
D2D Operations Info
v AWIPS OB9.x

Contents

• Overview
• General data ingest
• SBN ingest
• Radar ingest
• LDM ingest
• Text ingest and database
• Hydro decoder & database
• Interprocess communication
• Cron
• Data purging
• Data and process monitoring
• The restart mechanism
• The text workstation
• Local LAPS processing
• Other local processing
• LDAD processes
• Some other stuff
• Data sources and storage

Audience
This document provides information about the WFO-Advanced data ingest, internal
communications, and display software at GSD & WFO Denver/Boulder. The operational staff at
the WFO has higher-level monitoring and restart tools available that are not described here.

Support
Primary support is from the NCF (301-713-9344). GSD staff are also "on call" (informally) to
help with problems. WFO staff are authorized to call Joe Wakefield, Darien Davis, or Carl
Bullock at home for help, if NCF can't. They also have Gregg Phillips' cell phone number. (Yes,
this is dated, but left here for historical interest.)

Note for GSD folks: to get hold of WFO staff, use 303-494-4454 (this is the national
coordination number, the one other WFOs use to call in). The Admin number there is 303-494-
3210, and the external coordination number (media, etc.) is 303-494-4479. GSD operators are on
duty 24x7, and can be reached at 303-497-6887/303-230-3454 (pager)/opers.its.gsd@noaa.gov.

http://esrl.noaa.gov/gsd/eds/fxa/manuals/RT-ops.html%23Overview
http://esrl.noaa.gov/gsd/eds/fxa/manuals/RT-ops.html%23General
http://esrl.noaa.gov/gsd/eds/fxa/manuals/RT-ops.html%23SBN
http://esrl.noaa.gov/gsd/eds/fxa/manuals/RT-ops.html%23Radar
http://esrl.noaa.gov/gsd/eds/fxa/manuals/RT-ops.html%23LDM
http://esrl.noaa.gov/gsd/eds/fxa/manuals/RT-ops.html%23Informix
http://esrl.noaa.gov/gsd/eds/fxa/manuals/RT-ops.html%23Hydro
http://esrl.noaa.gov/gsd/eds/fxa/manuals/RT-ops.html%23IPC
http://esrl.noaa.gov/gsd/eds/fxa/manuals/RT-ops.html%23Cron
http://esrl.noaa.gov/gsd/eds/fxa/manuals/RT-ops.html%23Purging
http://esrl.noaa.gov/gsd/eds/fxa/manuals/RT-ops.html%23Monitor
http://esrl.noaa.gov/gsd/eds/fxa/manuals/RT-ops.html%23Restart
http://esrl.noaa.gov/gsd/eds/fxa/manuals/RT-ops.html%23Text
http://esrl.noaa.gov/gsd/eds/fxa/manuals/RT-ops.html%23LAPS
http://esrl.noaa.gov/gsd/eds/fxa/manuals/RT-ops.html%23Local
http://esrl.noaa.gov/gsd/eds/fxa/manuals/RT-ops.html%23LDAD
http://esrl.noaa.gov/gsd/eds/fxa/manuals/RT-ops.html%23Other
http://esrl.noaa.gov/gsd/eds/fxa/manuals/RT-ops.html%23Data
mailto:opers.its.gsd@noaa.gov

Environment
The Boulder computers carry the suffix -bou, which is the official ID of the Denver/Boulder
WFO. The complement of servers includes dx1-, dx2-bou (database, radar ingest), dx3-bou
(primary ingest), dx4-bou, px1-bou (SCAN/FFMP, notification), and px2-bou. (Name aliases
allow these to be referred to locally as dx1, dx2, dx3, dx4, px1, and px2.)

When you log into one of the machines and sudo fxa, several scripts are automatically run to set
a number of environment variables, etc. The .cshrc script sets this process in motion. Settings of
interest include FXA_DATA (/data/fxa), LOG_DIR (/data/logs/fxa), FXA_HOME (/awips/fxa),
and TZ (GMT).

All D2D processes are found in ~fxa/bin, and data files (tables, menus, WarnGen templates, etc.)
are in ~fxa/data. Most ingest logs are in $LOG_DIR/yyyymmdd (type "logs" to get there), with a
few in $LOG_DIR; these are on local disks.

The log file for a user interface process is
$LOG_DIR/display/<displayName>/<date>/fxaWish<pid> where <displayName> is :0.0 for the
center display, :0.1 for the left display, and :0.2 for the right display; <date> is the UTC date
when the user interface process was started in YYYYMMDD format; and <pid> is the process
ID.

The log files for the IGC processes, the application manager, the applications, the extensions,
and all descendents of the user interface process are in the directory
$LOG_DIR/display/<displayName>/<date>/fxaWish<pid>.children and have the format
<programName><pid> where <programName> is the name of the executable.

Since FXA_HOME/bin is in fxa's PATH, there's no need to include that when entering process
commands, and that's reflected in the commands included in these instructions. All commands
that you'll need to enter are shown in bold type. Except as noted, all will be run from the fxa
account.

You can get to today's ingest log directory simply by typing logs, and up will get you to its
parent, where some logs live. The naming convention for ingest logs is
<processName><pid><hostname><hhmmss>.

Overview
The diagram below outlines the flow of messages through the WFO-A ingest system. (It's way
out of date, obviously - heck, by now, it's a museum piece - but still instructive.) Following
sections discuss each interface in detail.

General data ingest
All ingest processes are started automatically at boot time. dx1/dx2, dx3/dx4, and px1/px2 are
heartbeat pairs that are monitored and started with the hb_ software. As root, use hb_stat to see
if (and where) the packages are running, and hb_swap to start one up (e.g., hb_swap px1apps
px1-bou. Michael Vrencur recommends running hb_swap on the node from which the package
is being swapped.

A bigger hammer is service heartbeat restart. If, for example, you run this on dx3, expect
that dx3apps will swap over to dx4. Then you can jump on the latter and swap the package back
to dx3.

As long as the package is up, you can run the start/stop scripts by hand. Should it be necessary to
restart, use stopIngest and startIngest.[dx1|dx2|dx3|dx4|px1|px2].

Processes included in stop/startIngest for OB8.1, in the order they are started: (Note that the
scripts use $FXA_HOME, which resolves to /awips/fxa. What's shown here is the text that
appears in a ps listing.)

For ds1:
[if $mhs_host=ds]
/awips/fxa/bin/MhsServer
/awips/fxa/bin/MhsRequestServer

For dx1:
/awips/fxa/bin/DataController COMMS_ROUTER PDCservcontrol.co
 /awips/fxa/bin/PDCserver
[next two if $mhs_host=dx1f]
/awips/fxa/bin/MhsServer
/awips/fxa/bin/MhsRequestServer
/awips/fxa/bin/textNotificationServer
/awips/fxa/bin/NWWSProduct
/usr/bin/perl /awips/fxa/bin/ingProcMon.pl -c DX1

For dx2:
/awips/fxa/bin/RadarServer
/awips/fxa/bin/DialServer
/awips/fxa/bin/RMR_Server
/awips/fxa/bin/DataController COMMS_ROUTER TextDB2_Controller.config
 /awips/fxa/bin/RadarTextDecoder
/awips/fxa/bin/RadarMsgHandler
/awips/fxa/bin/DataController COMMS_ROUTER RadarController.config
 /awips/fxa/bin/RadarStorage
 /awips/fxa/bin/HandleGenericMsg
/awips/fxa/bin/ORPGCommsMgr KFTG
/usr/bin/perl /awips/fxa/bin/ingProcMon.pl -c DX2

For dx3:
/awips/fxa/bin/acqserver 21600
 /awips/fxa/bin/acqserver 8 21600
 <13 more of these>
/awips/fxa/bin/CommsRouter COMMS_ROUTER
/awips/fxa/bin/CommsRouter GRID_ROUTER
/awips/fxa/bin/DataController GRID_ROUTER GribController.con
 /awips/fxa/bin/GribDecoder
 /awips/fxa/bin/Grib2Decoder
/awips/fxa/bin/DataController GRID_ROUTER GribImgController.
 /awips/fxa/bin/GribImgDecoder
/awips/fxa/bin/DataController COMMS_ROUTER SatelliteControll
 /awips/fxa/bin/Satdecoder
/awips/fxa/bin/DataController COMMS_ROUTER TextCont2.config
 /awips/fxa/bin/RaobBufrDecoder
 /awips/fxa/bin/AircraftDecoder
 /awips/fxa/bin/MaritimeDecoder
 /awips/fxa/bin/profilerDecoder
 /awips/fxa/bin/RedbookStorage
/awips/fxa/bin/DataController COMMS_ROUTER TextDB_Controller
 /awips/fxa/bin/CollDB_Decoder
 /awips/fxa/bin/StdDB_Decoder
/awips/fxa/bin/DataController COMMS_ROUTER WarnDB_Controller
 /awips/fxa/bin/WarnDBDecoder
/awips/fxa/bin/DataController COMMS_ROUTER TextCont.config
 /awips/fxa/bin/MetarDecoder
/awips/fxa/bin/DataController COMMS_ROUTER BufrDriverContr.c
 /awips/fxa/bin/BufrDriver model
 /awips/fxa/bin/BufrDriver goes

 /awips/fxa/bin/BufrDriver acars
 /awips/fxa/bin/BufrDriver poes,quikscat
 /awips/fxa/bin/BufrDriver hdw
/awips/fxa/bin/DataController COMMS_ROUTER GFSdriverContr.c
 /awips/fxa/bin/gfsDriver
/awips/fxa/bin/DataController COMMS_ROUTER SSMIdriverContr.config
 /awips/fxa/bin/SSMIdriver
/awips/fxa/bin/DataController COMMS_ROUTER BufrMOScontr.config
 /awips/fxa/bin/BufrMosDecoder
/awips/fxa/bin/DataController COMMS_ROUTER TextCont3.config
 /awips/fxa/bin/binLightningDecoder
/awips/fxa/bin/DataController COMMS_ROUTER TextCont4.config
 /awips/fxa/bin/SynopticDecoder
/usr/bin/perl /awips/fxa/bin/ingProcMon.pl -c DX3

For dx4:
/awips/fxa/bin/notifyTextProd COMMS_ROUTER /awips/GFESuite/primary...
/awips/fxa/bin/notifyTextProd COMMS_ROUTER /awips/GFESuite/svcbu...
/usr/bin/perl /awips/fxa/bin/ingProcMon.pl -c DX4

For px1:
/awips/fxa/bin/DataController COMMS_ROUTER SCANcontroller.config
 /awips/fxa/bin/SCANprocessor
/awips/fxa/bin/DataController COMMS_ROUTER FFMPcontroller.config
 /awips/fxa/bin/FFMPprocessor
/awips/fxa/bin/DataController COMMS_ROUTER SRUcontroller.config
 /awips/fxa/bin/SRUprocessor
/awips/fxa/bin/DataController COMMS_ROUTER FMcontroller.config
 /awips/fxa/bin/FMprocessor
/awips/fxa/bin/DataController COMMS_ROUTER SNOWcontroller.config
 /awips/fxa/bin/SNOWprocessor
[at marine WFOs]
/awips/fxa/bin/DataController COMMS_ROUTER SScontroller.config
 /awips/fxa/bin/SSprocessor
/awips/fxa/bin/asyncScheduler
/awips/fxa/bin/hmMonitorServer
/awips/fxa/bin/NWWSSchedule
/usr/bin/perl /awips/fxa/bin/ingProcMon.pl -c PX1

For px2:
/awips/fxa/bin/ldadServer
/usr/bin/perl /awips/fxa/bin/ingProcMon.pl -c PX2

And processes in start/stopTextDB:
For dx1:
/awips/fxa/bin/TextDB_Server -Read
/awips/fxa/bin/TextDB_Server -Write

For px1:
/awips/fxa/bin/textNotificationServer

The stop/start scripts handle the non-indented items in the list. Indented items are children
spawned by the process listed immediately above.

Other persistent items started by cron:

on ds1:
/awips/fxa/bin/ingProcMon.pl -c DS
/awips/fxa/bin/ctrlCpu
on dx1:
/awips/fxa/bin/purgeProcess
/awips/fxa/bin/ingProcMon.pl -c DX1
/awips/fxa/bin/ctrlCpu
on dx2:
/awips/fxa/bin/ingProcMon.pl -c DX2
/awips/fxa/bin/ctrlCpu
on dx3:
/awips/fxa/bin/ingProcMon.pl -c DX3
/awips/fxa/bin/ctrlCpu
on dx4:
/awips/fxa/bin/ingProcMon.pl -c DX4
/awips/fxa/bin/ctrlCpu
on px1:
/awips/fxa/bin/ingProcMon.pl -c PX1
/awips/fxa/bin/processSummary.pl
/awips/fxa/htdocs/ldadMon/bin/MakeSUMMpage
/awips/fxa/htdocs/ldadMon/bin/MakePROCpage
/awips/fxa/bin/ctrlCpu
on px2:
/awips/fxa/bin/ctrlCpu

Also started separately:

on dx1:
/awips/fxa/bin/notificationServer

Rarely, the GRIB decoder will hang on bad grids (can't remember the last time it happened).
You'll see this by the GribDecoder process using lots of CPU time for extended periods, and a
check on the log will show nothing happening. Issue kill -10 <pid> to force a crash. The signal
handler will remove the bad grid and the controller will start a new decoder.

If radar is not auto-updating, you'll probably need to restart the notificationServer. When you use
stopNotificationServer to kill the server, it may take some time to update its client list, which is
found in $FXA_DATA/workFiles/notificationServerClientListState.txt. It will do a kill -9 after
20 seconds, if necessary. Use startNotificationServer to get it running again. The
textNotificationServer has a similar feature; its client list is in
$FXA_DATA/workFiles/textNotificationServerClientList.txt.

It seems that security scans (typically Tuesday morning) will cause several processes to run up
100% CPU usage. It manifests in a 'top' display as numerous 95+% processes. To recover, as fxa,
run...

host actions

dx1
stop/startIngest.dx1
stop/startTextDB.dx1
stop/startNotificationServer

dx2 startIngest.dx2
stop/startORPGCommsMgr

dx3 startIngest.dx3
Note: Check GribDecoder, as it often crashes on bad grids after restart.

dx4 <none>

px1

startIngest.px1
stopFSIprocessor,
kill any leftover FSI process,
then startFSIprocessor

px2 startIngest.px2

On dx1-avs, notifServer, purge, TextDB don't get hit for some reason. But others do:
startIngest.dx1, startLdadIngest.ds1, stop/startTextDB.px1 should take care of it.

SBN ingest
The bulk of our datasets are received over the Satellite Broadcast Network (SBN) via the SBN
communications processors. Please note that cpsbn1 and cpsnb2 are monitored by the AWIPS
Network Control Facility (NCF), which is also responsible for their maintenance. There is a
switch box near cpsbn1 that must usually be in `Modem' position, so NCF operators can check
on its operation.

If SBN data (satellite, METARs, text, grids) are not arriving, check the CP operation, to see if it's
hung. ssh cpsbn1 for TG data, or cpsbn2 for NESDIS, as user root. (Note: if you need to log in
at the console, you'll need to move the CP switch to the Monitor position.) Type inmon to run
the ingest monitor and outmon to run the dissemination monitor. In the former, all lines in the
lower section will show, e.g., cpsbn1-bou, since the data are coming from the CP and being
stored locally on disk. In the latter, you'll see connections to dx3f-bou on each CP. (If both CPs
have stopped at the same time, it's likely that there's an uplink problem at the NCF, or there
could be a downlink problem. Check with NCF (301-713-9344) before restarting.) Other
problem indicators are lots of buffers or distribution headers in use. If times are not up to date in
the xfr column, you can restart using stop_cpsbn_all and start_cpsbn_all. A lot of text will
scroll by as the software starts up. Monitor the system again with inmon and outmon; you
should see the TG line connect within a few seconds, though the NESDIS line may take several
minutes. Log out (exit) (and switch back to Modem if at the console). Child acqservers will go
down when you stop the CP, then will come back as data are sent.

Another monitor showing live WMO headers per category is acq_stats -oP -i5.

If this doesn't work, have the forecasters check the Sync and Signal green lights on the demod. If
these are out, have them contact the NCF for information. (This is unlikely, as the NCF monitors
that portion of the system.) If the signal looks good, but you can't connect, you may need to
reboot the CP. Log in and enter /etc/reboot. Ingest processes start automatically. (If you can't log
in, you can press the reset button that's just above the CP's power switch at lower right. The
system will reboot itself. Using the reboot command is preferred.)

If necessary, either CP can be configured to send both data streams to the server. Call the NCF
and tell them which of the CPs has failed. They will perform the failover. [The split of data is set
using config_dvb. Issue this without argument to see which channels are enabled on each CP. To
enable a channel, use, e.g., config_dvb -a -c GOES; to disable one use config_dvb -r -c
NMC3. Then restart the CP ingest.]

Data: As data are received, they are first written to circular buffers on the CP disks, in
/data/co/<DDIR>/d<FILE>/[nn]/<FILE>.nnnn, where DDIR and FILE are from STORE lines of
/awips/data/acq_send_parms.sbn, nn is 00..mm, and nnnn is 0000..9999 (or 000..999 or less, in
accordance with the MAX_PER_DIR and MAX_FILE settings in the STORE lines). The
number of directories used, mm, is determined by dividing MAX_FILE by MAX_PER_DIR. If
all of the files will fit in one directory, the nn part of the directory path is not needed.

Next, the files are copied to distribution staging areas in
/data/co/<DDIR>/l<FILE>_g<GROUP>_h<HOST>/nn, where DDIR, FILE, and nn are as
above, and GROUP and HOST are from SEND lines of acq_send_parms.sbn. Example:

SEND[13]="STORE_ID=13 LINK_ID=2 LABEL=nmc2_misc GROUP=2 HOST=1"

STORE[13]="ID=13 WMO=* PROD_TYP=NWSTG SBN_CHAN=NMC2 \
 DDIR=NMC2 FILE=nmc2_misc MAX_FILE=100000 MAX_PER_DIR=10000"
entries result in datasets being staged in /data/co/NMC2/lnmc2_misc_g2_h1/nn, where nn runs
00..09. From here, an acq_send process sends the data to a corresponding acqServer on the
receiving host, and removes the files from the l... directories. The CP will queue files if the
receiver is not up (up to the limits specified in the STORE line) and refresh them after a
connection is established.

Logs: The CPs write their logs locally to /awips/logs/, /data/co/logs/Products/cpsbni-
bou/sbn_procm/mcProduct.log, .../acq_clntm_hn/mcProduct.log, and
.../acq_sendm.ho.gp_m5/mcProduct.log, where m is the link number that you see in an acq_stats
display (defined in acq_send_parms.sbn), n is a subchannel number that's seen in the inmon
acq_stats display, o is the host number (defined in acq_send_parms.sbn), and p is the group ID,
again from acq_send_parms.sbn. The system breaks these logs when they hit 1MB size, putting
older logs in ARCHIVE/mmmdd/mcProduct* files; these can be useful in diagnosing missing
data. If a cp gets overloaded, it's logged in the mcProduct logs, tagged STATUS LOST n
products. We saw this periodically on cpsbn1-fsld when it was serving four hosts.

An ingest note: From time to time, we've seen IUAX02 (MDCRS) files fail to get to our dxs.
Investigation showed numerous short files in /data/co/NMC/lbufr_g5_h0/00/tmp0h0g5m5 (e.g.)
with content Key file not accessible! (This is also logged in /awips/logs/mon.log.<host>.)
It seems that this occurred after reboot, and the fix (thanks to Maureen Tankersley) is to make a
link /.key -> /root/.key. Apparently, upon reboot, $HOME is not defined as /root, so the
system looks in / for this file. We've also see evidence that using service sbncp stop/start causes
this problem, while stop/start_cpsbn_all cures it. Curious! And oh, by the way,
/usr/local/bin/cruft is the actual decrpytion program. Make sure that's in place - can copy from
another CP if necessary.

Use of WMO headers: In acq_wmo_parms.sbn, we exclude certain datasets (chiefly, AK/HI/PR
grids and satellite images). The "codes" used with those are not at all obvious. Here is a list
provided 3/00 by Leroy Klet.

/* Table of T1 letters to codes */

T1=A PC=13 ASCII Analysis
T1=B PC=19 ASCII Admin Msg
T1=C PC=14 ASCII Climatic
T1=D PC=44 GRID
T1=E PC=51 Satellite Imagery
T1=F PC=15 ASCII Forecast
T1=G PC=45 GRID
T1=H PC=46 GRID
T1=I PC=31 BUFR Obs
T1=J PC=32 BUFR Forecast
T1=K PC=71 Unused
T1=L PC=72 Unused
T1=M PC=73 Unused
T1=N PC=16 ASCII Notices
T1=O PC=43 Grid
T1=P PC=10 Graphic
T1=Q PC=11 Graphic
T1=R PC=74 Unused
T1=S PC=17 ASCII Surface
T1=T PC=52 Satellite Imagery (same as GOES)
T1=U PC=61 Upper Air
T1=V PC=62 National Data
T1=W PC=18 ASCII Warnings
T1=X PC=47 GRID
T1=Y PC=41 GRID
T1=Z PC=42 GRID

This definition is in the AWIPS baseline (NCF Comms workset) under
.../src/co/include/cp_product_code.h

Satellite data file IDs

raw satellite
name channel

4-sat composite (grid201)
TICF01 vis
TICF03 iwv
TICF04 i11

Alaska

TIGA06 i12 (13μ from GOES E
during eclipse)

TIDB17 SSM/I TPW
TIDB29 (retired 19 Jul 12)

raw satellite
name channel

superNational
TIGN01 vis
TIGN02 i11
TIGN03 i12
TIGN04 i39
TIGN05 iwv
TIGN16 sli (LI)
TIGN17 spw (precip H2O)
TIGN18 sst (skin temp)

TIPB01 NPP Ch1
TIPB04 NPP Ch4
TIPB05 NPP Ch5
TITB17 AMSU TPW
TITB29 Blended rain rate
TITB61 POES vis
TITB63 POES 3.74μ
TITB64 POES 11μ

eastCONUS
TIGE01 vis
TIGE02 i11

TIGE03 i12 (12μ from GOES W
during eclipse)

TIGE04 i39
TIGE05 iwv
TIGE06 i12 (13μ)
TITE61 POES vis
TITE63 POES 3.74μ
TITE64 POES 11μ

northern hemi
TIGF01 vis
TIGF02 i11
TIGF03 i12
TIGF04 i39
TIGF05 iwv

Pacific
TIGI43 i14
TIGI48 i11
TIGI50 wv74
TIGI51 wv70
TIGI52 wv65
TIGI55 i45
TIGI57 i40
TIGI59 vis

Hawaii
TIDI17 SSM/I TPW
TIDI29 (retired 19 Jul 12)

TIGN27 scp (cloud top pressure)
TIDN17 SSM/I TPW
TIDN29 (retired 19 Jul 12)
TITN17 AMSU TPW
TITN29 Blended rain rate

Puerto Rico
TIGP01 vis (Mercator - regional)
TIGP02 i11
TIGP04 i39
TIGP05 iwv
TIGP06 i12 (13μ)

TIGQ01 vis (polar stereo -
national("prBig"))

TIGQ02 i11
TIGQ05 iwv
TIDQ17 SSM/I TPW
TIDQ29 (retired 19 Jul 12)
TITQ17 AMSU TPW
TITQ29 Blended rain rate
TITQ61 POES vis
TITQ63 POES 3.74μ
TITQ64 POES 11μ

Atlantic
TIGQ43 i14
TIGQ48 i11
TIGQ50 wv74
TIGQ51 wv70
TIGQ52 wv65
TIGQ55 i45
TIGQ57 i40
TIGQ59 vis

westCONUS
TICW40 low cloud base
TIGW01 vis
TIGW02 i11
TIGW03 i12
TIGW04 i39

TITI17 AMSU TPW
TITI29 Blended rain rate
TITI61 POES vis
TITI63 POES 3.74μ
TITI64 POES 11μ

TIGW05 iwv

TIGW06 i12 (13μ from GOES E during
eclipse)

TITW61 POES vis
TITW63 POES 3.74μ
TITW64 POES 11μ

westCONUS sounder images
TIGW43 i14
TIGW48 i11
TIGW50 wv74
TIGW51 wv70
TIGW52 wv65
TIGW55 i45
TIGW57 i40
TIGW59 vis

More information on satellite sectors, including mapping and geographic coverage, is available
on the NOAAPORT User's Page and in the AWIPS-NESDIS ICD (PDF).

Radar ingest
Radar products come from the ORPG box, via the ORPGCommsMgr process. For alps and a2dp,
the data flow is wideband raw data via LDM from GSD's Central Facility to awipsorpg1, where
products are generated then sent to dx2. fslc connects to BOU's ORPG over the WAN. Note:
After ORPG 9 was installed at BOU, our connection caused them problems. Evidently, ORPG 9
cares that there are two connections from the same PUP. (Since we run fslc with a BOU
localization, it was using the BOU setting. We're now using the FSL number in a customFiles
version of pupId.txt, and all is copasetic.)

Files are stored temporarily in $FXA_DATA/radar/raw and /text. Files in /raw are moved by
RadarStorage to the appropriate product directories, e.g., /kftg/Z/ or V/. The text/ files are
processed by the RadarTextDecoder process; output goes to the text database (e.g.,
WSRVWPFTG). We have had problems occasionally on fsld/alps where each local product
caused a 3s timeout while trying to connect to MHS. We have mhs defined as an alias for dx1 to
prevent this. Another work-around is to set MHS_SERVER to localhost in ipc.config.

A comms status file is maintained in /data/fxa/workFiles/wfoApi.StateInfo (so named for
historical reasons). Every time a connection is received from an ORPGCommsMgr process,
information about the radar and the process is recorded. The entries include radar ID and name,
max number of products, ORPGCommsMgr 'target string,' current VCP, operations mode, scan
interval, connection state (1=connected), and 'firstGsm' (1 when started, then changes to 0 after

http://weather.gov/noaaport/html/icdtb48e.html
http://www.nws.noaa.gov/noaaport/document/icd_ch4.pdf

the first GSM product is received). (This information can be gleaned from
ipc/radar/RadarServerClient.C.)

The ORPGCommsMgr not only receives data from the ORPG, but is also responsible for
sending data out on the WAN. Whenever ORPGCommsMgr is stopped (or if the line goes
down), the connection state tag is changed from 1 to 0 in wfoApi.StateInfo. As long as this is set
to 1, then RadarStorage will not store SBN-received products for the radar in question. (Though
I've not seen it, I'm told that wfoApi.StateInfo can have multiple lines.)

On dx2, a cron job runs $FXA_HOME/bin/restartRadar about every four minutes, checking
whether the ingest (ORPGCommsMgr) is up and starting it if necessary. Data come from host
rpg-kftg. (restartRadar gets the port number out of ~fxa/data/orgpDedicated.txt, then executes
ORPGCommsMgr.)

Radar ingest processes also include the RadarServer and the DataController/RadarStorage pair.
The former communicates via the ORPGCommsMgr process with the ORPG, while the latter are
responsible for storing radar products as they are received.

General Status Messages (GSMs) can be used to check on the status of the 88D. This can be
checked from the workstation `radar status' window or the Unit Status Message graphic, the last
entry in the top section of kftg>Graphics> menu. You can also tail -30
$FXA_DATA/workFiles/RADAR_Announcer to see what's what.

Please note that the RadarServer process must be running in order to send the RPS list and get
data. The radar ingest (ORPGCommsMgr) will start but will not stay up if the RadarServer is
down. RadarServer is started as part of startIngest.

If no data to alps/a2dp, check the ingest on awipsorpg1. Log on and become user fxa. cd
orpg_build14.0 and source .cshrc.

First, check to see if LDM is running: proc ldm. You should see a couple of rpc.ldmd processes,
a pqact, and a read_ldm. Check to see if data are coming by using
/usr/local/ldm/bin/ldmadmin watch. You should see CRAFT files coming in every few
seconds. Check /awips/ldm/nexradII/KFTG; read_ldm should be updating a
yyyymmddhhmmss.raw file, again every few seconds.

If LDM is not running, start it with /usr/local/ldm/bin/ldmadmin start. To get radar data,
ldmd.conf includes a line like

request CRAFT
 ^L2.*KFTG
 dc-ldm-radar.fsl.noaa.gov
NEXRAD2 works in place of CRAFT. For multiple radars, use (KFTG|KPUX) form.

As for ORPG, proc fxa should show a host of processes with names like rpgdbm -v and swp -v.

If you see Connection refused messages in the ORPGCommsMgr log, you'll need to restart the
mrpg software on awipsorpg1. As user fxa, cd ~/orpg_build14.0 and source .cshrc. Type
site KFTG to restart the mrpg suite. You can run HCI (see below) to watch what's happening.

Among other things, 'site' stops and starts the mrpg suite. If you just want to stop it, use:

1. mrpg shutdown
2. mrpg cleanup

ORPG configuration notes

From the ORPG home directory on awipsorpg1, cd cfg. comms_link.conf includes settings for
1..6 TCP links, and tcp.conf relates these to ports 4489..4494. We arbitrarily use 4490 (2) on fslc,
4491 (3) on a2dp, and 4493 (5) on alps. The line numbers and connections can be checked in the
HCI Comms display. (See below.)

Access to data from a receiving host (dx2-xxx) is configured in ~fxa/data/orpgDedicated.txt.
Using the TCP port and link numbers noted above, enter the IP address of the host (awipsorpg1
or whatever), and the appropriate radar name and ID, which can be found in
nationalData/radarInfoMaster.txt.

To check on the connections from awipsorpg1, use netstat -a|grep 44 to see the status of
these ports. If ORPGCommsMgr is not running, you should see a LISTEN entry for the port. If it
is running, you'll see two ESTABLISHED entries. A WAIT notation is not a good sign.
Experience suggests you need to stop the ORPGCommsMgr and wait for the port to disappear
(back to just LISTEN), then restart.

cfg/product_generation_tables has the list of products and parameters. You'll need to restart
mrpg after this table has been edited. cfg/site_info.dea also needs to be set up for the radar to be
ingested.

Logs are in $ORPGDIR/logs, but they must be read with lelb_mon <name> (leave off the .log).

ORPG/LDM configuration notes

As noted above, data are delivered via LDM, which runs under user fxa. This includes the
standard set of LDM processes. pqact directs the data files to
/scratch/data/ldm/nexradII/<radar>/, where they are picked up by the read_ldm process started
by the site script. To start LDM, cd /usr/local/ldm/bin, then
ldmadmin start

To support this, /usr/local/ldm/etc/pqact.conf is simple, including

CRAFT ^L2-([^/]*)/(....)/([0-9][0-9][0-9][0-9][0-1][0-9][0-3][0-9][0-2][0-
9][0-5][0-9][0-9][0-9]) FILE /awips/ldm/nexradII/\2/\3.raw

(Don't make the mistake Joe made in Feb/Mar 06, where during debugging of the montana ingest
he enabled both the NEXRAD2 and CRAFT lines in pqact.conf. Both get exercised, resulting in
double storage of the data, which does not play well downstream.)

read_ldm puts the data in resp.0, whence they're read by mrpg. read_ldm writes a standard
ORPG log file, which you can read with lelb_mon read_ldm. It typically logs 300 more
"messages written to LB" every few seconds. At the end of each scan, it does final processing on
and removes the file from /scratch... (A nice feature of read_ldm is that it reads the current
volume's file when started. Thus, we don't have to wait for the beginning of a volume to sync up
and get data.)

Note that 'site' starts up mrpg with -p. Among other things, this creates a new resp.0, thus
requiring a restart of read_ldm. Conveniently, this is built into the script.

ORPG Human-Computer Interface (HCI)

Refer to the EPSS support manual (current version, ORPG 7) for information on HCI. We can
run HCI by following these steps:

• on awipsorpg1, become user fxa and set the ORPG environment as above
• newer X configurations probably won't allow you to export the hci output to your

desktop. I've been using xt1-avs for this purpose, with xhost + awipsorpg1 and then
there's a setenv DISPLAY in the .cshrc

• hci
• Try Status, Products -> Products in DB, Base Data Display.

Snowfall accumulation is reset using HCI. See the EPSS how-to for information. (Note: If you
get a "password data not available" message, run hci_init_config as user v1.14.)

Here's one of those 'may not happen again' items. Perhaps due to work done at kftg, we lost
connection from montana to dx2-fsld/alps. Although the hci display showed the line connected,
there was in fact none. A restart using bin/site.montana was sucessful. After the fact, it was
apparent that the Comms display indicated a problem - Delay showed a high percentage and Rate
was on the order of 700k, vice the normal 2200k or so.

We have installed ORPG 12.2 on awipsorpg2 and awipsorpg1. We currently are using
awipsorpg1 for alps and a2dp radar, and awipsorpg2 for RSA. The code and installation info are
accessible from the NWS WSR-88D CODE Web site.

To get the mrpg suite going on awipsorpg2,

1. sudo su - fxa
2. cd orpg_build13.0
3. source .cshrc
4. site KVBX

http://www.osf.noaa.gov/osteam/epss/epss_index.htm
http://www.osf.noaa.gov/osteam/epss/rpg_init_options.htm
http://www.weather.gov/code88d/

On awipsorpg1:

1. sudo su - fxa
2. cd orpg_build14.0
3. source .cshrc
4. site KFTG

Again, you can run hci to see what's happening.

To configure for another radar, only a couple of changes are necessary.

1. Make a cfg/site_info.dea.kxxx. Edit the lat/lon/elev/ID using information from
nationalData/radarInfoMaster.txt. (Make sure to use only to .001 precision on the lat/lon -
mrpg won't start if you go to .0001, as in radarInfoMaster.)

2. Link that file to cfg/site_info.dea.
3. Change /usr/local/ldm/etc/ldmd.conf to request the radar data of interest, then restart

LDM.
4. Restart the mrpg suite (site KXXX).

For RSA...

We run the ORPG (Build 13) software on awipsorpg2, under user fxa. The data feed is via LDM
from KVBX.

To get things set up and going...

As user ldm,

• ldmadmin start

As user fxa,

1. cd orpg_build13.0
2. source .cshrc
3. site KRTX

Look at script site. At the bottom is

 read_ldm -a -d $ORPG_HOME/ldm/nexradII/$1 $ORPGDIR/ingest/resp.0 &
 #orpg_client -v $ORPGDIR/ingest/resp.0 &

In the configuration shown, we're using LDM. For direct ingest (such as at the Ranges), one
would swap the commented-out line and issue command "site KVBX".

To enable the LDM ingest, as user fxa, make sure this line in /usr/local/ldm/etc/pqact.conf is
active:

NEXRAD2 ^L2-([^/]*)/(....)/([0-9][0-9][0-9][0-9][0-1][0-9][0-3][0-9][0-
2][0-9][0-5][0-9][0-9][0-9]) FILE /data/orpg/ldm/nexradII/\2/\3.raw

Also, make sure that /data/orpg/ldm/nexradII/KMLB.lbz has 777 permission (and its parent 775).
(fxa is the owner.)

The CRAFT data are compressed Level II files, which ITS brings in from CONDUIT at U.
Maryland. The pqact line above writes them to disk, and read_ldm reads and decompresses the
data, writing output to resp.0, which is where the mrpg suite looks for its data. (Note that
orpg_client puts its data in the same place, as you would expect.)

Level II files are sent directly from the radar to 'wherever,' and are monitored here. This is a
different path from the Level III data (products), which are sent from the ORPG for SBN and
other dissemination. So AWIPS can be receiving data via NOAAPort while the LDM feed isn't
delivering anything, or vice versa. (See the overview of Level II data for more information.)

A few words on RPS lists

When the radar changes VCPs, the RPS list sent is based on
/data/fxa/radar/lists/KFTG.[storm|clear-air].VCPxx. This information is merged with the
appropriate national list, and the resulting list is stored in/data/fxa/radar/lists/KFTG.current. A
user can edit this list, or create a list from scratch, and save it in /data/fxa/rps-lists.
KXXX.current is recalled and sent out whenever a "Connection Up" message is received from
the radar, or whenever a GSM comes in. If the mode, as specified in the GSM, has changed, the
appropriate RPS list gets sent out and is saved in KXXX.current.

The national RPS lists, those containing required products and whose contents are merged with
user requests (in RadarServer, module WanRpsManager.C), are found in
$FXA_NATL_CONFIG_DATA/nationalData/. There are six of these, for clear air and storm
modes, and for X.25 (wfoApi) and TCP (ORPGCommsMgr - LAN) connections, and associated
radars. Names are rps-RPGOP.clear-air, rps-RPGOP.storm, rps-RPGOP-tcp.clear-air, rps-
RPGOP-tcp.storm, rps-assoc.clear-air, and rps-assoc.storm. The choice of which national list to
use is a bit arcane. The essential source of information is portInfo.txt, which includes a max
number of products value. If no LLL-portInfo.txt is supplied (most sites have one), this defaults
to 65 via localization. If the max prods is greater than 50 (a value set in Radar.H, applied in
RadarStatus.C, and used in WanRpsManager::getList), then the -tcp version of the national list is
used. Otherwise, the standard version is used.

SBN Radar

Data for all radars are available on the SBN. Products are stored for the RPGs listed in dx2's
localizationDataSets/xxx/radarsInUse.txt. There are 76 products sent on the SBN. See the NWS
88D/TDWR list [PDF].

LDM ingest

http://weather.noaa.gov/monitor/radar2/
http://weather.noaa.gov/monitor/radar3/
http://www.roc.noaa.gov/WSR88D/Level_II/Level2Info.aspx
http://www.nws.noaa.gov/tg/pdf/noaaport_radar_products.pdf

While most datasets used by D2D are delivered by the SBN or LDAD or generated locally,
NOWrad data are relayed from GSD to ls1-bou via Unidata's Local Data Manager (LDM). LDM
processes include

rpc.ldmd -q /usr/local/ldm/data/ldm.pq /usr/local/ldm/etc/ld
 (1 identically-named child)
 pqact
 pqexpire

LDM files are in /usr/local/ldm. The admin process is bin/ldmadmin. LDM ingest is managed
with ldmadmin start and ldmadmin stop. The control file is etc/ldmd.conf. By default, no log
is written; in order to do so, a line like this must be in /etc/syslog.conf:

local0.debug /usr/local/ldm/logs/ldmd.log
Also for logging and 'ldmadmin newlog' to work, /var/run/syslogd.pid must be world readable
and /usr/local/ldm/bin/hupsyslog must have the suid bit set (chmod u+s)
---s--x--x 1 root 6100 20534 Jan 16 1997
/usr/local/ldm/bin/hupsyslog*

If you can't get LDM working, check to see if syslogd is running. If it's not, as root, run
/usr/sbin/syslogd -D, then try starting LDM again. Another likely possibility is a bad pattern in a
request line. Unfortunately, I don't know the rules. From experience, I can tell you that
"*Graphic.*" is not a winner. I've made other mistakes, but don't recall what. A less likely
possibility is an open socket. With LDM shut down, enter rpcinfo -p. If you see one or more
lines beginning 300029 at the bottom, type sudo rpcinfo -d 300029 5 to remove this open
socket, then startLdm again.

LDMHOME must be defined for ldmadmin to run. In most cases, we run LDM under the fxa
user, and we put the LDMHOME definition in /etc/profile.d/AWIPS.csh and AWIPS.sh. You'll
find this on dx1-alps (and dx2- for failover).

Another possibility is that portmap isn't running. You'll know this if rpcinfo returns an error
message. sudo /usr/sbin/portmap, and you'll probably be in business.

etc/pqact.conf includes lines like this to move the files to where they need to go (using Nowrad
as an example):

FSL3 ^FSL\.CompressedNetCDF\.(.*) FILE -close /data/Incoming/\1

Note that it is very important that the fields are tab-, not space-, delimited! This puts the files in
/data/Incoming, whence LDAD will pull them over to px2. Once there, an entry in LDADinfo.txt
calls a simple script that moves the files to /data/fxa/nowrad/nowradZ.

In order for the NOWrad files to be processed from there, a line in the dx1 fxa crontab must be
uncommented. This is the first one under "Denver/Boulder-specific items" in ingest.crontab.dx1,
below. The second line there should be uncommented, too.

http://esrl.noaa.gov/gsd/eds/fxa/manuals/RT-ops.html%23ds1Cron

GSD LDM info
The LDMs on ls1-fslc and dx1-alps receive NOWrad data from ldmhub1.fsl.noaa.gov. On fslc,
the same cron items need to be enabled as mentioned above, but we use a pqact entry on dx1-
alps to process NOWrad. Also on these machines, we pull in MADIS data from ldm.madis-
data.noaa.gov. On dx1-alps, we use LDM to get MODIS imagery from NWS CRH (contact:
Michael Johnson). (These are processed on px1 via a script controlled by SITEpx1cron.) We also
have a MADIS ingest up on px2-a2dp, via LDAD from awipsorpg2.

To support this, LDM needs to run on awipsorpg2, ls1-fslc, and dx1-alps. (Note that the LDAD
boxes on fslc are called ls2 and ls3, but are accessed by logging in to ls1.)

 awipsorpg2 [fxa] ls1-fslc [ldm] dx1-alps [fxa]

Request

MADIS files of
various sorts from
ldm.madis-
data.noaa.gov

NOWrad from
ldmhub1.fsl.noaa.gov, MADIS
files from ldm.madis-
data.noaa.gov, and CASA radars
from CAPS

NOWrad from
ldmhub1.fsl.noaa.gov, MODIS
from ftp-dmz-198.crh.noaa.gov,
and MADIS files from ldm.madis-
data.noaa.gov

Send ECMWF files to
tcops.fsl.noaa.gov

As outlined in the Radar section, we also run LDM on awipsorpg2 and awipsorpg1 to pull in
local radar.

For the ECMWF item above, we store an extra copy of the grids with a bonus line in
acq_patterns.txt:
GRID ^L.Z.*KWBX /Grid/SBN/rawECHiRes.

These are processed with script Files2LDM.pl run from SITEdx1cron. By checking the date on
the rawECHiRes directory, one can see if files have passed through (at roughly 07Z and 19Z).
On dx1, see /data/logs/fxa/ldm.<yyyyddd>, which logs the files as they are put in the LDM
queue.

Now for a few words about Nowrad. We bring Nowrad files in from the Central Facility using
LDM, as noted here, and they're processed on dx1 (using a script called by pqact). We had an
occasion where our LDM was down for a while, but were able to recover the files. Copy files
from /public/data/radar/fsl-conus/nowrad/netcdf/ to /data/fxa/nowrad/nowradZ, compress them
(compress *), do a batch rename (

foreach filen (07*)
foreach? mv $filen ConusNowrad.${filen}
foreach? end

), then run the conversion script that is (unused) in SITEdx1cron:
(cd ${FXA_HOME}/xfer/nowrad; ./xferNowrad_v3.com ${FXA_HOME}/xfer/nowrad)

http://esrl.noaa.gov/gsd/eds/fxa/manuals/RT-ops.html%23Radar

And by the way, all xferNowrad does is reformat the netCDF files received from /public into
D2D-compatible form - it's a CDL change.

Other ingest
We pull in various other datasets via crons...

The 5km WRF and HMT sectors come in via wharton cron on dx4-alps. Linda's 5km WRF script
runs 4x per day, and takes about 20 minutes to pull files from Jet and create a netCDF file in
/data/fxa/Grid/FSL/netCDF/LAPS_Grid/WRF-5KM/. (As of this update, the HMT sectors are
not being ingested.)

On dx1-alps, we include in SITEdx1cron lines to acquire 13km RUC and FIM. This crontab also
includes acquisition of global satellite imagery, hot spot grids, and high-res global GFS, plus
several sets of ensembles.

Text ingest and database
The text database system is also managed separately from the general startIngest and stopIngest.
Text products are stored in PostgreSQL databases.

The database runs under user postgres. A number of processes are normally running on dx1,
which you can see in a proc post listing. The main process consumes the most CPU time, with
the postgres: writer using a fair amount, as well.

The main thing to do for postgres is to check the log (/var/log/postgres). Database problems
should be referred to NCF for resolution.

The workstation uses three processes to communicate with the text database, to wit:

 $FXA_HOME/bin/TextDB_Server -Write
 $FXA_HOME/bin/TextDB_Server -Read
 $FXA_HOME/bin/textdb
The first two of these are started and stopped by the startTextDB.dx1 and stopTextDB.dx1
scripts. Another script, stopTextNotification, will stop the textNotificationServer (it's started, if
necessary, by startTextDB.px1). It's generally left running. textdb runs as needed to read/write
the database.

Since it's not safe simply to kill the write server, as it may be in the middle of a transaction and
the text database could get corrupted, stopTextDB issues a KILLSERV command to the text
database to let it down gracefully.

If stopTextDB/startTextDB does not clear up text storage/retrieval problems, try restarting
PostgreSQL (on dx1).

1. Shut down the Read and Write servers with stopTextDB.dx1.

2. As root, issue service postgresql stop, then
3. service postgresql start.
4. Use service postgresql status to check that the server is up.
5. As fxa again, bring the Read and Write servers back up with startTextDB.dx1.

Note: When the database is down while the data ingest is running, text messages will queue up
inside the TextDB DataController process. Once the database is back up and accepting messages,
this queue will be processed. It may take a long time to catch up, however. (To see what's being
processed, tail the CollDecoder or StdDecoder logs.) If it's necessary to empty the queue (due to
excessive length), use the "CollDB, StdDB" section of startIngest.dx1 to restart the
DataController - most easily done by using X to copy the lines out of ~fxa/bin/startIngest.dx1).

Text database maintenance

Periodically, it's a good idea to do some database cleanup. There are three vacuumdb runs daily,
but those don't take care of all of the space cleanup. Wayne Martin recommends a monthly full
cleanup, to wit:

1. stopTextDB.dx1
2. as user postgres, /usr/bin/vacuumdb -v --analyze --full -d fxatext
3. as fxa, startTextDB.dx1

There are also some scripts in /home/awipsadm/scripts to check on and maintain the text
database. One handy one is purge-by-time.sh, which you can use if you have some old stuff
hanging around. Another is fxatext-delete.ksh to completely remove an obsolete NNN.

Hydro decoder & database
A SHEF decoder runs on ds1 as part of the hydrology package.
/awips/hydroapps/shefdecode/bin/shefdecode runs under oper, and is started at boot time. If it is
down, you must sudo su - oper, then /awips/hydroapps/shefdecode/bin/start_shefdecode &.
Data are stored in an Informix database, separate from the text database. Other hydro cron jobs
are run (under user oper) to manage the database, to wit:
 01 0,4,8,12,16,20 * * * /awips/hydroapps/whfs/standard/bin/CleanWFO
 27 7 * * * /awips/hydroapps/whfs/standard/bin/run_db_cleanup
 37 7 * * * /awips/hydroapps/whfs/standard/bin/run_db_tuneup
 15 * * * * /awips/hydroapps/whfs/standard/bin/run_precip_accum
And as fxa
 3,8,13,18,23,28,33,38,43,48,53,58 * * * * csh -c
 '${FXA_HOME}/bin/moveProds.ksh /data/fxa/ispan/text/hydro/
 /awips/hydroapps/whfs/local/data/shef_input/'
Decoder logs are found in /awips/hydroapps/whfs/local/data/log/shef/decoder.

Interprocess communication
Messages are passed between processes using TCP sockets. The software runs essentially
flawlessly and requires no maintenance.

https://www.ops1.nws.noaa.gov/Secure/awipsnew/install/SvrWxHealthOB82.pdf

Cron
Many fxa activities are managed by cron. For workstations, the currently-running cron lists are
found in /var/spool/cron/crontabs/<username>. Servers are set up as heartbeat pairs - dx1/dx2,
dx3/dx4, and px1/px2. Crons are managed by the heartbeat system. The crontabs are all owned
by root, with all component items merged into one host-specific file, in /etc/ha.d/cron.d. When
the package is activated, the appropriate crontab is placed in /etc/cron.d. Information on these
files is shown below.

host cron.d file our tree file
dx1 dx1cron ingest.crontab.dx1
dx2 dx2cron ingest.crontab.dx2
dx3 dx3cron ingest.crontab.dx3
dx4 dx4cron ingest.crontab.dx4
px1 px1cron ingest.crontab.px1
px2 px2cron ingest.crontab.px2

Local crontab additions may be put in files SITE<host>cron, which are also kept in
/etc/ha.d/cron.d and /etc/cron.d. For manual update, modify the file(s) in /etc/cron.d. Note that
duplicate copies of both <host>cron and SITE<host>cron need to be kept on both hosts in a pair,
in /etc/ha.d/cron.d so they'll be available during failover.

The fxa lists are shown here:

(Can you say "outdated"?)

ingest.crontab.ds1

Crontab file for starting transient data ingest processes.

This file, ingest.crontab.ds1, contains the items that run on the primary
data server. It is to be installed as
ds1:/etc/cmcluster/crons/fxa/ds1.dsswap
ds2:/etc/cmcluster/crons/fxa/ds2.dsswap
under root ownership.

Any entry that needs to use ${FXA_HOME} or ${FXA_DATA} should use "csh -c"
to run the command. The command and any output redirection to a file must
all be include in single quotes after the "-c". The output redirection
will then be done by the csh so it must use csh syntax.

#--

Break ingest log and announcer files daily
0 0 * * * csh -c '${FXA_HOME}/bin/breakLogIngest >&!
${LOG_DIR}/breakLogIngest.log'

0 0 * * * csh -c '${FXA_HOME}/bin/breakAnnouncementFiles >&!
${LOG_DIR}/breakAnnouncementFiles.log'

Run scour daily to clean up log files and a few items not hit by
master.purge.
30 0 * * * csh -c '${FXA_HOME}/bin/startScour >&! ${LOG_DIR}/startScour.log'

Radar ingest
2,6,11,14,18,22,26,31,35,39,43,47,51,56 * * * * csh -c
'${FXA_HOME}/bin/restartRadar' > /dev/null 2>&1

Process monitor/CPU monitor start-up
36 * * * * csh -c '${FXA_HOME}/bin/DS_startProcMon.sh'
37 * * * * /awips/fxa/bin/startCtrlCpu.sh

Break ctrlCpu log daily
0 0 * * * csh -c '${FXA_HOME}/bin/breakLogCtrlCpu >&!
${LOG_DIR}/breakLogCtrlCpu.log'

Data Monitor Scripts
0,10,20,30,40,50 * * * * /awips/fxa/bin/diskUsage.pl -c
/awips/fxa/data/disk.cfg -o diskUsage_data.html

Data archiving and archive purging
55 * * * * csh -c '${FXA_HOME}/bin/legalArchiver.sh'

Get the RUC model data for the tstorm decoder (MDL)
20,40 0,3,6,9,12,15,18,21 * * * csh -c '${FXA_HOME}/bin/getModelData >&
${LOG_DIR}/getModelData.log'

Scheduled radar distribution
25,55 * * * * csh -c '${FXA_HOME}/bin/startRadarDist.pl RCM >& /dev/null'
17,34 * * * * csh -c '${FXA_HOME}/bin/startRadarDist.pl THP >& /dev/null'

Scheduled radar requests to the RadarServer
#23,53 * * * * csh -c '${FXA_HOME}/bin/sendOTR.sh 74 >& /dev/null'
#15 * * * * csh -c '${FXA_HOME}/bin/sendOTR.sh 79 >& /dev/null'
#35 * * * * csh -c '${FXA_HOME}/bin/waitUpTo.pl 600 >& /dev/null' ; csh -c
'${FXA_HOME}/bin/sendOTR.sh 136 >& /dev/null'
#5 0,8,16 * * * csh -c '${FXA_HOME}/bin/waitUpTo.pl 600 >& /dev/null' ; csh -
c '${FXA_HOME}/bin/sendOTR.sh 152 >& /dev/null'
#1 0,6,12,18 * * * csh -c '${FXA_HOME}/bin/sendOTR.cfc.sh >& /dev/null'

send radar precipitation bias table data to ORPG via the RadarServer
#26,46 * * * * csh -c '${FXA_HOME}/bin/sendEnvData.pl'

Watch to make sure nwrTrans.pl has not died, and restart if has
* * * * * /awips/fxa/bin/nwrWatchDog.sh > /dev/null 2>&1
ingest.crontab.dx1
Crontab file for starting dx1apps data ingest processes for fxa.

MODIFICATION HISTORY:

NAME DATE CHANGES
M. Huang 05/26/05 - Moved NWWSKeepAliveMsg to DX (DR_16193)
M. Huang 05/27/05 - Moved mhs-data.purge into DX (DR_16194)

#--
-

Any entry that needs to use ${FXA_HOME} or ${FXA_DATA} should use "csh -c"
to run the command. The command and any output redirection to a file must
all be include in single quotes after the "-c". The output redirection
will then be done by the csh so it must use csh syntax.

INGEST SCRIPTS
ACARS profiles
0,10,20,30,40,50 * * * * csh -c '${FXA_HOME}/bin/startAcarsProfiles.sh >&!
${LOG_DIR}/acarsProfiles.log'

Scheduled radar requests to the RadarServer
RCM
23,53 * * * * csh -c '${FXA_HOME}/bin/sendOTR.sh 74 >& /dev/null'
THP
15 * * * * csh -c '${FXA_HOME}/bin/sendOTR.sh 79 >& /dev/null'
SO
35 * * * * csh -c '${FXA_HOME}/bin/waitUpTo.pl 600 >& /dev/null' ; csh -c
'${FXA_HOME}/bin/sendOTR.sh 136 >& /dev/null'
RSS
5 0,8,16 * * * csh -c '${FXA_HOME}/bin/waitUpTo.pl 600 >& /dev/null' ; csh -c
'${FXA_HOME}/bin/sendOTR.sh 152 >& /dev/null'
CFC
1 0,6,12,18 * * * csh -c '${FXA_HOME}/bin/sendOTR.cfc.sh >& /dev/null'
NWWSKeepAliveMsg - test uplink status
13,28,43,58 * * * * csh -c '${FXA_HOME}/bin/NWWSKeepAliveMsg >&
${LOG_DIR}/nwwsKeepAlive.log'

send radar precipitation bias table data to ORPG via the RadarServer
26,46 * * * * csh -c '${FXA_HOME}/bin/sendEnvData.pl'

MONITOR SCRIPTS
Process Monitor start-up
0,10,20,30,40,50 * * * * csh -c '${FXA_HOME}/bin/DX_startProcMon.sh'

Disk usage monitor
0,10,20,30,40,50 * * * * csh -c '${FXA_HOME}/bin/diskUsage.pl -c
${FXA_HOME}/data/disk.cfg -o ${FXA_HOME}/data/diskUsage_data.html'

CtrlCpu (CPU monitor) start-up
0,10,20,30,40,50 * * * * csh -c '${FXA_HOME}/bin/startCtrlCpu.sh'

Purge MHS data once per day.
20 1 * * * csh -c '${FXA_HOME}/bin/mhs-data.purge'

CLEAN-UP ITEMS
Run scour daily to clean up log files and a few items not hit by other
purgers
30 0 * * * csh -c '${FXA_HOME}/bin/startScour >&! ${LOG_DIR}/startScour.log'

Break ingest log files daily
0 0 * * * csh -c '${FXA_HOME}/bin/breakLogIngest >&!
${LOG_DIR}/breakLogIngest.log'

Break ctrlCpu log daily

0 0 * * * csh -c '${FXA_HOME}/bin/breakLogCtrlCpu >&!
${LOG_DIR}/breakLogCtrlCpu.log'

Restart Grib2Decoder every week for memory leak workaround
41 0 * * 0 csh -c '${FXA_HOME}/bin/RestartGribSatDecoders.sh >&
/data/logs/fxa/RestartGribSatDecoders.log'
ingest.crontab.dx2
Crontab file for starting dx2apps data ingest processes for fxa.

Any entry that needs to use ${FXA_HOME} or ${FXA_DATA} should use "csh -c"
to run the command. The command and any output redirection to a file must
all be include in single quotes after the "-c". The output redirection
will then be done by the csh so it must use csh syntax.

Break ingest log files daily
0 0 * * * csh -c '${FXA_HOME}/bin/breakLogIngest >&!
${LOG_DIR}/breakLogIngest.log'

PURGER/SCOUR...
Run scour daily to clean up log files and a few items not hit by
master.purge.
30 0 * * * csh -c '${FXA_HOME}/bin/startScour >&! ${LOG_DIR}/startScour.log'

MONITOR SCRIPTS
Process Monitor start-up script
0,10,20,30,40,50 * * * * csh -c '${FXA_HOME}/bin/DX_startProcMon.sh'

CtrlCpu Monitor start-up script (CPU monitor)
0,10,20,30,40,50 * * * * csh -c '${FXA_HOME}/bin/startCtrlCpu.sh'

Break ctrlCpu log daily
0 0 * * * csh -c '${FXA_HOME}/bin/breakLogCtrlCpu >&!
${LOG_DIR}/breakLogCtrlCpu.log'
ingest.crontab.px1
Crontab file for starting px1apps data ingest processes for fxa.

Any entry that needs to use ${FXA_HOME} or ${FXA_DATA} should use "csh -c"
to run the command. The command and any output redirection to a file must
all be include in single quotes after the "-c". The output redirection
will then be done by the csh so it must use csh syntax.

Break ingest log and announcer files daily
0 0 * * * csh -c '${FXA_HOME}/bin/breakLogIngest >&!
${LOG_DIR}/breakLogIngest.log'

PURGER/SCOUR...
Keep purgeProcess running
*/10 * * * * csh -c '${FXA_HOME}/bin/startPurgeProcess >& /dev/null'

Run the master purger twice hourly, to pare data back to necessary levels.
15,45 * * * * csh -c '${FXA_HOME}/bin/master.purge >&!
${LOG_DIR}/master.purge.log'
Run the radar purger every hour
#30 * * * * csh -c '${FXA_HOME}/bin/fxa-radar.purge >&! ${LOG_DIR}/fxa-
radar.purge'

Run scour daily to clean up log files and a few items not hit by
master.purge.
30 0 * * * csh -c '${FXA_HOME}/bin/startScour >&! ${LOG_DIR}/startScour.log'

MONITOR SCRIPTS
Process monitor/summary monitor/LDAD monitor/CPU monitor start-up
0,10,20,30,40,50 * * * * csh -c '${FXA_HOME}/bin/PX_startProcMon.sh >&!
${LOG_DIR}/procmon.log'
0,10,20,30,40,50 * * * * csh -c '${FXA_HOME}/bin/startProcSum.sh'
0,10,20,30,40,50 * * * * csh -c '${FXA_HOME}/bin/startLdadMon.sh'
0,10,20,30,40,50 * * * * csh -c '${FXA_HOME}/bin/startCtrlCpu.sh'

Break ctrlCpu log daily
0 0 * * * csh -c '${FXA_HOME}/bin/breakLogCtrlCpu >&!
${LOG_DIR}/breakLogCtrlCpu.log'

Data Monitor scripts
4,14,24,34,44,54 * * * * csh -c '${FXA_HOME}/bin/http.pl -c
${FXA_HOME}/data/grid.cfg -o ${FXA_HOME}/data/grid_data.html -h "Grid Data"'
5,15,25,35,45,55 * * * * csh -c '${FXA_HOME}/bin/http.pl -c
${FXA_HOME}/data/graphic.cfg -o ${FXA_HOME}/data/graphic_data.html -h
"Redbook Graphics Products"'
6,16,26,36,46,56 * * * * csh -c '${FXA_HOME}/bin/http.pl -c
${FXA_HOME}/data/radar.cfg -o ${FXA_HOME}/data/radar_data.html -h "Radar
Data"'
7,17,27,37,47,57 * * * * csh -c '${FXA_HOME}/bin/http.pl -c
${FXA_HOME}/data/point.cfg -o ${FXA_HOME}/data/point_data.html -h "Point
Data"'
8,18,28,38,48,58 * * * * csh -c '${FXA_HOME}/bin/http.pl -c
${FXA_HOME}/data/sat.cfg -o ${FXA_HOME}/data/sat_data.html -h "Satellite
Data"'
9,19,29,39,49,59 * * * * csh -c '${FXA_HOME}/bin/http.pl -c
${FXA_HOME}/data/local.cfg -o ${FXA_HOME}/data/local_data.html -h "Local
Data"'

Disk Usage Monitor
0,10,20,30,40,50 * * * * csh -c '${FXA_HOME}/bin/diskUsage.pl -c
${FXA_HOME}/data/disk.cfg -o ${FXA_HOME}/data/diskUsage_data.html'

Data Monitor summary page
3,13,23,33,43,53 * * * * csh -c '${FXA_HOME}/bin/monitorSummary.pl'

Climate (MDL)
morning climate
25 12 * * * csh -c '/awips/adapt/climate/bin/Linux/climate.sh auto am>&
/dev/null'
evening climate
25 22 * * * csh -c '/awips/adapt/climate/bin/Linux/climate.sh auto pm>&
/dev/null'

Run Mtr_scd_dvr at hh:07. Controls the MTR decoder feeding Climate (MDL).
7 * * * * csh -c '/awips/adapt/verification/bin/Linux/launch_AEV.csh
Mtr_scd_dvr >&! ${LOG_DIR}/Mtr_scd_drv.log'

Purge the MTR decoder tables about once a week (MDL).
40 3 1,8,15,22 * * csh -c
'/awips/adapt/verification/bin/Linux/clean_FSS_tables.sh >&! /dev/null'

HWR crons (MDL)
10 * * * * csh -c '/awips/adapt/hwr/bin/hwrnwr -t >&! ${LOG_DIR}/hwrnwr.log'
10 * * * * csh -c '/awips/adapt/hwr/bin/hwrnwws -t >&!
${LOG_DIR}/hwrnwws.log'

MSAS - The MAPS/RUC Surface Assimilation System #
--- #
In PVCS at ldad/src/MSAS/WFOA_scripts/WFOA_MSAS_cron_file

Ingest the NCEP surface grids every 6 hours
Programs = sfcnmc
Valid Times = 00Z 06Z 12Z 18Z
Runtime Z = 05:37, 11:37, 17:37, 23:37
37 5,11,17,23 * * * /bin/csh -c '${FXA_HOME}/ldad/MSAS/WFOA_MSAS_Sfcnmc.run
>&! ${FXA_HOME}/ldad/MSAS/logs/sfcnmclog &' > /dev/null 2>&1

Run the surface cycle every hour at 18 minutes after the hour.
Programs = sfcing sfchqc sfcanl sfcncdf sfcver srcplot
18 * * * * /bin/csh -c '${FXA_HOME}/ldad/MSAS/WFOA_MSAS_Surface.run >&!
${FXA_HOME}/ldad/MSAS/logs/sfclog &' > /dev/null 2>&1

Compile the surface QC stats at the end of the day
Programs = asos
Valid Times = 00Z
Runtime Z = 23:53
53 23 * * * /bin/csh -c '${FXA_HOME}/ldad/MSAS/WFOA_MSAS_Asos.run >&!
${FXA_HOME}/ldad/MSAS/logs/asoslog &' > /dev/null 2>&1

QCMS processing
#################
Run the stage 1 & 2 QC on current hour's data
3,8,13,18,23,28,33,38,43,48,53,58 * * * * /bin/csh -c
'${FXA_HOME}/ldad/MSAS/WFOA_MSAS_QCstage1_2.run >&!
${FXA_HOME}/ldad/MSAS/logs/qcstg1_2log &' > /dev/null 2>&1

Run the stage 1 & 2 QC on previous hour's data
3,8,13,18,23,28,33,38,43,48,53,58 * * * * /bin/csh -c
'${FXA_HOME}/ldad/MSAS/WFOA_MSAS_QCstage1_2_late.run >&!
${FXA_HOME}/ldad/MSAS/logs/qclatelog &' > /dev/null 2>&1

Get yesterday's QC stage 1, 2 & 3 daily summaries
35 0 * * * /bin/csh -c '${FXA_HOME}/ldad/MSAS/WFOA_MSAS_QCday.run >&!
${FXA_HOME}/ldad/MSAS/logs/qcdaylog &' > /dev/null 2>&1

LAPS #
---- #
20 * * * * /usr/local/perl/bin/perl /awips/laps/etc/sched.pl /awips/laps
/data/fxa/laps
03,19,34,49 * * * * /usr/local/perl/bin/perl /awips/laps/etc/LapsRadar.pl
/awips/laps /data/fxa/laps
08,14,23,29,38,45,53,59 * * * * /usr/local/perl/bin/perl
/awips/laps/etc/laps_driver.pl lvd_sat_ingest.exe /awips/laps /data/fxa/laps
ingest.crontab.px2
Crontab file for starting px2apps data ingest processes for fxa.

Any entry that needs to use ${FXA_HOME} or ${FXA_DATA} should use "csh -c"
to run the command. The command and any output redirection to a file must
all be include in single quotes after the "-c". The output redirection
will then be done by the csh so it must use csh syntax.

Run scour daily to clean up log files and other leftovers
30 0 * * * csh -c '${FXA_HOME}/bin/startScour >&! ${LOG_DIR}/startScour.log'

MONITOR SCRIPTS
CPU monitor start-up
0,10,20,30,40,50 * * * * csh -c '${FXA_HOME}/bin/startCtrlCpu.sh'

Break ctrlCpu log daily
0 0 * * * csh -c '${FXA_HOME}/bin/breakLogCtrlCpu >&!
${LOG_DIR}/breakLogCtrlCpu.log'

Disk Usage Monitor Script
0,10,20,30,40,50 * * * * csh -c '${FXA_HOME}/bin/diskUsage.pl -c
${FXA_HOME}/data/disk.cfg -o ${FXA_HOME}/data/diskUsage_data.html'

Data purging
The main purger is purgeProcess, running on px1. See the localization write-up (OB6 version).

Legacy purgers are still run by cron, as noted in the previous section. The first, master.purge,
runs twice an hour on px1. It in turn runs ~fxa/bin/fxa-data.purge, plus an optional, site-supplied,
~fxa/bin/fxa-data-addons.purge. The second, startScour, runs daily at 0030Z on each server. It
starts ~fxa/bin/scour, which reads ~fxa/data/scour.conf.[ds|dx|px] for the list of directories to
clear out. Finally, mhs-data.purge runs daily to clean out files in $MHS_DATA and /data/x400
areas. Logs for these processes are $LOG_DIR/master.purge.log and $LOG_DIR/startScour.log
(no log for the MHS purger). Each is overwritten each run.

Data and process monitoring
The data monitor comprises a series of perl scripts that run via cron on px1. These scripts build
HTML pages that are then copied to $SERVER_DIRECTORY/dataMon/html/, where
SERVER_DIRECTORY is defined in ~fxa/data/dataMon.cfg. (The files are also retrieved by an
http process on isb-websrv, for use in the summary monitor. That runs every ten minutes and is
rsynced to eds-websrv, which is in the DMZ.) Cron entries are as shown above.

The ingest process monitor is started via cron on each server, also as shown above. The
XX_startProcMon.sh script starts ~fxa/bin/ingProcMon.pl, which checks processes in
/data/fxa/data/fxa_monitor/monitorProcesses.txt, and builds an HTML file
(XXX_ingestProcMon.html, in the same directory) showing what's up and down. These are
copied to $FXA_WWW_SERVER_HOST:$SERVER_DIRECTORY/dataMon/, where
SERVER_DIRECTORY is defined in ~fxa/data/dataMon.cfg.

The restart mechanism

http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB6/purgeTables.html

Included at the bottom of the process monitor Web page is a link to bring up a restart menu,
pointing to /awips/fxa/htdocs/cgi-bin/restart-setup.sh. (Note that the link just says /cgi-bin...,
which one would think points to /awips/fxa/htdocs/dataMon/cgi-bin, since .../dataMon is the
document root. However, an alias for /cgi-bin is set in the Web server configuration to point to
~fxa/htdocs/cgi-bin.) This runs ~fxa/bin/restart-ingest.sh on as1, which in turn runs
~fxa/bin/restart-ingest-display.tcl. That finally runs ~fxa/bin/restart-ingest.tcl, which puts up a
menu and takes action based on the user's selection. Except for radar, this tcl script runs
restartIngest.pl, using information from $FXA_DATA/data/fxa-monitor/monitorProcesses.txt to
decide what to do. Specific radar actions depend on the contents of
~fxa/data/localizationDataSets/<siteID>/portInfo.txt on as1, but /awips/fxa/bin/stopRadarProc.pl
and icpReset[01] are used. A write-up of the process is in the header block of ~fxa/bin/restart-
ingest.tcl.

Text workstation
Procedures are stored in $FXA_DATA/scripts/<username>. Each procedure is in a file, and
consists of a list of commands. The usernames are found in ~fxa/data/fxa-users.

Each text Xterm is hosted by its associated workstation. Text `stuff' is stored in
$FXA_DATA/textWSwork/xtn-bou:0. Subdirectories include saved (copies of all products that
have been created on this station), and journals (in-progress editing, saved for crash recovery),
and archived (permanent copies of products sent out over the WAN. Also here is
textAlarmAlertProducts.txt, the list of alarm/alert products specific to this workstation. (Site-
wide products are in ~fxa/data/textAlarmAlertProducts.txt.)

Log files are in $LOG_DIR/display/xtn-bou:0/yymmdd/textWish<pid>. Logs exist for the text
windows, but not the parent textWS.tcl process.

If an Xterm gets mis-configured, the title window will come up, but the individual text windows
will not. (You'll get a tcl error when you try to start one.) Press F12 on the keyboard for a second
or two, then select Server. Press the Access Control button (middle button in second panel) `on'
and click OK (upper right). Answer OK in the dialog box, wait for the reset, log in, and you
should be ready to roll.

Local LAPS processing
LAPS (analysis) runs on as2, hourly by cron. In Build 4.3, LAPS is moved onto the new
fxa_local partition (will be a separate disk in 5.0). For now, this link is critical to successful
LAPS runs:

lrwxr-xr-x 1 fxa fxalpha /data/fxa/laps@ -> /data/fxa_local/laps

As noted earlier, four LAPS processes run via cron:

 20 * * * * /usr/local/bin/perl /awips/laps/etc/sched.pl /awips/laps/
/awips/laps/data

 03,19,34,49 * * * * /usr/local/bin/perl /awips/laps/etc/laps_driver.pl
vrc_driver.x /awips/laps /awips/laps/data
 08,14,23,29,38,45,53,59 * * * * /usr/local/bin/perl
/awips/laps/etc/laps_driver.pl lvd_sat_ingest.exe /awips/laps
/awips/laps/data
 22,30 * * * * /usr/local/bin/perl /awips/laps/etc/laps_driver.pl
lsr_driver.exe /awips/laps /awips/laps/data

1. The sched.pl script runs the analysis starting at 20 past the hour. This script runs
processes that ingest various datasets, run the analysis, purge analysis and intermediate
files, and write the results into /data/fxa/Grid/FSL/netCDF/LAPS_Grid/LAPS. Part of
this process is a set of grid notifications, logged in $LOG_DIR//GridNotify*, at about 22
past the hour.
Logfiles for the individual processes (named *.log.<hhmm>) are written to
$LOG_DIR//laps. Analyses and intermediate ingest files are written to
/awips/laps/data/lapsprd/*, in which the `*' refers to the appropriate product subdirectory.
(This is directed via soft link to /data/fxa/lapsprd.)

2. The second entry runs the radar (NOWrad) ingest process for LAPS.
3. The third crontab entry activates the satellite ingest process (called lvd) 8 times an hour

(to accommodate rapid scan operations in many cases, it does nothing, requiring
appropriate satellite files). This puts GOES data on the LAPS grid, creating files in
.../lapsprd/lvd/. Similar to the other processes, logs are written to log/lvd.log.hhmm and
log/lvd.err.hhmm.

4. The final entry ingests satellite sounder data. (None is available on AWIPS, so this is
essentially a no-op.)

The entire LAPS ingest/analysis generally completes in approximately 5 minutes. Run times
longer than 15 minutes or shorter than 2 minutes may indicate a problem. Run completion times
are logged in runtime.log.

LAPS localization is effected by

cd /awips/laps/etc
perl laps_localization > local.out

More information about LAPS run-time details is available in the LAPS README file,
http://laps.noaa.gov/software/README.html.

Other local processing
We collect a bunch of local models and other datasets, mostly from /public, and process them for
experimental use with ALPS. The data pull scripts are managed with dx1-
alps:/etc/cron.d/SITEdx1cron (and its progenitor, /etc/ha.d/cron.d/SITEdx1cron; also should
maintain copy on dx2).

We run a second set of Grib decoders on px1-alps, which is re-/started as part of startIngest.px1.

http://laps.noaa.gov/software/README.html

On occasion, our local MSAS stops working - for a week. Advice from Leon Benjamin is that
this would be related to the reject list, which is automatically regenerated weekly. The problem is
with the autorej.txt file, found on px1 in /awips/ldad/MSAS/fslparms/ (it's a link). Edit autorej.txt
to add a (presumably missing) begin--- line above the end--- . Should fix it.

LDAD processes
LDAD runs partly on px2 ("internal") and partly on ls1 ("external"). The internal part includes
these processes:

/awips/ldad/bin/watchDogInternal.sh
/awips/ldad/bin/listener
/awips/ldad/bin/pollForData.pl
/awips/fxa/bin/CommsRouter LDAD_ROUTER
/awips/fxa/bin/DataController LDAD_ROUTER LdadController.config
 /awips/fxa/bin/routerStoreText
 /awips/fxa/bin/routerShefEncoder
 /awips/fxa/bin/routerStoreNetcdf
 /awips/fxa/bin/routerLdadDecoder
/awips/ldad/bin/LDADdecoder

The listener process gets data through the firewall, storing files in $FXA_DATA/LDAD/Raw.
There is a listener log in /data/logs/ldad, but it's not at all easy to read. (I did on one occasion
find a permissions problem writing the raw data by looking at the listener log.) You'll also see
there a LDADdecoder.log file, which is the log of the current decoder. The watchDogInternal
script checks every 30 seconds to see if the listener and decoder are running. Decoder logs are
also written to the usual spot along with other ingest logs. Those files include PID in the name,
so there are lots of 'em. (The LDADdecoder.log file includes time stamps on the messages, but
those in $LOG_DIR/<date> do not.)

Sometimes, both decoder and listener are up, but no data are coming through. This suggests a
problem on the external side. You can restart the whole LDAD system:

sudo su - ldad
bin/startLDAD.csh

This procedure starts both internal and external processes, and may shake things loose.

The LDAD monitors run on px2 (summary and internal) and ls1 (external, acquisition, and
dissemination). If one of the pages is more than 5 minutes old (time is in one of the config files),
it won't show it. Also, we've seen problems where the obj.conf file on ls1 or px2 had the wrong
data root. It's in /etc/opt/ns-fasttrack/httpd-default.

For the record, here are the steps needed to set passwords for LDAD admin access to the fsli
Web server. I imagine that a quite similar procedure is used for others.

1. go to URL as1-fsli.fsl.noaa.gov:17482 (this is the server administrator)
2. login as root (passwd is the same as on firewalls)

3. click on Default
4. click on Access Control tab
5. click on List Users and make edits as necessary.

Some other stuff
• Graphics procedures are stored in $FXA_DATA/userPrefs/<username>. Each procedure

is in its own directory, which contains an index file and the bundles. The index is a paired
list of bundle file names and descriptive names. The usernames are found in
~fxa/data/fxa-users [note: on each workstation - a link can be used to advantage!].

• An SPCcheck process should be running all the time on each workstation. (When either
display is started, it will check to see if one is running. If both displays are stopped,
SPCcheck will exit after it gets its next SAW arrival/expiration notification, which could
be a while.) SPCcheck maintains two files in ~fxa/data/localizationDataSets/DEN -
svrWatch.txt and torWatch.txt. These are read by WarnGen to put a watch header at the
top of its products. We have had problems with SPCcheck, but believe that the current
version is OK. Should you find SPCcheck missing, you can start one manually (logged in
as awipsusr).

• On occasion, the X server gets to be a memory hog or otherwise needs to be restarted. On
screen :0's keyboard, press ctrl-Pause (ctrl-shift-Break - the key at the right end of the
top row), to kill the X servers. (It's possible to do just :1, but there's not much point in
that, because you have to log out and back in to get back in business, anyway.)

• The printers are known as lp1_bou (the default printer on graphics stations), used for
graphics, and lp2_bou (the default printer on data servers), used for text, as set in
~textdemo/start. Text printing uses ~fxa/bin/textPrint.tcl.

• Here's something that will probably never happen again, but just for the record...

On 13 Oct 98, we received a call that all of the workstations at Denver had "locked up."
What they were seeing was that displays could be zoomed and panned and the pop-up
menus worked, but no menus could be used. Further, logging out of the workstation and
then logging in and starting D2D resulted in the main pane only coming up. Investigation
showed that only 2 IGCs were starting, and that the startup halted when trying to access
the system announcer. (This was seen by adding "all all file all" to displayLogPref.)
Further, we saw that rpc.lockd was using lots of CPU time on as1.

Darien tried all of her tricks, but we were unable to come up with anything that was
causing the problem. The work-around was to run two workstations on ds1, using xhost +
ds1-bou on the workstation and setenv DISPLAY wsn-bou:0.0 on the ds, then running
~fxa/bin/d2d. (We tried to do the same on as1 and as2, but in both cases, the startup hung
as before.)

In the morning, Bob Ladd rebooted both as1 and as2, but the same problem surfaced,
including rpc.lockd's CPU usage.

Finally, Bob found a page in his SMM that he'd extracted from the Build 3 SMM, which
said to check ds1 for rpc.statd. Indeed it was down, and as soon as he started it (using

'/sbin/init.d/nfs.server start' as root), everything was copesetic again. (The hung d2d starts
proceeded to bring up the other IGCs at that point.) Evidently, rpc.lockd on the remote
systems communicates with rpc.statd on the server to effect NFS transfers. If we'd
rebooted ds1, the problem would have been solved, as well, since rpc.statd comes up as
part of the boot process.

What caused rpc.statd to go down remains a mystery.

A similar event occurred 10 Dec 98 on fsli. In that case, the RaobBufrDecoder and
profilerDecoder were not working, either.

• MHS stuff is in /awips/ops. On ds1, in /awips/ops/logs/ds1-bou, msgreq_svr.log logs
outgoing WAN messages. There are some other logs there, too, with similar information.
The file that controls wx wire uplink traffic is /awips/ops/data/mhs/nwwsup_dlist.data.

• APS control files are /data/fxa/workFiles/asyncProdScheduler/aps_line.tbl and
aps_pil.tbl. The former is for line configuration settings and the latter for AFOS ID
routing/priority.

• ICWF "stuff" is in /awips/adapt/ifps/data.
• The CPU monitor needs a bit of care and feeding at bou. Among other things, when the

user clicks on the CPU icon, it runs script as1:/awips/fxa/htdocs/cgi-bin/cpu-setup.sh.
This is a very simple script that works fine when Netscape is run on a workstation - it just
sends its own IP address off to the display script. At bou, however, the HMT runs the
monitor on xt7, which is hosted by as1. We need to send xt7 off to the display, instead of
as1, so there's a special version of the setup script named cpu-setup.sh.bou that needs to
be put in place of the standard. This needs to be done every time an install is done.

• New in 5.1.1 is collective logging. See Gerry's write-up for details.
• Here's another probably-won't-ever-happen-again item.

We couldn't start D2D on lx5-fsli. It appeared to be getting going OK, but then crashed
with this error:
Error in startup script: invalid command name
".imageProp.colorTable1.menu"
Susan found this in the fxaWish log:
FAC-LOCK cannot open /awips/fxa/data/colorMaps.nc: permission denied
and the problem was that colorMaps.nc was not group writable. The first error message
was not very illuminating!

• In 3C405, the projector control GUI runs from xt4-alps. It uses /dev/ttyS0 and /dev/ttyS1.
These need permission set to 666 (which happens during reboot based on
/etc/rc.d/rc.local).

• A glibc error can be generated from startCtrlCpu.sh. This is prevented by setting
MALLOC_CHECK_ to 0 in /etc/profile.d/AWIPS.csh.

Data sources and storage

http://www-sdd.fsl.noaa.gov/%7Emurray/logStream++.html%23CollectiveLoggging

Data are stored on a NAS device, on a volume known to the data ingest software as
$FXA_DATA. Use df or df -h to check on disk space.

Click here for data storage information.

Mike Graf wrote a tutorial on model grid WMO headers back in early 1999. Although the file is
no longer available on the Web, much of the information can be found at
http://www.nws.noaa.gov/tg/awips.php#ccc. There's also a nice summary of NCEP grid
information available.

Here's a table of grid sources for the 2012 Spring Experiment. All crons are run by user fxa.

model cro
n
on

source destination

CONU
S WRF

dod
o

/data/public/data/grids/wrf-laps/conus $FXA_DATA/Grid/FSL/netCDF/CONUS
/WRF

OUN
WRF

dod
o

/data/public/data/grids/wrf-
laps/oun/ewp0

$FXA_DATA/Grid/FSL/netCDF/OUN/W
RF

OUN
LAPS

dod
o

/data/public/data/grids/laps/oun1km $FXA_DATA/Grid/FSL/netCDF/OUN/L
APS

STMA
S

dod
o

/data/public/data/grids/stmas/faa2.5 $FXA_DATA/Grid/FSL/CONUS/stmas

HRRR dx1
-
alps

/data/public/data/fsl/hrrr/conus/wrfprs $FXA_DATA/Grid/FSL/CONUS/sfcHRR
R, hrrr3D, hrrr3Dci

HRRR dx1
-
alps

/data/public/data/fsl/hrrr/conus/wrftwo
_subh

$FXA_DATA/Grid/FSL/CONUS/hrrr15,
hrrr15ci

http://esrl.noaa.gov/gsd/eds/fxa/manuals/dataSources.html
http://www.nws.noaa.gov/tg/awips.php%23ccc
http://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.html
http://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.html

	D2D Operations Info
	v AWIPS OB9.x
	Contents

	Audience
	Support
	Environment
	Overview
	General data ingest
	SBN ingest
	Radar ingest
	ORPG configuration notes
	ORPG/LDM configuration notes
	ORPG Human-Computer Interface (HCI)
	For RSA...
	A few words on RPS lists
	SBN Radar

	LDM ingest
	GSD LDM info
	Other ingest
	Text ingest and database
	Text database maintenance

	Hydro decoder & database
	Interprocess communication
	Cron
	Data purging
	Data and process monitoring
	The restart mechanism
	Text workstation
	Local LAPS processing
	Other local processing
	LDAD processes
	Some other stuff
	Data sources and storage

