
GFESuite Python Tutorial and Programming Guidelines

Introduction
GFESuite extensions such as Smart Tools and Smart Initialization are written in an interpreted scripting language called
Python. It is a very powerful, object-oriented language and all the features of Python are available to you. We also use a
Python library, called Numerical Python, which allows for efficient operations on grids of data. The GFESuite software
provides some additional methods to help you operate on Numerical data. This tutorial will introduce you to the features
of Python and Numerical Python that are relevant to the GFESuite. If you are interested in Python's full capabilities, visit
their web site at: http://www.python.org/

Python Concepts
Here is a simple piece of Python code to illustrate the basic features:

def myMethod(value1, value2):

 # This is a comment

 if value1 == 0:

 print "No value"

 elif value1 > 10:

 print "Value is greater than 10 "

 else:

 print "Value is ", value1

Indentation and Comments
Python recognizes code blocks by indentation. Because there are no brackets, you must make sure that statements within a
code block all begin in the same column. Fortunately, the Python editor helps enforce this when you use the Tab key.
Comments are denoted by the number sign: #

Methods
Python methods or functions are defined with the "def" keyword followed by method name, arguments, and a colon.

"if" statements
The format of an "if" statement with "elif" and "else" is shown above. Note that there are no parentheses around the
expression which is instead followed by a colon.

Data Structures
Variables need not be declared or typed. They are defined as they are used. There are very powerful built-in data types.

Lists
A List is written as a list of comma-separated values (items) between square brackets. List items need not all have the
same type. Lists are accessed via their index.

Example:

 myList = ['spam', 'eggs', 100, 1234]

 myFavoriteFood = myList[0]

• Tuples

A tuple consists of a number of values separated by commas, for instance:
 t = (12345, 54321, 'hello!')

 myNumber = t[0]

They are indexed and referred to just as lists, but cannot be changed i.e. they are immutable.

Dictionaries
Another useful data type built into Python is the dictionary. Dictionaries are sometimes found in other languages as
“associative memories” or “associative arrays.” Unlike sequences, which are indexed by a range of numbers, dictionaries
are indexed by keys, which can be any immutable type such as strings and numbers. Tuples can be used as keys if they
contain only strings, numbers, or tuples. You cannot use lists as keys, since lists can be modified.

It is best to think of a dictionary as an unordered set of "key:value" pairs, with the requirement that the keys are unique
(within one dictionary). A pair of braces creates an empty dictionary: {}. Placing a comma-separated list of "key:value"
pairs within the braces adds initial "key:value" pairs to the dictionary; this is also the way dictionaries are written on
output. The main operations on a dictionary are storing a value with some key and extracting the value given the key.
Here is an example using a dictionary:

 tel = {'jack': 4098, 'sape': 4139}

 tel['guido'] = 4127

 jacksNumber = tel[`jack']

 print tel

 print jacksNumber

Result:

 {'guido': 4127, 'jack': 4098, 'sape':4139}

 4098

Classes
A "class" is a collection of methods and statements that are related and perform a coherent set of tasks. For example, if
we have a set of methods that perform useful operations on strings, we might want to create a class structure to group
them together. A simple class can be declared as follows:

 class MyClass: # class declaration
 def myMethod(self, str): # method defined within the class
 print str # a simple print statement

Notice the indentation. Every method or variable within the class must be indented consistently to indicate its
inclusion in the class. Note the special "self" argument. This is a way for us to keep track of what class a
method or variable belongs to. You don't need to worry much about it except to:

• Make sure to list "self" as the first argument of method definitions within the class and

• Make sure that when calling another method within the class, use "self.methodName" omitting "self" as the first
argument:

 class MyClass:
 def myMethod(self, str):
 print str
 def anotherMethod(self):
 self.myMethod("guido rocks")

• Make sure that if you want to use a variable in multiple methods of a class, you refer to it with the "self" qualifier:

 class MyClass:

 def myMethod(self, str):
 print str
 self.myStr = str

 def anotherMethod(self):
 self.myMethod("guido rocks")

 def aThirdMethod(self):
 print "Last string printed", self.myStr

When you want to use the methods inside a class, you "instantiate" the class or create an instance of the
class. Then you can call the methods of the class as shown below:

 classInstance = MyClass()
 classInstance.myMethod("spam and eggs")

This would result in output of:

 spam and eggs

Finally, you may want to include a "constructor" which is a special method to be run any time the class is
instantiated. This is handy if you want to initialize variables.

 class MyClass:
 def __init__(self):
 self.myStr = ""

Inheritance

Often we find that a new class would benefit from having the functionality of an existing class. Instead of altering the
existing class, we can "inherit" its functionality and then add to it or alter it in our new class. For example, suppose we
have a WeatherElement class that stores and performs general operations on a weather element such as temperature, sky
cover, or wind. We might find operations for creating a new grid, storing a grid or deleting a grid from the
inventory. However, when we need to calculate the values for the grid, our functions might be different depending on
whether the weather element is a Scalar or a Vector. In this case, we might want to create two new classes, one for
operating on Scalar weather elements and one for operating on Vector weather elements. However, we would like both
classes to have access to the general methods in the original WeatherElement class.

When there is an inheritance relationship, we call the existing class the "base" class and the new class the
"derived" class. This relationship is specified as follows:

 class DerivedClass (BaseClass):
 def __init__(self):
 BaseClass.__init__(self)

Notice that we included a constructor and instantiated the BaseClass to ensure that any base class initializations
will take place. Here's how our example classes might be declared:

 class WeatherElement:
 def __init__(self):
 pass
 def storeGrid(self):
 ...
 def deleteGrid(self):
 ...
 def createGrid(self):
 ...

 class ScalarElement (WeatherElement):
 def __init__(self):
 WeatherElement.__init__(self)
 def calculateScalarValues(self):
 ...

 class VectorElement (WeatherElement):
 def __init__(self):
 WeatherElement.__init__(self)
 def calculateVectorValues(self):
 ...
 def createGrid(self):
 # Special case of creating a vector grid

Now the DerivedClass can call any methods in the BaseClass using the "self" argument. So, for example, the
"storeGrid" method is available to both the ScalarElement and VectorElement classes. If we want to alter the
functionality of a BaseClass method, we can simply include a copy of it in the DerivedClass definition and
make any desired changes to it there. Notice that we have included a copy of the "createGrid" method within
the VectorElement class for which there will be some special set-up when creating the vector grid. When a
method is called, the system first searches in the DerivedClass for it. If it is not there, it searches in the

BaseClass. Of course, the BaseClass may have inherited from another class and, if so, the search will proceed
recursively.

Sometimes it is useful to draw classes and their inheritance relationships. We do so as shown below:

The classes are represented by the rectangles and the special "inheritance symbol" indicates that the Derived
Class inherits the methods and variables from the Base Class. Think of the symbol not as an arrow indicating
flow, but as an "umbrella" indicating inclusion of capabilities.

Numerical Python
Numerical Python is an extension to Python that provides the capability of operating on grids easily and efficiently. The
syntax for Numerical Python is fully explained in the Numerical Python document. In this section, we will explain the
basic concepts that are relevant to the GFESuite. To access the Numerical Python library, include the following statement
in your Python module:

from Numeric import *

Numeric Arrays
The basic data structure for Numerical Python is a Numeric Array. The array objects are generally homogeneous
collections of potentially large volumes of numbers. All numbers in a array are the same kind (i.e. number representation,
such as double-precision floating point). Array objects must be full (no empty cells are allowed), and their size is
immutable. The specific numbers within them can change throughout the life of the array. Here is an example of Python
code using the array objects (italicized text refers to user input, non-italicized text to computer output):

> python
>>> from Numeric import *
>>> vector1 = array((1,2,3,4,5))
>>> print vector1

[1 2 3 4 5]

>>> matrix1 = array(([0,1],[1,3]))
>>> print matrix1

[[0 1]

[1 3]]

>>> print vector1.shape, matrix1.shape

(5,) (2,2)

Note the "shape" is the dimensions of the array

>>> print vector1 + vector1

[2 4 6 8 10]]

>>> print matrix1 * matrix1

[[0 1]

[1 9]]

Note that this is not the matrix multiplication of linear algebra

Grids
GFESuite extensions such as Smart Tools and Smart Initialization provide access to grid data via 2-dimensional
Numerical Python arrays. The naming of these grids and the methods of access may differ, but the concepts and
operations on the underlying Numerical Python arrays is the same.

Basic Arithmetic Operations
Basic arithmetic operations are very easy in Numerical Python and operate on entire grids at once. When operating on
grids, we ensure that the grids are all the same size in the x and y dimensions. Any D2D or IFP data that you access is
assured to have the same grid sizes. If you have two grids, called grid1 and grid2 and you want to make a difference grid
and store it into grid3, then the syntax is:

 grid3 = grid1 - grid2

If you want to add a constant value to a grid, then the syntax is like this:

 grid = grid + 5.0

Converting a grid from degrees Kelvin to degrees Fahrenheit is as simple as:

 gridF = (gridK - 273.15) * 9/5 + 32

In general, do not use loops to index through points in the grid. Performance will suffer greatly. Normally you
access the entire grid at a time, using the above
syntax. The operation you specify will be applied to EVERY grid point in the grid.

To initialize a grid, GFESuite extensions provide an empty array (set to zeros) guaranteed to be of the correct
dimensions. The empty array is called "self._empty". To initialize a grid to a particular value, say 3.0:

 grid = self._empty + 3.0

Note: self._empty is not available in Python in general. It is specific to GFESuite extensions such as Smart
Tools and Smart Initialization which have knowledge of the appropriate grid dimensions for your domain.

Logical Statements and Masks
Logical statements are used to compare grid values. The result from a logical statement is typically a "boolean" grid,
which is a grid that has either 1 (true) or 0 (false) values. These grids are sometimes called "masks" and are used with
conditional statements. Each logical statement requires two arguments, the first being the grid,
and the second being the numerical value for comparison (or even another grid). Here is a subset of statements that you
may find useful:

 less(), equal(), not_equal(), greater(), greater_equal(), less_equal()

For example, to create a mask called bgrid, which represents whether grid points of temperatures are greater
than 50 degrees, the statement would be:

 bgrid = greater(tGrid, 50)

Complex Logical Statements
Sometimes you need a mask that has two logical statements. You can use the logical_and() and logical_or() statements to
combine logical statements. Each of these statements require two arguments, which are the ones that are going to combine
with "and" or "or".

For example, to create a mask called bgrid, which represents grid points from temperatures that are between 40
and 60, you could use a statement like this:

 bgrid = logical_and(greater_equal(tGrid, 40), less_equal(tGrid, 60))

To create a mask which represents the grid points from temperatures that are below 40 or above 60:

 bgrid = logical_or(less(tGrid, 40), greater(tGrid, 60))

Conditional Statements - the "where" statement
Normally a logical statement isn't too useful by itself, and you want to assign a value to a grid based on whether a
conditional is true or false. The where
statement is similar to a if...else... statement in C++ or Python. The where statement takes three arguments: the first is the
logical statement, the second is the
value to be assigned to the grid if the logical statement is true, and the third is the value to be assigned to the output if the
logical statement is false.

 where(conditional statement, assignment if true, assignment if false)

For example,

 snowGrid = where(less(tGrid, 32), 10.0*QPF, 0.0))

takes the tGrid and compares it to 32 degrees. This results in a temporary boolean grid which has grid points
that are set to true if the temperature is less than 32 and
false if the temperature is greater to or equal to 32. The calculated snow grid is based on the boolean grid and
the QPF grid. If the temperature is equal or above
32, then the "false"assignment is done, thus assigning zero to the snowGrid. If the temperature is below 32,
then the "true" assignment is performed
and the snowGrid is set to 10 times the value of the QPF grid.

Clipping (or Limiting) the values of a Grid
Many output grids need to be clipped or limited to a range of values. For example, if you calculate a QPF that is modified
based on upslope and downslope and the
calculation results in a negative QPF, you know that you need to change it to 0.0 (since negative QPFs are not
allowed). The "clip" function takes three arguments:
the input grid, the minimum value, and the maximum value.

 finalQPF = clip(calcQPF, 0.0, 10.0)

Cubes
While the GFESuite Forecast grids represent surface weather elements, D2D model grids often represent weather
elements at various atmospheric levels. In Numerical Python, we can represent this data as 3-dimensional arrays, or
cubes. When examining weather element cubes, we often have a cube of geopotential height available to map between
pressure levels and elevation.

Note the naming convention we use for cube variables: wxElement_c where _c indicates a cube.

Accessing Parts of Grids and Cubes
The syntax for accessing individual rows or columns in a grid is similar to accessing portions of a list in Python, using the
bracket and colon syntax. For example:

 print grid[25][45]

will print the value of the grid at the 45th column of the 25th row.

Refer to the Numerical Python documentation for more details. For cubes, you can access any individual level
using indexing, or multiple levels using more complicated indexing. For example, if you have an relative
humidity cube of 6 levels, and you want just the 2nd level (remember Python counts from 0), you would use
this syntax:

 rh_c[1]

If you wanted a cube that only had the 2nd through 4th levels, then the syntax would be:

 rh_c[1:3]

Looking Up the Columns of a Cube
Some of your algorithms will want to "look up the columns" of a cube and then stop when certain critera has been
reached. An example of this is the calculation of freezing level. We want to start at the surface and go up until we reach
the point where the temperature is below freezing. Then we interpolate between that level and the previous level to find
the "real" freezing level.

The following function (from Smart Initialization) accesses the cubes of geopotential heights and
temperatures. The true surface topography grid is also accessed:

 def calcFzLevel(self, gh_c, t_c, topo):

We start with a grid that contains -1. The self._minus variable is a 2-D grid of -1s. During the calculation up
the column, the grid will contain -1 if the freezing level has
not yet been reached, or the actual freezing level if the level has been reached. We make the assumption that
the freezing level can never be -1 (since that is below
sea level).

 fzl = self._minus

The for loop "i" goes from 0 to the size of the z dimension of the cube of gh. The 0 represents the 'z'
dimension.

 for i in xrange(gh_c.shape[0]):

We use a try/except block to "catch" the failure on the first iteration of the for loop. The exception is caused by
accessing the "i-1"th level which is illegal when i
== 0.

 try:
 # Interpolate between cube levels
 val = gh_c[i-1] + (gh_c[i] - gh_c[i-1]) / (t_c[i] - t_c[i-1]) * (273.15 - t_c[i-1])
 except:

 # Handle the first level
 val = gh_c[i]

After we have calculated "val", which is a 2-D grid, representing the freezing level height based on the two
temperatures and two gh values at each layer, then
we apply it only in certain cases. The following statement only assigns the calculated freezing level if it already
hasn't been assigned, and the actual temperature of
the layer is less than freezing.

 fzl = where(logical_and(equal(fzl, -1), less_equal(t_c[i], 273.15)), val, fzl)

The following simply converts the meters to feet.

 fzl = fzl * 0.3048

And the grid is returned.

 return fzl

Reducing
The concept of "reducing" is a numerical python concept of taking a multi-dimensional grid (or cube) and reducing its
dimensions. Another concept is flattening the grid. For example, take all of the relative humidities from the surface to a
fixed millibar level and average them. You start with a cube of rh and end up with a 2-D grid of average rh. This
example calculates the probability of precipitation based on the Fcst QPF, and the geopotential heights and relative
humidity cubes.

 def calcPoP(self, gh_c, rh_c, QPF, topo):

The first few lines take the gh and rh cubes and only use the first 8 levels.

 # only use the first 8 levels (up to MB600)
 gh_c = gh_c[:8,:,:]
 rh_c = rh_c[:8,:,:]

The less statement creates a 3-D mask based on the gh levels and the topography levels. The mask is 1 where
the gh level is less than the topography and 0 where the gh level is greater or equal to the topography.

 mask = less(gh_c, topo)

Wherever there is a 1 in the mask, rh_avg gets a 0. Wherever there was a 0 in the mask, rh_avg gets the value
in the rh_c. The rh_avg is still a cube with 0 below the surface.

 rh_avg = where(mask, 0, rh_c)

We need a count grid since we have to compute an average. The count is actually a cube that has a 0 if the
rh_avg is 0 or less, and a 1 if the rh_avg is greater than 0.

 count = where(greater(rh_avg, 0), 1, 0)

The add.reduce() sums up along the z-axis (the 0 indicates the z-direction, 1 the x-direction, 2 the y-direction),
and returns a single number that is the sum in each column. It turns the 3-D cube into a 2-D grid. Count is a 2-
D grid.

 count = add.reduce(count, 0)

The add.reduce() sums up the rh grids in the column above the surface.

 rh_avg = add.reduce(rh_avg, 0)

The real average relative humidity is calculated in this next compound statement. The average relative
humidity is the rh_avg/count. We do some extra work to ensure that the count is not zero by adding 0.001 to
the count.

 dpop = rh_avg / (count + .001) - 70.0

We force dpop to be within the range -30 to 30%.

 dpop = clip(dpop, -30, 30)

Finally we calculate the primary pop. If QPF < 0.02, then the pop is 1000 * QPF. Otherwise set QPF to
350*QPF + 13.
 pop = where(less(QPF, 0.02), QPF * 1000, QPF * 350 + 13)

We add in the delta pop.
 pop = pop + dpop

We make sure the range is between 0 and 100%
 pop = clip(pop, 0, 100)

And return the answer.
 return pop

Working with Vector Data
Vector weather elements, such as Wind, are treated as two numerical arrays, one representing magnitude and one
representing direction. For example:

 def calcWind(self, wind_FHAG10):
 # The Wind Vector consists of two numerical array grids, one for magnitude and one for direction
 mag = wind_FHAG10[0] # get the wind magnitude grid
 dir = wind_FHAG10[1] # get wind direction grid

 A Vector Cube consists of two sub-cubes, one for magnitude and one for direction. For example:

 def calcFreeWind(self, gh_c, wind_c, topo):
 # The Vector Cube, wind_c, consists of two sub-cubes, one for magnitude and one for direction
 magnitudeCube = wind_c[0]
 directionCube = wind_c[1]

Working with Weather Data
Working with Weather-type elements in Numerical Python tools requires some special comments. A wx argument
represents a 2-tuple:

• wxValues : numerical grid of byte values
• keys : list of "ugly strings" where the index of the ugly string corresponds to the byte value in the wxValues grid.

For example, if our keys are:

• "Sct:RW:-:<NoVis>:"
• "Chc:T:-:<NoVis>:"
• "Chc:SW:-:<NoVis>:"

then, the wxValues grid will have byte values of 0 where there is "Sct:RW:-:<NoVis>:", 1 where there is "Chc:T:-
:<NoVis>:" and 2 where there is "Chc:SW:-:<NoVis>:"

The getIndex Method -- Creating Weather Data
The GFESuite method, "getIndex(uglyString, keys)" will return the byte value that corresponds to the given ugly string. It
will add a new key if a new ugly string is requested. A Numerical Smart Tool or Smart Initialization method working with
weather data must return a (wxValues, keys) tuple. For example:

 def execute(self, Wx):
 # Assign Wx based on PoP

 # Separate the Weather argument into it's two components, wxValues and keys
 wxValues = Wx[0]
 keys = Wx[1]

 # Assign "SChc:RW:-:<NoVis>:" where the PoP is less than 30
 wxValues = where(less(PoP,30), self.getIndex("SChc:RW:-:<NoVis>:", keys), wxValues)

 # Return the paired components as a tuple
 return (wxValues, keys)

To see how the "getIndex" method is used in a Smart Tool, examine the Convective_SmartTool in the
examples/smartTools directory.

The wxMask Method -- Examining Weather Data
The GFESuite method, "wxMask(wxTuple, query, isRegExpr)", allows you to examine the ugly string values in the
numerical grid of byte values. The method returns a mask, i.e. a numeric grid of 0's and 1's, where the value is 1 if the
given query succeeds. It has the following arguments:

• wxTuple -- a 2-tuple:

• wxValues : numerical grid of byte values

• keys : list of "ugly strings" where the index of the ugly string corresponds to the byte value in the wxValues grid.

• query -- a text string representing a query

• isreg -- if 1, the query is treated as a regular expression, otherwise as a literal string

Examples:

 # Here we want to treat the query as a regular expression to avoid confusion between "Chc" and "SChc"
 # This statement will assign PoP a value of 40 where the weather has a coverage of "Chc"
 PoP = where(self.wxMask(wxTuple, "^Chc:", 1), 40, PoP)

 # Here we want to treat the query as a literal
 # This statement will assign PoP a value of 5 where the weather has type of "L"
 PoP = where(self.wxMask(wxTuple, ":L:"), 5, PoP)

To see how the "wxValues" method is used in a Smart Tool, examine the PoP_From_Wx tool in the
example/smartTools directory.

Working with Discrete Data
Working with Discrete-type elements in Numerical Python tools requires some special comments. A wx argument
represents a 2-tuple:

• wxValues : numerical grid of byte values
• keys : list of "strings" where the index of the string corresponds to the byte value in the wxValues grid.

For example, if our keys are:

• "SmCrftADV"
• "SnowADV^WChillADV"
• "<None>"

then, the wxValues grid will have byte values of 0 where there is "SmCrftADV", 1 where there is
"SnowADV^WChillADV" and 2 where there is "<None>"

The getIndex Method -- Creating Discrete Data
The GFESuite method, "getIndex(string, keys)" will return the byte value that corresponds to the given string. It will add a
new key if a new string is requested. A Numerical Smart Tool or Smart Initialization method working with discrete data
must return a (wxValues, keys) tuple. For example:

 def execute(self, Highlights, WindChill):
 # Assign Highlights based on WindChill

 # Separate the Discrete argument into it's two components, wxValues and keys
 wxValues = Highlights[0]
 keys = Highlights[1]

 # Assign "WChillADV" where the WindChill is less than -20
 wxValues = where(less(WindChill,-20), self.getIndex("WChillADV", keys), wxValues)

 # Return the paired components as a tuple
 return (wxValues, keys)

The discreteMask Method -- Examining Discrete Data

The GFESuite method, "discreteMask(wxTuple, query, isRegExpr)", allows you to examine the string values in the
numerical grid of byte values. The method returns a mask, i.e. a numeric grid of 0's and 1's, where the value is 1 if the
given query succeeds. It has the following arguments:

• wxTuple -- a 2-tuple:
• wxValues : numerical grid of byte values
• keys : list of "strings" where the index of the string corresponds to the byte value in the wxValues grid.
• query -- a text string representing a query
• isreg -- if 1, the query is treated as a regular expression, otherwise as a literal string

Programming Guidelines

Style Suggestions

• Comment your code -- it really makes a difference, not only to others trying to understand your code, but to you
when you're trying to debug it.

• Name your variables meaningfully. A variable named "threshold" versus "x" makes code much easier to read.
• Simple or Compound Statements

There are many ways to write software. You can separate each step in a calculation on a separate line and assign
it to variables, or you can combine everything on one line. It all amounts to readability.

Take this example of a compound statement, which computes a convective / total precipitation ratio,
then creates a boolean grid which is based on total precipitation from 0 to 0.02", and then creates a grid
with ProbPrecip values if there is precipitation (precipMask) and the ratio (precipRatio) is less than
10%:

 precipRatio = cp_SFC / (tp_SFC + 0.0001)
 precipMask = logical_and(greater(tp_SFC, 0.0), less(tp_SFC, 0.02*25.4))
 grid = where(logical_and(precipMask, less(precipRatio, 0.1)), ProbPrecip,
0.0)

This same code fragment may be written in the following way. The precipRatio is the calculated cp/tp
ratio; precipPositive is a boolean grid where tp > 0; precipLess2 is a boolean grid where tp < 0.02"
(which includes zero); precipBetweenZeroAnd2 is a boolean grid where tp > 0 and tp < 0.02";
precipRatioLess10 is a boolean grid where the precipRatio is less than 10%, precipRatioAndLowPrecip
is a boolean grid where tp > 0 and less than 0.02", and where the cp/tp ratio is less than 0.1:

 precipRatio = cp_SFC / (tp_SFC + 0.0001)
 precipPositive = greater(tp_SFC, 0.0)
 precipLess2 = less(tp_SFC, 0.02*25.4)
 precipBetweenZeroAnd2 = logical_and(precipPositive, precipLess2)
 precipRatioLess10 = less(precipRatio, 0.1)
 precipRatioAndLowPrecip = logical_and(precipRatioLess10,
precipBetweenZeroAnd2)
 grid = where(precipRatioAndLowPrecip, ProbPrecip, 0.0)

The second fragment, though longer, is composed of simpler statements and is easier to follow and
read. Note also, that we have named the variables to reflect the concepts and improve readability.

Trouble-shooting Ideas

• Error Messages: Make sure you are running the GFE from a terminal window so that you will see any Python
error messages that occur when you run your Smart Tool or Procedure. These messages will give line numbers
and descriptions that help you trace the origin of the problem.

• Print Statements: Using the Python "print" statement within your Smart Tool or Procedure is one of the quickest
ways to determine where a problem is occurring and what might be causing it. Simply interspersing "progress"
statements such as the following throughout your tool can help:

 print "Made it to this point"

 Here are some other example "print" statements:

 print "myVariable =", myVariable

 # To print Python Numeric array information:
 print "Dimensions of array T:", T.shape, "Value of T at point 20, 20: ", T[20][20]

• Simplify: If the problem is within a complicated method, simplify it by commenting out the code and gradually
introducing pieces of it. Go back to something you know works and then start adding functionality to it.

	GFESuite Python Tutorial and Programming Guidelines
	Introduction
	Python Concepts
	Indentation and Comments
	Methods
	"if" statements
	Data Structures
	Lists
	Dictionaries

	Classes
	Inheritance

	Numerical Python
	Numeric Arrays
	Grids
	Basic Arithmetic Operations
	Logical Statements and Masks
	Complex Logical Statements
	Conditional Statements - the "where" statement
	Clipping (or Limiting) the values of a Grid
	Cubes
	Accessing Parts of Grids and Cubes
	Looking Up the Columns of a Cube
	Reducing

	Working with Vector Data
	Working with Weather Data
	The getIndex Method -- Creating Weather Data
	The wxMask Method -- Examining Weather Data
	Working with Discrete Data
	The getIndex Method -- Creating Discrete Data
	The discreteMask Method -- Examining Discrete Data

	Programming Guidelines
	Style Suggestions
	Trouble-shooting Ideas

