a 3-hour Wind grid will be weighted 3 times more heavily than those in a 1-hour grid when calculating
the average value. Only the portion of the grid that overlaps the edited grid will be counted in the time
weighting. Time-weighted average for a Weather-type element is defined as the combination of all
weather values encountered.

Smart Script Class Library: For more advanced methods of accessing grids in your Smart Tool, see
the section below on the Smart Script Class Library. In this library you will find more sophisticated
processing. For example, if you are not satisfied with a time-weighted average of grids over a time
range, you can get a sum, max/min or even the actual grid values themselves. Or, if you do not know
ahead of time which model you will want to access, you can create a call at execution time to get the
grids you want.

• Topo -- this will give you the topography information in the form of a numeric array of elevation values.
• variableElement-- the numeric array for the editable weather element in the GFE.
• WEname -- the name of the element being edited. This is handy if your tool works on "variableElement".

WEname will be the element edited for this run of the tool e.g. T, Wind, Td, etc.
• <weName>_PickUpValue -- the PickUp Value for the given element where <weName> could be

"variableElement", e.g. MaxT_PickUpValue, variableElement_PickUpValue
• <weName>_DeltaValue -- the Delta Value for the given element
• <weName>_FuzzValue -- the Fuzz Value for the given element
• GridTimeRange -- The time range for the current grid being modified. Example:

def execute(self, GridTimeRange):

 gridStartTime = GridTimeRange.startTime()
 hour = gridStartTime.hour()
 if hour == 18:
 # Now you know the grid is valid at 18Z

 There are many methods for working with time ranges. Here's the basic methods:

o GridTimeRange.startTime()
o GridTimeRange.endTime()
o GridTimeRange.duration() # In seconds

The start and end times are AbsTime objects with the following methods:

o absTime.hour()
o absTime.day()
o absTime.month()
o absTime.year()

Here's an example of creating your own time range relative to the given GridTimeRange:

def execute(self, GridTimeRange):
 import AFPS
 start = GridTimeRange.startTime()
 end = GridTimeRange.endTime()
 timeRange2 = AFPS.TimeRange(start - 24 *3600, end - 24 *3600)

 T0 = self.getGrids("Fcst", "T","SFC", timeRange2, noDataError=0)
 if T0 is None:
 self.noData()

• <weName>_MaxGrid -- a numeric array of maximum values for the element over the GridTimeRange
• <weName>_MinGrid -- a numeric array of minimum values for the elementover the GridTimeRange
• <weName>_SumGrid -- a numeric array of the sum of values for the element over the GridTimeRange
• varDict -- a dictionary of variables and values. The variables and values are defined in the VariableList

(See below VariableList section.)
• <weName>_GridInfo -- Information about the weather element grid including such things as the time

range, the units, the max and min limits, identifying information, and grid location. For example:

def execute(self, MaxT, MaxT_GridInfo):

 timeRange = MaxT_GridInfo.gridTime()

 # The start and end times are of a class, "AbsTime"
 # which has many useful methods:
 startTime = timeRange.startTime()
 year = startTime.year()
 month = startTime.month()
 day = startTime.day()

 hour = startTime.hour()
 minute = startTime.minute()
 textString = startTime.string()
 endTime = timeRange.endTime()

 units = MaxT_GridInfo.units()
 maxLimit = MaxT_GridInfo.maxLimit()
 minLimit = MaxT_GridInfo.minLimit()

If there are multiple corresponding grids, a list of gridInfo objects will be returned.

• <weName>_GridHistory -- Information about the history of the weather element grid including such
things as the time range, the units, the max and min limits, identifying information, and grid location.
GridHistory is a list of update events for the grid. For example:

def execute(self, PoP, PoP_GridHistory:

 print "History", PoP_GridHistory
 for history in PoP_GridHistory:
 print "\nHistory:"
 print " origin: ", history.origin()
 print " originParm: ", history.originParm()
 print " originTimeRange:", history.originTimeRange()
 print " timeModified: ", history.timeModified()
 print " whoModified: ", history.whoModified()
 print " updateTime: ", history.updateTime()
 print " publishTime: ", history.publishTime()

Results:

 History:
 origin: 0
 originParm: PoP_SFC:BOU_GRID__NAM40_20020326_1200
 originTimeRange: (Mar 28 02 07:00:00 GMT, Mar 28 02 10:00:00 GMT)
 timeModified: Mar 27 02 23:48:43 GMT
 whoModified: 423250825:hansen:gfe:32577:0
 updateTime: Mar 26 02 17:45:17 GMT
 publishTime: Jan 01 70 00:00:00 GMT

Origin is defined as follows:
 enum OriginType {INITIALIZED = 0, TIME_INTERPOLATED = 1, SCRATCH = 2,
CALCULATED = 3, OTHER = 4};

If there are multiple corresponding grids, a list of gridHistory objects will be returned.

NOTE: Values supplied to the tool are initial values only i.e. the values of the variables at the beginning of Smart Tool
execution. Changes made by the Smart Tool will not be reflected in the values of the variables passed to the tool.

Modifying a Tool

Exercise Tool-2 -- Modifying a Tool
Modify your SnowAmt_LearningTool to base its new value on temperature values. Use the following table:

T Multiply QPF by

< 20 18

between 20 and 25 14

over 25 10

1. Select Modify... on the MB3 popup over the SnowAmt_LearningTool. This opens the Python Editor in which you
can make changes.

2. You will need the corresponding T grid, so add this as an argument to your method. Modify the Python code with
where statments to implement the Temperature-based table.

3. Save the file. You can try your Tool without closing the editor or restarting the GFE. The changes are effective as
soon as you Save. Verify that the tool worked by Sampling the SnowAmt and QPF grid values.

Description of VariableList

Exercise Tool-3 -- Using VariableLists
Creating VariableLists "On-the-fly"

The VariableList defines values to be supplied to a Tool by the user. It consists of a list of tuples defining each variable
and resides in the Python file for the Tool. (Make sure it appears before or after the Tool Class, not within it!) These
variables will be solicited from the user prior to executing the Tool.

For example, suppose we want to let the user set threshold values prior to executing our tool named MyTool. Then in the
Python module for MyTool, we list:

VariableList = [

 ("Threshold Value1", 10, "numeric"),

 ("Threshold Value2", 20, "numeric")

]

The values, 10 and 20, will be used as the default values. The method call within MyTool must then include the argument,
"varDict", and can access the values as follows:

 def execute(self, QPF, Wind, QPF_DeltaValue, x, y, varDict):

 # Get the values for the variables:

 threshold1 = varDict["Threshold Value1"]

 threshold2 = varDict["Threshold Value2"]

The Variable tuple in the VariableList is in the format:

("Variable Name", default value, variable type, optional list)

Variables can be of many types:

• "numeric" -- will ensure the user enters a number
• "alphaNumeric" -- will accept any characters and will automatically convert the string to a number if possible
• "radio" -- a set of Radio buttons i.e. one and only one choice must be made by the user among a list of values. In

this case, a list of values must be supplied.
• "check" -- a set of Check buttons i.e. the user may select zero of more values from a list. In this case a list of

values must be supplied and the default value is a list of values to be checked "On" initially. The returned value
for such a variable in varDict is a list of values that were checked "On" when the user selected "OK."

• "scale" -- a slider-bar type Scale. In this case, a list containing the minimum and maximum values must be
supplied along with the default value. You can also specify a resolution if you wish. The default is 1.

• "model" -- gives a list of GFE Surface model runs e.g. NAM12, GFS40, RUC80
• "D2D_model" -- give a list of D2D model runs e.g. NAM12, GFS40, RUC80
• "label" -- simply displays text given in the "Variable Name" slot.
• "scrollbar" -- adds a scrollbar to the VariableList dialog. This is intended for dialogs that have become too large

for the screen. A desired height for the dialog must be given. For example:

 ("", 500, "scrollbar")
will add a scrollbar to the dialog and set the dialog height to 500 pixels. Only one scrollbar entry is processed per
VariableList dialog.

1. To see how these are used, we will examine the Convective_SmartTool which can be found in the
examples/smartTools directory of your release. If does not appear in the Edit Actions Dialog when Wx is the
active element, install it following the instructions in the section Creating a Smart Tool from an Existing File.

2. Examine the VariableList to see how the variables are defined and accessed.
3. Notice that we have defined two radio button variables ("Edit Coverage or Uncertainty" and "Thunder Y/N") . We

have defined the default values ("Coverage" and "Y") for each one and then listed the possible values.

 VariableList = [
 ("Edit Coverage or Uncertainty" , "Coverage", "radio",

 ["Coverage","Uncertainty"]),

 ("Thunder Y/N" , "Y", "radio", ["Y","N"]),

]

4. Now examine how we access the variable value from the varDict. The name "Edit Coverage or Uncertainty" must
match the above VariableList exactly.

 coverage = varDict["Edit Coverage or Uncertainty"]
 thunder = varDict["Thunder Y/N"]

5. Run the tool to see how the VariableList is displayed.
6. Close the Python Editor.

Exercise Tool-3 -- Using VariableLists
Modify your SnowAmt_LearningTool to adjust the QPF only in areas above a user-given elevation. To perform this
exercise, we will need to define a variable for the user to input at execution time. Remember to include "varDict" in your
argument list to get the value for the user's variable. You will also need to access the variable, Topo.

Creating VariableLists "On-the-fly"

It is possible to create VariableLists and display dialogs from a Smart Tool or Procedure in the event that the VariableList
entries are dependent on run-time values. To do so, you must import the "ProcessVariableList" class and use it to display
your dialog. The following example illustrates how this might be done:

 ToolType = "numeric"
 WeatherElementEdited = "variableElement"
 ScreenList = ["SCALAR"]
 from Numeric import *

 import ProcessVariableList
 import SmartScript

 class Tool (SmartScript.SmartScript):
 def __init__(self, dbss):
 SmartScript.SmartScript.__init__(self, dbss)

 def preProcessTool(self):
 # This is necessary so that we show the
 # dialog once per tool, not once per grid.
 self._dialogShown = 0

 def execute(self, variableElement_GridInfo):
 if self._dialogShown == 0:
 minval=variableElement_GridInfo.minLimit()
 maxval=variableElement_GridInfo.maxLimit()
 variableList=[("Modify value to:",0,"scale",[minval,maxval])]
 varDict = {}
 processVarList = ProcessVariableList.ProcessVariableList(
 "Title", variableList, varDict, parent = self.eaMgr().root())
 status = processVarList.status()
 if status != "Ok":
 self.cancel()
 self._modifyValue = varDict["Modify value to:"]
 self._dialogShown = 1

 variableElement = self._empty + self._modifyValue
 return variableElement

Additional Smart Tool Methods
Your Smart Tool class can contain methods in addition to the mandatory "execute" method.

Reserved Methods
Some methods have reserved names and meanings. To understand the framework, recall that a Smart Tool may operate
over a time range which may include multiple grids. The mandatory "execute" method is called for each grid to be
modified. Sometimes, you may wish to set up information before or after grid-by-grid processing occurs. If so, you may
use the following methods:

• preProcessTool: Called once at beginning of the Tool, before any grids are processed.
• postProcessTool: Called once at end of the Tool, after all grids are processed.

Additional methods, "preProcessGrid" and "postProcessGrid" are reserved for Point-based Tools. Of course, reserved
methods will be called only if you supply them in your tool. They are included as comments in the Smart Tool template
that appears when you create a new tool and are documented there. The possible arguments to these methods will vary
according to the logic of when they are called.

Creating Your Own Methods
You may write your own methods and call them from within others. The only tricky part is in using the funny "self"
variable. Here's an example:
 import SmartScript

class Tool (SmartScript.SmartScript):

 def __init__(self, dbss):

 SmartScript.SmartScript.__init__(self, dbss)

 def execute(self, QPF, T):

 "Tool to calculate SnowAmt"

 # Determine new value

 SnowRatio = self._getSnowRatio(T)

 SnowAmt = QPF * SnowRatio

 # Return the new value

 return SnowAmt

 def _getSnowRatio(self, T):
 SnowRatio = where(less(T, 20), 18,
 where(less(T, 21), 14, 10)
 return SnowRatio

Notice that we did two things:

• Included "self" as the first argument in the definition of our new method, _getSnowRatio.
• Used the prefix "self" when calling the method WITHOUT putting "self" in the argument list.

Naming Conventions
To help distinguish the source of methods and variables, Smart Tools (and Procedures) follow these naming conventions:

• User-defined Smart Tool and Procedure methods and variables, which need to span multiple methods, are
preceeded by an underscore: e.g self._modifyValue, def _myMethod.

• SmartScript library methods do not have a preceeding underscore: e.g. self.getGrids.

• The Reserved methods, e.g. execute, preProcessTool, do not have a preceeding underscore.

• Utility methods (see Utility section), are preceeded by an underscore.

These conventions are important to follow not only for clarity, but to insure that you do not inadvertently override an
existing library method by giving your method or variable a duplicate name.

Creating a Smart Tool from an Existing File
Suppose you have an existing smart tool file. You might receive a file from a repository, from a colleague, or find one in
the examples directories of your release. How can you add it to your Edit Action Dialog?

1. From the Edit Action Dialog Smart Tool Window, Select MB3 --> New...
2. Enter the name of the Tool and the weather element it modifies.
3. Select OK and a template for the Tool should appear.
4. Open another window with the file that contains the existing tool via Select File-->Open and choose the file.
5. Copy and Paste the existing smart tool into the new smart tool window and Save it. Select File-->Save.
6. Close the Python windows. Select File-->Close.

Smart Script Class Library
Notice that all the Smart Tools we've created begin with the following lines:

import SmartScript

class Tool (SmartScript.SmartScript):

 def __init__(self, dbss):

 SmartScript.SmartScript.__init__(self, dbss)

These lines define a class, Tool, that "inherits" from an existing SmartScript class. This means that all the methods in the
SmartScript class are available to your tool. As an example, there is a method in the SmartScript class named
"convertFtoK" which converts Fahrenheit degrees to Kelvin. You would call it from within one of your tool methods as
follows:

def execute(self, T):
 degreesK = self.convertFtoK(T)

Notice that we used the prefix, "self." to tell the system that this method belongs to my class (which inherited it from the
SmartScript class). Procedures begin in a similar way with a class, Procedure, instead of Tool, and the same methods are
available to them.

The SmartScript class contains methods for:

• accessing grids directly (This means that it is not necessary to list all the grids you need in the Smart Tool
argument list.),

• creating a sounding and accessing values from it based on elevation,
• error handling,
• unit conversion,
• "procedure" commands e.g. copy, interpolate, createFromScratch, accessing named time ranges and named edit

areas, and calling Smart Tools.

Exercise SmartScript-1 -- Accessing Grids Directly
In this exercise, we will access grids directly from the Smart Tool instead of from the argument list.

1. Study the "getGrids" command in the Smart Script Library.
2. Return to the Smart Tools Window and create a new smart tool which edits QPF. Access both the current QPF

value and the most recent D2D NAM12 tp (total precipitation) value directly using the "getGrids" method. If the
current QPF value is zero, assign the tp value to it. Otherwise, return it as is.

3. Run and test your tool to make sure it works.

Exercise SmartScript-2 -- Accessing Variable Grids Directly
Often, you will want to choose the model you want to work with at run-time. You can use a variable list to get the model
and then access the grids directly.

1. Modify your tool from Exercise SmartScript-1 to have a variable D2D model from which to get the "tp" value.
2. Run and test your tool to make sure it works.

Exercise SmartScript-3 -- Making and Accessing Soundings
The SmartScript library allows you to make a sounding of Numerical Python grids. The method,
"makeNumericSounding" returns two numerical "cubes" -- one cube for the gh height values for a given set of levels and
one cube for the weather parameter values. In this exercise, we will create a sounding from model data and use Topo
information to determine the surface temperature. You will use the "makeNumericSounding" method to get gh and t
numerical cubes. You will then have to "walk up" the cubes assigning values directly from the t weather parameter at
ground height. For a more information, see GFESuite Python Tutorial -- Looking Up the Columns of a Cube.

1. In the SmartScript class, find the method, "makeNumericSounding". Read the documentation to learn how to call
this method.

2. Find the Unit Conversion methods section and examine the methods available.
3. Create a new smart tool which edits T. Allow the user to set the D2D model using a VariableList. Assign values

from the sounding made from the D2D model grids using the Topo information. You will have to convert Topo
from feet to meters and temperature from K to F.

4. Run and test your tool to make sure it works.

Exercise SmartScript-4 -- Making and Accessing Soundings
To help you understand the concept of Numerical logical statements, rewrite the tool from Exercise SmartScript-3 and
simplify the "where" statement by using some logical statements. For more information, see the discussion of Simple and
Compound statements in GFESuite Python Tutorial and Programming Guidelines -- Style Suggestions.

Exercise SmartScript-5 -- Making and Accessing Soundings
Suppose we want to use an interpolated (or extrapolated) value for the T value. You can use the SmartScript methods
"interpolateScalarValues" and "extrapolate" within "where" statements to do this. In the case the first level, we will need
to extrapolate instead of interpolate. Rewrite the tool from Exercise SmartScript-4 to handle this.

Exercise SmartScript-6 -- Creating Elements "On-the-Fly"
It is now possible to create "temporary" weather elements from a Smart Tool and add grids to them. These elements
appear in the GridManager but cannot be saved. So if you unload them or shut down the GFE, they are gone. They can be
accessed by subsequent Smart Tools.

Suppose we want to create a temporary RH element from T and Td. Look at the documentation for the SmartScript
method, "createGrid." The first time this is called during a GFE session a new model and element can be created.
Subsequent calls will simply add grids to the element.

Now, try your hand at writing a tool to create a new "TempRH" element. Select your own model name and use
the equations in the RH_Tool (found in the Edit Action Dialog). When you create your tool, select "None" for
the element edited. Use the "ScreenList" that appears in the tool template to specify how it will be displayed
within the Edit Action Dialog. Instead of returning the resulting grid, your tool will call the "createGrid"
command.

Now you should be able to access this element in other tools with the "getGrids" command using your model
name, element name, and "SFC" for the level. For example:

 RH = self.getGrids("TempModel","TempRH", "SFC",GridTimeRange)

Exercise SmartScript-7 -- Working with Weather/Discrete
Weather and Discrete are similar to each other. They both are represented as a 2-tuple:

• wxValues : numerical grid of byte values
• keys : list of "ugly strings" where the index of the ugly string corresponds to the byte value in the wxValues grid

for the WEATHER type of grid, and a list of "strings" where the index of the string corresponds to the byte value
in the wxValues grid for the DISCRETE type of grid.

For a complete description, see Working with Weather Data in the GFESuite Python Tutorial and Working with Discrete
Data in the GFESuite Python Tutorial. Two particularily useful functions are getIndex() and wxMask() for Weather data,
and getIndex() and discreteMask() for Discrete data.

Use the SmartScript method "getIndex" to assign weather values based on PoP according to the following
criteria:

• where PoP < 15, assign "<NoCov>:<NoWx>:<NoInten>:<NoVis>:"
• where PoP >=15 and PoP < 35, assign "Chc:R:-:<NoVis>:"
• where PoP >=35 and PoP < 55, assign "Sct:RW:m:<NoVis>:"
• where PoP >= 55, assign "Wide:R:+:<NoVis>:"

Here is an example of a Discrete smart tool that converts all gridpoints that have a value of <None> to "BL.W":

def execute(self, Hazards):
 "Sample tool to put in Blizzard Warnings (VTEC code BL.W)"

 # Determine new value
 grid, key = Hazards
 indexBlizzard = self.getIndex("BL.W", key)
 indexNone = self.getIndex("<None>", key)
 mask = equal(grid, indexNone)
 grid = where(mask, indexBlizzard, grid)

 # Return the new value
 return grid, key

Exercise SmartScript-8 -- Working with Weather/Discrete
Weather and Discrete are similar to each other. They both are represented as a 2-tuple of (grid, keys).

Use the SmartScript method, "wxMask()" to assign PoP values based on Wx coverage according to the
following criteria:

• where coverage is "<NoCov>", assign 0

• where coverage is "Chc", assign 25
• where coverage is "Sct", assign 55
• where coverage is "Wide", assign 80

Exercise SmartScript-9 -- Translating Between Smart Initialization and Smart Tools
To see the correlation between Smart Initialization and Smart Tools, find the "calcFreeWind" method in "NAM12.py" and
compare to examples/smartTools/FreeWind_Init.py. For the most part, the code is similar. However, the Smart Tool had
to access the sounding cubes through the "getNumericSounding" method. It was also enhanced to extrapolate and
interpolate, but the original Smart Initialization code (commented out) works as well. In general, when going between
Smart Initialization and Smart Tools, follow these tips:

• In a Smart Tool, use "getNumericSounding" to get the sounding value cubes.
• In a Smart Tool, use "interpolateValues" instead of the Smart Initialization method, "linear". Notice the order of

arguments is different.
• In a Smart Tool, the Topo argument is in feet while the Smart Initialization topo argument has been converted to

meters.

	Smart Tools and Procedures Training Guide
	Edit Actions
	Using the Spatial Editor Time to Identify Editable Grids
	Using the Selected Time Range to Identify Editable Grids
	Edit Action Warnings

	Smart Tools
	Executing Smart Tools
	Convective Scenario

	Winter Scenario
	Creating and Modifying Tools
	Edit Action Button 3 Pop-up Menu
	Creating a New Tool
	Exercise Tool-1 -- Creating a new tool

	Description of Tool Arguments
	Modifying a Tool
	Exercise Tool-2 -- Modifying a Tool

	Description of VariableList
	Exercise Tool-3 -- Using VariableLists

	Creating VariableLists "On-the-fly"
	Additional Smart Tool Methods
	Reserved Methods
	Creating Your Own Methods
	Naming Conventions

	Creating a Smart Tool from an Existing File

	Smart Script Class Library
	Exercise SmartScript-1 -- Accessing Grids Directly
	Exercise SmartScript-2 -- Accessing Variable Grids Directly
	Exercise SmartScript-3 -- Making and Accessing Soundings
	Exercise SmartScript-4 -- Making and Accessing Soundings
	Exercise SmartScript-5 -- Making and Accessing Soundings
	Exercise SmartScript-6 -- Creating Elements "On-the-Fly"
	Exercise SmartScript-7 -- Working with Weather/Discrete
	Exercise SmartScript-8 -- Working with Weather/Discrete
	Exercise SmartScript-9 -- Translating Between Smart Initialization and Smart Tools

	

