
Page 1 6/22/07

Advanced Weather Interactive
Processing System II (AWIPS II)

 AWIPS Development Environment (ADE)
and the

Common AWIPS Visualization
Environment

(CAVE)

 TO9 Developer Briefing - Agenda

September 9, 2008

Page 2 6/22/07

Purpose of Course
 Early developer-level introduction to facilitate cooperative

development
– Trying to evolve project toward an Open Source core
– Everything a part of the baseline and open to improvement

 Early focus on architecture and design patterns
– Get the big picture right, before moving into specific capabilities
– Widen exposure to get more creative input

 Workstations with full installation of ADE 1.0
– Source with Eclipse IDE
– Server Side Run environment
– CAVE visualization
– Javadocs and other documentation

AWP.TRG.SWCTR/TO6.ADE/CAVE-00.01 ADE/CAVE Introduction

Page 3 6/22/07

Training Prerequisites
 Reading materials

– Software Product Improvement Plan

 Software
– Pure Java

 http://java.sun.com/docs/books/tutorial
– CAVE: ECLIPSE IDE Framework & Plug-Ins

 http://www.eclipse.org
 Eclipse RCP

– EDEX: Introductory level of Spring and Mule ESB
 http://mule.codehaus.org

– All: Introductory level of ANT
– All: Introductory level of XML

AWP.TRG.SWCTR/TO6.ADE/CAVE-00.01 ADE/CAVE Introduction

Page 4 6/22/07

Course Content
 Today’s course consists of 5 segments

– A look back to Task Order 8 training
– Three new modules detailing important modifications made in Task

Order 9
– A look ahead to modifications planned for Task Order 10

AWP.TRG.SWCTR/TO6.ADE/CAVE-05.01 ADE/CAVE Module 5: Service Oriented Architecture (SOA)

Page 5 6/22/07

Course Objectives
Module 13: TO9 EDEX Updates

– Describe EDEX platform updates
– Describe critical DR fixes
– Describe new (Python based) scripting engine
– Describe AWIPS II localization changes
– Describe database updates
– Describer Mule service endpoint enhancements
– Describe data decoder enhancements

Module 14: TO9 CAVE Updates
– Describe CAVE platform updates
– Addition of Python interface
– Describe updates to WarnGen templates
– Describe localization updates
– Describe scripting engine updates
– Describe derived parameters updates
– Startup using cave.sh

AWP.TRG.SWCTR/TO6.ADE/CAVE-00.01 ADE/CAVE Introduction

Page 6 6/22/07

Course Objectives (Continued)
Module 15: TO9 AWIPS II ADE Updates

– Describe updates to platform
– Describe updates to installers
– Creation of flow-tags for system installation

AWP.TRG.SWCTR/TO6.ADE/CAVE-00.01 ADE/CAVE Introduction

Page 7 6/22/07

TO 8 Look Back

Page 8 6/22/07

TO 8 Training Material Additions/Corrections

 Updated training materials
– Launching CAVE from the Baseline.ppt – incorrect Eclipse plug-in

identified in the TO 8 training materials.

 Supplementary materials
– AWIPS II EDEX DB Purge Scripts.doc – contains sample scripts for

manually purging EDEX database
– Briefing questions.doc – written answers to questions submitted prior to

TO 8 training.
– Build Shell Scripts.doc – shell scripts that can help simplify building and

deploying EDEX
– Useful Developer Tools.doc – descriptions of tools used by EDEX

developers

Page 9 6/22/07

Questions?

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

Page 10 6/22/07

Module 13 – TO 9 EDEX Updates

Page 11 6/22/07

Advanced Weather Interactive
Processing System II (AWIPS II)

 AWIPS Development Environment (ADE)
and the

Common AWIPS Visualization
Environment

(CAVE)

 Module 13: EDEX Updates for TO 9

September 9, 2008

Page 12 6/22/07

Objectives
 Upon completion of the module, the student will understand

the modifications to the EDEX architecture that were
implemented in AWIPS II TO 9

Page 13 6/22/07

Topics
 Platform Updates for TO 9
 Memory leak fixed, other DR's
 Addition of Python scripting engine
 EDEX localization changes
 Database Updates
 Endpoint enhancements
 Decoder enhancements

Page 14 6/22/07

Platform Updates

Page 15 6/22/07

Platform Updates - Java
 Update:

– Java has been updated to Java 1.6.0_05 (from 1.6.0_01)

 Rational:
– Latest Java Version available at the appropriate time in the TO,

contains latest Java bug fixes and enhancements

 Impacts:
– Required update of several support packages

 Install:
– packaged with AWIPS II Installers

Page 16 6/22/07

Platform Updates - PostgeSQL
 Update:

– Postgres has been updated to PostgreSQL 8.3.0

 Rational:
– Latest Version available at the appropriate time in the TO, contains

latest bug fixes and enhancements

 Impacts:
– Minimal changes required – will need a need version of pgAdmin III

 Install:
– packaged with AWIPS II Installers

Page 17 6/22/07

Questions?

Page 18 6/22/07

Critical Fixes

Page 19 6/22/07

AWIPS II Problem Fixes
 The TO 8 version of EDEX shipped with a major memory

leak. This leak has been corrected – TO 9 EDEX has much
more stable memory utilization

 The TO 9 release includes a number of DR fixes. This
include fixes to TTR 1, TTR 34, TTR 39, TTR 47, TTR 48 and
TTR 113
– This list includes both CAVE and EDEX fixes

Page 20 6/22/07

Questions?

Page 21 6/22/07

Scripting Enhancements

Page 22 6/22/07

Scripting Enhancements
 In TO 6, the EDEX µEngine was converted from an XML

based language to JavaScript
– Information on why the change was made is included in the updated

training package (Module 3) delivered with TO8.
– Module 3 also includes

 information on writing µEngine tasks in Java
 writing µEngine scripts in JavaScript, including the preferred tri-tiered

approach to µEngine scripts

 In TO 9, AWIPS II scripting has been expanded to add
scripting capability in Python

Page 23 6/22/07

Why Python?
 Python is a familiar scripting language within NWS
 We first looked at incorporating Python like scripting in TO 6.

– The pre-TO 6 µEngine had some capability to run scripts written in
Jython, which is an all Java implementation of Python
 There were performance problems with Jython

 When we decided to rewrite (and simplify) the µEngine in TO
6, we looked at using Jython and JavaScript as replacement
languages
– Jython was a promising replacement, but suffered from lack of

community support
– We were unable to find a bridge between Java and Python
– JavaScript (Rhino) is a standard embedded scripting language for Java

Page 24 6/22/07

Why Python?
 We decided to convert the µEngine to JavaScript

– This enabled an extreme simplification of µEngine tasks

 We also created a tri-tiered model for µEngine scripts
– This enables client applications to efficiently auto generate µEngine

scripts
– Both CAVE and the µEngine test driver use this capability

 As we looked at implementing Derived Parameters for CAVE
in TO 9
– it became evident that the current µEngine (using JavaScript) would

need require porting Python code to Java (as µEngine tasks)
– Among the implications: accuracy of algorithms ported from Python to

Java

Page 25 6/22/07

Why Python?
 The decision was made to again look for a bridge between

Java and Python
– A product called JEP (Java Embedded Python) was identified as such a

bridge
 JEP allows:

– Java to run Python scripts, and
– Python scripts to utilize Java objects

 As a result, we were able to create a Python based µEngine
that
– supports the tri-tiered architecture to µEngine introduced in TO 6, and
– is able to utilize µEngine tasks written for that architecture

 EDEX now supports scripting in both JavaScript and Python
– µEngine written for TO 8 EDEX will still work

Page 26 6/22/07

More on JEP
 From the Java Embedded Python web site:

– “Jepp embeds CPython in Java. It is safe to use in a heavily threaded
environment, it is quite fast and its stability is a main feature and goal.”

 AWIPS II includes a custom version of JEP that includes
better exception handling between Java and Python.
– always use the JEP jar from the AWIPS II baseline
– source code is available in the AWIPS II baseline
– Once inside JEP, any exception are re-cast to a JepException.

 Stack traces are included

 both CAVE and EDEX require an environment variable
– LD_PRELOAD – normally set by the installer and startup scripts

Page 27 6/22/07

Python Benefits
 Speed: Python scripts run faster then JavaScript, in some

cases faster than Java
 Familiarity: Python is widely used within the NWS
 Reuse: the same scripts can be used by µEngine, GFE

derived parameters, and GFE tools
 Reuse: can import Python modules
 Reuse: (with JEP) can import Java classes

Page 28 6/22/07

Java/Python Bridge Issues
 Java classes are usable from inside Python

– existing µEngine tasks can be utilized, generally without modification

 A Java class constructor can’t take a Java array as an
argument
– you can pass the array as an object and cast it to an array
– you can use a setter to set the array into the object after it has been

constructed

 Java can’t generally handle Python objects
– Java can handle Python primitives and strings
– Java objects can be passed in and out of the Java/Python interface

Page 29 6/22/07

Java/Python Bridge Issues
 Java can’t handle Python objects; specifically

– Problem: a Python list can’t be passed to Java
 in Python, a list is a resizable array of object references
 the comparable structure in Java is the ArrayList

– Solution: create and populate a Java ArrayList in Python and pass it to
the Java object.

 for a Java object obj, calling str(obj) in Python is the same as
calling obj.toString() in Java

Page 30 6/22/07

Python µEngine Scripts in AWIPS II
 In the AWIPS II ADE baseline, Python µEngine scripts are

located in AWIPSEdex/opt/utility/edex_static/base/python
 In the running environment, Python µEngine scripts are

located in awips/edex/opt/data/utility/edex_static/base/python
– requires an EDEX/Mule restart before a new script is available

Page 31 6/22/07

µEngine Scripting:
Three-Tiered Approach
 μEngine supports a three-tiered

approach to script writing
– μEngine tasks are created to perform a

specific function such as querying the
data store

– a μEngine class is created to perform a
general task such as retrieving satellite
imagery.

– A user writes a short script to utilize the
μEngine class.
 the μEngine class and user script are

written in the same language, either
JavaScript or Python

Note: The actual code for creating the

script may be hidden behind a GUI
interface.

Page 32 6/22/07

EDEX Test Driver Support

 In TO 9, the EDEX test driver supports both the new Python µEngine and
existing JScript µEngine.
– Both µEngine scripts call the same underlying Java classes

Select script engine to use

Page 33 6/22/07

Exercise:
The next few slides provide a comparison of the METAR

retrieval scripts used by the EDEX test driver

Page 34 6/22/07

Test Driver Scripts – Top Tier
JavaScript version:

include("BaseRequest.js");

var dataRequest = new
BaseRequest("obs");

dataRequest.setCount(1);

dataRequest.addParameter("reportType",

 "METAR");

dataRequest.addParameter("stationID",

 "AYPY");

dataRequest.addParameter("dataTime",

 "2008-08-11 02:00:00.0");

dataRequest.execute();

Python version:

import BaseRequest

dataRequest =
BaseRequest.BaseRequest("obs")

dataRequest.setCount(1)

dataRequest.addParameter("reportType",

 "METAR")

dataRequest.addParameter("stationID",

 "AYPY")

dataRequest.addParameter("dataTime",

 "2008-08-11 02:00:00.0")

return dataRequest.execute()

Page 35 6/22/07

Data Retrieval Scripts – Middle Tier
 Using Eclipse, look at BaseRequest.js and BaseRequest.py

in the code baseline

 Note:
– Python provides a somewhat cleaner coding style
– Python provides better support for class inheritance

Page 36 6/22/07

Exercise: Hello World Revisited
Problem:
 Implement a “Hello World” script for the Python µEngine

similar to the example from TO8. The script will log a “Hello
World” message to the EDEX log and echo the response to
the client.

Solution:
 The implementation requires three components

 the µEngine task to log the message
 the tier two (library) script to handle the logging echo the message
 the tier one script sent by the client

Page 37 6/22/07

HelloWorld: Tier Three
 Tier three is the Java code

available via the µEngine
– For this example, we add a µEngine

task called SystemLog that extends
ScriptTask
 This task is described in AWIPS II

Training materials
– See the µEngine documentation for

more on task creation

Page 38 6/22/07

HelloWorld: Tier Two

 This script represents a Python class having
– single attribute, message, with a setter
– a single instance method, execute()

 Although a simple class, this general pattern is followed for most tier two
scripts

Page 39 6/22/07

HelloWorld: Tier One
This is a simple client script
 Uses the HelloWorld script to

do most of the work
 Client scripts follow this

general pattern
– import the tier two script
– create a script instance
– set script attributes
– call the execute method.

 Note: this script can auto generated
by the client using a Velocity template

Page 40 6/22/07

HelloWorld: Testing the Script

 µEngine scripts can be tested using the AWIPS Test Driver
– Note that this script will return an error message (“no response”) to the browser

 The EDEX log message is shown below

Page 41 6/22/07

Questions?

Page 42 6/22/07

Apache Velocity

Page 43 6/22/07

Apache Velocity
 Velocity is a template language that is used by CAVE to

facilitate auto generation of client µEngine scripts based on
user inputs

 It is also used by the µEngine test driver generate product
retrieval scripts based on how the user fills out a web form

 Velocity templates are discussed in detail in module 14.

Page 44 6/22/07

Questions?

Page 45 6/22/07

Python outside of the µEngine

Page 46 6/22/07

Python from Java: PythonScript Class
 Both CAVE and EDEX may use

Python without using the µEngine
– For example, CAVE may bridge to

existing Python applications
 the PythonScript class provides

the basic functionality
– may be extended to provide

additional functionality
 Examples of extentions:

– DerivParamScript
– SmartInitScript

Page 47 6/22/07

Python from Java: PythonScript Class
 The PythonScript constructor takes up to 4 arguments

– (required) A the path to a python script to run.
– (optional) A Python include path of directories of modules you'd like to

import
 multiple directories separated by colon (:)
 may be specified as an empty string ("")
 You don't need to include directories already on the python path.

– (optional) A Java ClassLoader to ensure Java classes are accessible
from Python.

– (optional) A list of Strings of Python code to evaluate before the python
script is run.

 Arguments must be included in the order listed
– i.e., to include a class loader, you must specify the Python include path,

which can be empty

Page 48 6/22/07

Python from Java: PythonScript Class
 Other key methods

– getArgumentNames(String,String): returns a String[] containing the
argument names for a method. Throws JepException.

– execute(String, String[], Object[]): returns an Object containing the
results of executing the scripts. Throws JepException.

– dispose(): disposes the underlying JEP instance. Should be called to
release system resources.

See the JavaDoc for additional information.

Page 49 6/22/07

Python from Java: PythonScript Class
 Utilizing PythonScript

– Instantiate PythonScript with the appropriate arguments
– Call getArgumentNames() to get a list of argument names
– Create an Object[] containing the argument values
– Call dispose() to release the system resources

Page 50 6/22/07

Exercise:
Problem:
 Create a Python “Hello World” script and provide code for

executing the script from Java

Solution:
 Implementation involves two components

 The Python script that will print the “Hello World” message
 The Java method to execute the script

Page 51 6/22/07

Hello World: Python From Java
 This is a simple Python script with

a single static method
– you would save the script in a file

named PrintHello.py
 The script simply prints and returns

a “Hello World” message

Page 52 6/22/07

Hello World: Python From Java
 The Java driver:

– creates a PythonScript object
– gets the argument list for myMethod
– sets up the arguments for myMethod
– calls myMethod and captures the

result
– prints the result

– Also note: the call to the dispose()

method is in the finally block to
ensure system resources are
released

Page 53 6/22/07

Questions?

Page 54 6/22/07

EDEX Localization

Page 55 6/22/07

EDEX Localization
 EDEX provides a centralized localization repository for

AWIPS II
– In the baseline, localization files are in trunk/edex/opt/utility/…

 AWIPS II uses the concept of contexts to separate files
depending on where they are used
– Current contexts are

 cave_config: contains CAVE configuration files
 cave_plugin: contains CAVE plug-in based files such as menu definitions
 cave_static: contains CAVE specific static files such as color maps
 edex_static: contains EDEX specific static files such as Python µEngine

scripts
 common_static: contains static files used by both CAVE and EDEX

 Other localization changes are covered in Module 14.

Page 56 6/22/07

Questions?

Page 57 6/22/07

Database Updates

Page 58 6/22/07

Database Updates
 added new package, com.raytheon.edex.db.query, for

performing database queries
– provides a standard API for specifying EDEX database queries

 the use of Data Access Object (DAO) pooling has been

deprecated
– adds a redundant layer on top of the database connection pooling

provided by Hibernate
– code utilizing the DAO pool will continue to work in TO9
– Clients using µEngine are not effected by this change

Page 59 6/22/07

com.raytheon.edex.db.query Package
 There are two classes

– DatabaseQuery:
 encapsulates a database query.
 Provides several constructors and

other methods for building queries
– QueryParam:

 encapsulates a single where clause a
query

 multiple QueryParam objects are
anded

 There are two enums
– QueryOperand:

 defines available operations
 defined in QueryParams

– ResultOrder:
 defines return order of query
 defined in DatabaseQuery

Page 60 6/22/07

Exercise:
Problem:
 Write a query to retrieve the latest 5 METAR records for

KOMA. The data decoder to use is plugin-obs.

Note: this is essentially the same as select * from awips.obs

where reporttype='METAR' and stationid='KOMA' order by
insert_time desc limit 5

Solution:
 Use the TO9 DB API – details on the following slides

Page 61 6/22/07

Solution:
 This code snippet illustrates the

setup of the DatabaseQuery object
– Note that the table is specified when

selecting the DAO to use for the
query and is not shown here

 This illustrates the setup for a
select * from … style query.
– DatabaseQuery can also specify the

return of specific fields.

Page 62 6/22/07

Questions?

Page 63 6/22/07

Endpoint enhancements

Page 64 6/22/07

EDEX Endpoint Enhancements
 Monitoring endpoint
 ability to turn off memory logging for an endpoint
 JMX control of logging by logger

Page 65 6/22/07

Monitoring Endpoint
 TO 9 provides a monitor endpoint

that allows EDEX to periodically
monitor itself and report status to
the system log

 Monitor endpoint is usually
triggered by a timer event

 Monitor endpoint uses plugable
monitors to perform the actual
monitoring

Page 66 6/22/07

Monitoring Endpoint – Class Diagram
 The MonitorSrv extends the EDEX

AbstractMessageSrv class
– Mule uses injection to provide the

endpoint with an IEdexMonitor
instance

 IEdexMonitor is an interface that
specifies basic functionality of the
monitor
– implementations include

EdexDatabaseMonitor and
EdexDirCountMonitor

 Monitors are configured in Mule as
Quartz (timer) driven endpoints

Page 67 6/22/07

Monitoring Endpoint – Configuration

 This is part of a bean specification document for Mule
– This specifies a bean called DirCountMonitor

 This bean will log a count of files in a single directory
 The implementation is EdexDirCountMonitor

– The constructor takes a single argument
 the value, ../../processing, is the directory to monitor

Page 68 6/22/07

Monitoring Endpoint – Configuration

This Mule Configuration document specifies a
monitor endpoint that uses the DirCountMonitor
bean to check and report the size of a directory
every 10 seconds.

Page 69 6/22/07

Memory Status Logging
 Memory status logging is now configurable on EDEX service

endpoints
– the default setting is to log memory usage

 To turn off memory logging for an endpoint, set the “report”
property for the endpoint to “false”
– This is configured for the new Monitor Service endpoints

Page 70 6/22/07

Memory Status Logging
<mule-descriptor name="Awips.Edex.Service.MonitorSrv-processing"
 singleton="true"
 implementation="com.raytheon.edex.services.MonitorSrv">
 <inbound-router>
 <endpoint name="quartz.monitor.Endpoint.processing"
 address="quartz://processing.monitor">
 <properties>
 <property name="cronExpression" value="0/10 * * * * ?"/>
 <property name="payloadClassName"
 value="org.mule.providers.NullPayload" />
 </properties>
 </endpoint>
 </inbound-router>
 <threading-profile maxThreadsActive="1" maxThreadsIdle="1" />
 <properties>
 <container-property name="edexMonitor"
 reference="DirCountMonitor"
 required="true" />
 <property name="report" value="false"/>
 </properties>
</mule-descriptor>

Turn off memory status logging on this endpoint.

Page 71 6/22/07

JMX Control of Logging
 TO9 EDEX enables run-time setting of logging levels via JMX
 Logging levels are determined by “logger”

– generally, for a logger you can use the full class name of the endpoint
 for example, the logger for IngestSrv is com.raytheon.edex.services.IndexSrv

 Logging levels are manipulated using a JMX console
– JConsole, which ships with Sun’s Java, may be used

 Available logging levels are, in order, DEBUG, INFO, WARN,
ERROR, and FATAL

 Log level is set using the log4j.settings bean. The operation
to invoke is setLevel(logger,level)

Page 72 6/22/07

JMX Control of Logging
There are a couple of considerations
 It is possible to set a level for a logger that is never used

– This can occur when an invalid class name is entered, for example not
entering the correct class name

 Loggers are inherited via the Java package hierarchy
– within a single Mule endpoint, multiple loggers may be used
– modifying the logging level of an endpoint may not change the logging

for some of the classes used by that endpoint.
 Example: the Monitoring Endpoint, MonitorSrv uses the

com.raytheon.edex.services based logger. The actual monitors used by this
endpoint utilize com.raytheon.edex.monitors based loggers. Since the
packages are different, changing the logging level for MonitorSrv will not
change the level for the actual loggers.

Page 73 6/22/07

Exercise:
Problem:
 Modify the logging level of IndexSrv to ERROR.

Solution:
 Use JConsole to connect to EDEX and change the logging

level. The logger is com.raytheon.edex.services.IndexSrv.
The level to set is ERROR.

Page 74 6/22/07

Exercise:

 Once JConsole is running and connected to Mule:
– Select the MBeans tab and scroll down to find the log4j entry
– Expand the log4j entry and the settings sub-entry
– Select the operations entry

 Enter the values into the setLevel operation
– enter the logger as p1, the level as p2

 Click the setLevel button to execute the operation

Page 75 6/22/07

Exercise:

 After clicking setLevel, a confirmation message is displayed
– click OK to dismiss the message

Page 76 6/22/07

Questions?

Page 77 6/22/07

Decoder Enhancements

Page 78 6/22/07

Decoder Enhancements
 The main change made to the decoder plug-ins involves the

ability to track products through the system
– When a file is first processed by StagingSrv, it is assigned a unique

identifier
 The file name and unique id are logged
 The unique ID is passed to all subsequent ingest end-points

– In IngestSrv, the unique ID is passed to the actual data decoder
 All logging in IngestSrv includes the unique ID

– Most decoders also use the unique ID when logging messages
– This provides time stamped tracking of files through the entire ingest

chain
 At this time, there is no tracking of files to database insertion available

Page 79 6/22/07

Questions?

Page 80 6/22/07

Wrap-Up

Page 81 6/22/07

Summary
 Covered platform updates for TO 9
 Covered memory leak fixed, other DR's
 Covered addition of Python scripting engine
 Covered EDEX localization changes
 Covered database Updates
 Covered endpoint enhancements
 Covered decoder enhancements

Page 82 6/22/07

Resources
 On the ADE TO9 DVD

– Current code available for examination in the ADE baseline
– JavaDoc documentation available

 Also available
– TO 9 Training Updates
– TO T1 Training Materials

Page 83 6/22/07

Module 14 - TO 9 CAVE Updates

Page 84 6/22/07

Advanced Weather Interactive
Processing System II (AWIPS II)

 AWIPS Development Environment (ADE)
and the

Common AWIPS Visualization
Environment

(CAVE)

 Module 14: Cave Updates for TO9

September 9, 2008

Page 85 6/22/07

Objectives
 Upon completion of the module, the student will understand

the modifications to the CAVE architecture that were
implemented in AWIPS II TO 9

Page 86 6/22/07

Topics
 Platform updates
 Addition of Python interface
 Use of Apache Velocity
 WarnGen Templates
 Localization
 Scripting engine updated
 Derived parameters
 Modified CAVE Startup

Page 87 6/22/07

Platform Updates

Page 88 6/22/07

Platform Updates - Java
 Update:

– Java has been updated to Java 1.6.0_05 (from 1.6.0_01)

 Rational:
– Latest Java Version available at the appropriate time in the TO,

contains latest Java bug fixes and enhancements

 Impacts:
– Required update of several support packages

 Install:
– packaged with AWIPS II Installers

Page 89 6/22/07

Platform Updates - Eclipse
 Update:

– Eclipse has been updated to Version 3.3.2

 Rational:
– Latest Version available at the appropriate time in the TO, contains

latest bug fixes and enhancements

 Impacts:
– Minimal changes required – will be installed by the ADE installer

 Install:
– packaged with AWIPS II ADE Installer

 Important: If you are doing CAVE development, you need to
use the Eclipse that is packaged in the ADE Installer

Page 90 6/22/07

Platform Updates – Other Packages
 Other software has been updated as needed to be

compatible with the platform
– Specific version information is available in the AWIPS II SVD document

(included on the install media)

Page 91 6/22/07

Questions?

Page 92 6/22/07

Addition of Python Editing Perspective

Page 93 6/22/07

Python Editing Perspective
 TO 9 CAVE introduces the Python editing perspective for

editing Smart Tools.
– Smart tools are written in Python

 Not all functionality has been implemented
– You are able to create a smart tool by editing an existing smart tool
– Your smart tool is automatically saved

Page 94 6/22/07

Python Editing Perspective
 The Python Editing Perspective is

accessed via CAVE’s perspective
menu
– click CAVE’s perspective menu for a

list of available perspectives
– Select the Python perspective

Note: The Python perspective is

usually used in conjunction with
the GFE Perspective; although it
can be loaded from other
perspectives, not all functionality is
available unless the GFE
perspective is active.

Perspective Menu

Page 95 6/22/07

Python Editing Perspective

The map display will match the
display from the GFE Perspective.

Page 96 6/22/07

Python Editing Perspective
 The Python editor can be used to

create a new Smart Tool from an
existing Smart Tool

 To create a new Smart Tool
– select New->Smart Tool from the

File menu.

 This will open the MyTool dialog.

Page 97 6/22/07

Python Editing Perspective
 In the MyTool dialog,

– Edit the name for the new tool

– Select the Weather Element for the
new tool

– Click OK to open the Python editor
 clicking Cancel closes MyTool w/o

opening the editor

Page 98 6/22/07

Python Editing Perspective

The editor is launched with the
Smart Tool Python template
loaded and ready to customize.

Page 99 6/22/07

Python Editing Perspective
 To close the Python Editing

Perspective,
– first close the Python editor
– Right click on the Python

perspective tab and select close

Page 100 6/22/07

Python Editing Perspective
 Your new Smart Tool is now

available via the Edit Actions
Dialog in the GFE Perspective.

Edit Actions selector

Newly Created Smart Tool

Page 101 6/22/07

Questions?

Page 102 6/22/07

Use of Apache Velocity

Page 103 6/22/07

Apache Velocity
 From the Apache Velocity web site (velocity.apache.org):

 The Apache Velocity Engine is a free open-source templating engine.

 Velocity permits you to use a simple yet powerful template language to

reference objects defined in Java code. It is written in 100% pure Java
and can be easily embedded into your own applications.

 Velocity provides a standard paradigm for writing product
templates

 AWIPS II currently uses Velocity in two areas:
– generation of client level µEngine scripts
– generation of warnings from templates

Page 104 6/22/07

Velocity Templates
 A velocity template is a boilerplate document written using

the Velocity Template Language (VTL)
 A Velocity template includes

– plain text which is not modified when the template is processed
– comment: a statement for documenting the template

 comments start with ## and finish at the end of the line
– directive: a statement providing direction as the template is processed

 directives can provide specific (runtime) values to the template
 directives can allow flow of control within the template

– reference: a statement providing dynamic content for the template
 references can link to variables defined in Java code

 From the Velocity Web Site

Page 105 6/22/07

Example (from Velocity Web Site)
 This Velocity template generates a simple “Hello World” web

page
<html>
<body>
#set($name = "Velocity")
Hello $name World!
</body>
</html>

Page 106 6/22/07

Example: µEngine Script Generation
CAVE µEngine Script Generation:
 CAVE uses the following Velocity template to generate data retrieval scripts:

#macro(standardSelect $scriptLibrary $maxRecords $scriptMetadata $ignoreDataTime)
import ${scriptLibrary}
#set($pluginName = $scriptMetadata.get("pluginName").constraintValue)
dataRequest = ${scriptLibrary}.${scriptLibrary}("${pluginName}")
dataRequest.setCount(${maxRecords})
#foreach (${key} in ${scriptMetadata.keySet()})
#if(${key})
#if(${key} != "pluginName" && (${key} != "dataTime" || !${ignoreDataTime}))
#set($constraint = $scriptMetadata.get($key))
#if(${constraint.constraintType} == "IN")
dataRequest.addList("${key}", "${constraint.constraintValue}")
#elseif(${constraint.constraintType} == "LIKE")
dataRequest.addParameter("${key}", "${constraint.constraintValue}", "like")
#else
dataRequest.addParameter("${key}", "${constraint.constraintValue}")
#end
#end
#end
#end
return dataRequest.execute()
#end

Note: This actually defines a subroutine which is called
standardSelect. It can be called from another template.

Page 107 6/22/07

Example: µEngine Script Generation
 Assume we have the following values passed in

scriptLibrary = “BaseRequest”
max records = 1
scriptMetadata = {“pluginName”=>”obs”, “reportType”=>”METAR”,

”stationID”=>”AYMO”, “dataTime”=>”2008-08-23 18:00:00.0”}

 Velocity will render this as
import BaseRequest
dataRequest = BaseRequest.BaseRequest("obs")
dataRequest.setCount(1)
dataRequest.addParameter("reportType", "METAR")
dataRequest.addParameter("stationID", "AYMO")
dataRequest.addParameter("dataTime", "2008-08-23 18:00:00.0")
return dataRequest.execute()

Page 108 6/22/07

Questions?

Page 109 6/22/07

WarnGen Templates

Page 110 6/22/07

WarnGen Template Files
 A WarnGen template consists of two files:

– the .cfg file and the .vm file

 The .vm file contains the warning template, which is written in
Velocity’s VTL language

 The .cfg file is an XML file containing values used by CAVE
to populate the WarnGEn tool.

 The files are named template.vm and template.cfg
– for a tornado warning, the files are tornado.vmand tornado.cfg

 More information on writing/modifying WarnGen Templates is included in

AWIPS II WarnGen Templates (included in the ADE release materials as
AWIPS_II_WARNGEN_TEMPLATES.ppt)

Page 111 6/22/07

template.vm
 The template.vm files contain a mix of plain text and VTL

statements. VTL has the capability of interacting with Java
objects which are passed in.

 The plain text in these templates can be modified without
error. Incorrectly modifying VTL statements may cause
errors during warning warning generation, so exercise
caution.

 The .vm files are in the AWIPS II ADE baseline in
build/static/common/cave/etc/warngen

Page 112 6/22/07

Exercise:
 We’ll take a look at tornado.vm at this point.

Page 113 6/22/07

template.cfg
 The template.cfg files contain user-configurable durations

and bullets
– Also contain other internal data which should not be modified.

 Example: To change the list of durations available in
Warngen, add, delete, or modify a <duration/> item
– <duration/> items are in the <durations> tag set.

 Example: To change the list of bullets, add, delete, or
modify a <bullet/> item.
– The <bullet/> items are in the <bullets> tag set
– Additional changes must be made to template.vm as well.

 The curernt .cfg files are in the AWIPS II ADE baseline in
build/static/common/cave/etc/warngen

Page 114 6/22/07

Exercise:
 We’ll take a look at tornado.cfg at this point.

Page 115 6/22/07

Accessing Data in a Template
 Any Java element is accessed by VTL’s variable syntax

– simply enclose the element name in ${}
 Any Java String or primitive type can be accessed directly within the

Warngen template using:
– Syntax: ${myJavaValue}

 Any Java object’s attributes can be accessed using a short cut notation
– Syntax: ${myObject.attribute}
– Example: ${timeFormat.clock}

 Any Method or attribute on a Java object can be accessed using standard
Java-like syntax
– Syntax: ${object.method(${arg1},${arg2}, …)}
– Example: ${dateUtil.format(${pc.time}, ${timeFormat.clock}, ${localtimezone})}

 note that the arguments are also specified using VTL syntax

Page 116 6/22/07

WarnGen Example: Variable Substitution
${officeLong} HAS ISSUED A

 This is an example of variable substitution.
– the value of officeLong is set by the WarnGen code

 It is obtained from the site localization
 For KOAX (Omaha/Valley) it is THE NATIONAL WEATHER

SERVICE IN OMAHA

 When the template is executed, this line will be
expanded
–THE NATIONAL WEATHER SERVICE IN OMAHA HAS

ISSUED A is added to the output.

Page 117 6/22/07

WarnGen Example: #If directive
#if(${mode}=="test" || ${mode}=="practice")
TEST...SEVERE THUNDERSTORM WARNING...TEST
#else
SEVERE THUNDERSTORM WARNING
#end

 This is an example of a an #if directive.
– ${mode} is a value passed in from WarnGen

 If the mode is set to test or practice then
TEST...SEVERE THUNDERSTORM WARNING...TEST
is added to the output
– otherwise “SEVERE THUNDERSTORM WARNING” is added to

the output.

Page 118 6/22/07

WarnGen Example: Nested Control
#if(${list.contains($bullets, "doppler")})
#if(${stormType} == "line")
#set ($report = "NATIONAL WEATHER SERVICE DOPPLER RADAR
INDICATED A LINE OF SEVERE THUNDERSTORMS")

#else
#set ($report = "NATIONAL WEATHER SERVICE DOPPLER RADAR
INDICATED A SEVERE THUNDERSTORM")

#end
#end

Note: bullets is a Java String[] provided by WarnGen
 list.contains() is a utility method for checking the contents of an array

 This example shows a compound control structure.
 The outer #if directive checks the bullets list; if it “doppler”, the inner if

statement is Executed.
– The inner #if directive checks the stormType.

 The value of report is set depending on the value of stormType.
 Note that each #if requires a matching #end.

Page 119 6/22/07

WarnGen Example: Looping
#foreach (${city} in ${pc.points})
if(${city.roundedDistance} < 3)
close enough to not need azran, considered OVER the area
${city.name}##
else
needs azran information
${city.roundedDistance} MILES #direction(${city.roundedAzimuth}) OF

${city.name}##
#end
#end

Note: pc is an object provided by WarnGen; pc.points is an array of objects, each
having a roundedDistance method.

 This example shows a #foreach loop.
– Each iteration of the loop gets an object from the pc.points array.
– Depending on the value returned by the object’s roundDistance method, an appropriate

message is added to the output.
– The #foreach directive is matched by an #end directive.

Note: the lines beginning with two pound symbols (##) is are comments.
 Comments can be used anywhere within a template.
 Comments do not become part of the template output.

Page 120 6/22/07

Questions?

Page 121 6/22/07

Localization

Page 122 6/22/07

CAVE Localization: File locations
 "Static" files (essentially the text or xml files in the 'etc‘

directory) are now loaded on-demand rather than as CAVE
starts.
– provides a quicker startup
– better supports the GFE way of doing business
– keeps things more in sync.

Page 123 6/22/07

CAVE Localization: Coding Changes
 VizApp.getBaseDir() use is now strongly discouraged. The

use of PathManager/LocalizationFile instead is
recommended.

– This interface has far more capability including listing files available at
multiple tiers of localization on the server.

– IPathManager is currently only implemented on the CAVE side, but
the EDEX interface will eventually be developed.

 An InputStream/OutputStream interface for LocalizationFile
is planned in the future to address cache-coherency issues
with storing the file temporarily on the filesystem, for
frequently changed files. This will allow reading files
directly being streamed from the server.

Page 124 6/22/07

Questions?

Page 125 6/22/07

Scripting engine updated

Page 126 6/22/07

CAVE µEngine Script Generator
 CAVE generates client side µEngine scripts to perform

database queries and product retrievals
– The CAVE script generator uses Velocity’s VTL language to specify

script templates
– CAVE uses Python of all generated µEngine scripts

 CAVE uses two VLT template files:
– Both files are located in com.raytheon.viz.core/scriptTemplates

 standardTemplate.vm contains single top level template
 VM_global_library.vm contains macro definitions used by the top level

template

Page 127 6/22/07

Template File: StandardTemplate.vm
The standard template gets all of its behavior from
VM_global_library macros

#if($mode == "select")

#standardSelect($scriptLibrary $maxRecords $scriptMetadata false)

#elseif($mode == "catalog")

#standardCatalog($scriptLibrary $scriptMetadata)

#elseif($mode == "latestTime")

#standardLatestTime($scriptMetadata)

#elseif($mode == "plot")

#standardSelect($scriptLibrary $maxRecords $scriptMetadata true)

#elseif($mode == "dbquery")

#standardDbQuery($scriptMetadata)

#end

Page 128 6/22/07

Calling Velocity from CAVE
 The client code calls ScriptCreator.createScript(), then

passes the script to the µEngine
 When Velocity is called, the following values are available to

the template
– metaData: Java Map containing the request constraints
– maxRecords: the requested number of records
– scriptLibrary: normally contains VM_global_library.vm
– mode: type of query to perform; determines which macro to use to

create the script
 must match one of the conditions in standardTemplate.vm

► current values are select, catalog, latestTime, plot and dbquery
 this maps to the name of the macro from VM_global_library.vm that creates

the script

Page 129 6/22/07

Example: “select” macro
from VM_global_library.vm:
#macro(standardSelect $scriptLibrary $maxRecords $scriptMetadata
$ignoreDataTime)

import ${scriptLibrary}
#set($pluginName = $scriptMetadata.get("pluginName").constraintValue)
dataRequest = ${scriptLibrary}.${scriptLibrary}("${pluginName}")
dataRequest.setCount(${maxRecords})
#foreach (${key} in ${scriptMetadata.keySet()})
#if(${key})
#if(${key} != "pluginName" && (${key} != "dataTime" || !${ignoreDataTime}))
#set($constraint = $scriptMetadata.get($key))
#if(${constraint.constraintType} == "IN")
dataRequest.addList("${key}", "${constraint.constraintValue}")
#elseif(${constraint.constraintType} == "LIKE")
dataRequest.addParameter("${key}", "${constraint.constraintValue}", "like")
#else
dataRequest.addParameter("${key}", "${constraint.constraintValue}")
#end
#end
#end
#end
return dataRequest.execute()
#end

Page 130 6/22/07

Questions?

Page 131 6/22/07

Derived parameters

Page 132 6/22/07

Derived Parameters
 TO 9 CAVE includes a partial implementation of derived

parameters for the Volume Browser
 Derived Parameters are implemented as Python scripts

– Mapping of Volume Browser text to Python script for derived
parameters is defined in BrowserXXXFields.xml, where XXX represents
the desired Volume Browser mode
 Example: BrowserTimeFields.xml

– Each mapping is represented by a <menuButton/> tag set
 Example: the Dewpoint parameter is defined by

<menuButton>
 <buttonText> Dewpoint</buttonText>
 <buttonName> DpT </buttonName>
</menuButton>

Page 133 6/22/07

Derived Parameters
 Each derived parameter is defined in a Python script

– the Python scripts are in build/static/cave/etc/derivParamScripts in the
AWIPS II ADE baseline

 The derived parameter script is named parameter.py
– Example: for the Dewpoint (DpT) derived parameter, the scrip is

contained in DpT.py

 Detailed information on creating derived parameter scripts is
documented in the AWIPS II ADE. The document to read is
DerivedParmScripting.pdf

Page 134 6/22/07

Derived Parameter Scripts
 Derived Parameter Scripts are written in Python

– Scripts have full access to Python
– CAVE requires code conventions to treat as derived parameter
– Interface to/from Java limits types of objects received/returned

 Quick example:
variableId = "Qual"
variableName = 'Air quality'
variableUnit = "ppm"
parameters1 = "|T|RH"
class DerivedParameter():
 def execute1(self,T,RH):
 return T + RH

Page 135 6/22/07

Interface Requirements
 Derived parameter metadata - all required

– variableId - unique identifier for derived parameter
– variableName - short description
– variableUnit - units of measure

 Example:
variableId = "Qual"

variableName = "Air quality"

variableUnit = "ppm"

Page 136 6/22/07

Parameter Specification
 Parameter string(s) - at least one (and currently limited to one)

– Describes parameters and level restrictions
– variable name is "parameters<n>"
– separators are commas and pipes
– commas separate level restrictions
– pipes separate parameters
– level restrictions on derived parameter appear before first pipe
– currently only support composite levels in level restrictions
– currently doesn't support 3D parameters

 Examples:
parameters1='|T'
parameters2="Surface|T,3D|RH"

Page 137 6/22/07

Class Definition
 DerivedParameter class declaration

– Must be named DerivedParameter
– constructor can't take parameters

 Execute<n> method(s)
– named execute<n>
– Instance method of class
– One for every parameters<n> above (currently limited to one)
– Takes "self" + parms from matching parameters<n>
– Can't use *args or **kwargs
– Return value is passed to Java - RESTRICTIONS!

 Example:
def execute1(self,T,RH):
 return T/273.15 + RH

Page 138 6/22/07

Java/Python Interface
 Parameter types from Java:

– scalars
– 1D arrays of numpy float32s
– 2D arrays of numpy float32s
– tuples of 2D arrays of numpy float32s
– 3D arrays will be passed as tuples of 2D arrays (not implemented)

 Things it's OK to return to Java:
– scalars
– arrays of int8s
– arrays of float32s
– simple tuples or lists of any of the above

Page 139 6/22/07

Java/Python Interface
 Things it's definitely NOT OK to return to Java:

– arrays of float64s - numpy default, beware of conversions
– masked arrays
– NaN (not a number) - Java is OK with it, database may not be
– Arrays of complex, not tried but very unlikely to work
– tuples or lists of the above

 Things you might not want to return to Java:
– Arrays of other data sizes, might be converted
– NaN (not a number) - Java is OK with it, database may not be
– strings - works, but how would CAVE display it on a map?
– dictionaries - works, but how would CAVE...

Page 140 6/22/07

Complete Example
@file AV.py

import functions.Vorticity as Vorticity

variableId = "AV"
variableName = "Absolute Vorticity"
variableUnit = "s"

parameters1 = "|uW|vW|coriolis|dx|dy"

AV derived parameter class.
class DerivedParameter():
 "AV derived parameter class."

 ##
 # Calculate wind vorticity.
 #
 # @param Wind: tuple(U,V) of wind velocity.
 # @param coriolis: coriolis value to add to relative vorticity
 # @param dx: spacing between X data points (scalar or array)
 # @param dy: spacing between Y data points (scalar or array)
 # @return: wind vorticity array
 def execute1(self, uW, vW, coriolis, dx, dy):
 "Calculate wind vorticity."
 result = Vorticity.execute(uW, vW, coriolis, dx, dy)
 return result

Page 141 6/22/07

Saving the Script
 Saving the script

– Script name must match variableId, with ".py" extension
– All to same directory (build/eclipse/etc/derivParamScripts)
– Available to CAVE immediately

 Path to derived parameter script directory is
${HOME}/workspace/build/eclipse/etc/derivParamScripts on my machine; not
sure where they'll find it, but find . -maxdepth 10 –name derivParamScripts should
locate it.

Page 142 6/22/07

Questions?

Page 143 6/22/07

Modified CAVE Startup

Page 144 6/22/07

Modified CAVE Startup - Developer
1. From inside Eclipse, locate the

com.raytheon.viz.product.awips project
2. Expand the project (click the triangle)
3. Double click on awips.product

Page 145 6/22/07

Modified CAVE Startup - Developer
After the description page loads:
4. click the features radio button,
5. click on the blue Synchronize

hyperlink, then
6. click on the blue Launch the

Product hyperlink

7. Once this has been done, you
can usually launch CAVE by
clicking the green Run As button
on the Eclipse toolbar.

Page 146 6/22/07

Modified CAVE Startup – Installed User

 Starting in TO 9, CAVE requires specific environmental settings to run
successfully
– The values are provided when CAVE (or the ADE) is installed

 For an installed version of CAVE, these values are provided by the CAVE
startup script, cave.sh
– cave.sh is in the CAVE install directory

 CAVE should be started using this script

Page 147 6/22/07

Modified CAVE Startup – Installed User
To run CAVE following an IzPack

installation:
 open a terminal window
 change directory to the CAVE

install directory
 execute cave.sh

Page 148 6/22/07

Questions?

Page 149 6/22/07

Wrap-Up

Page 150 6/22/07

Summary
 Covered Platform updates
 Covered Addition of Python interface
 Covered Use of Apache Velocity
 Covered WarnGen Templates
 Covered CAVE Localization
 Covered Scripting engine updated
 Covered Derived parameters
 Covered Modified CAVE Startup

Page 151 6/22/07

Resources
 On the ADE TO9 DVD

– Current code available for examination in the ADE baseline
– JavaDoc documentation available

 Also available
– TO 9 Training Updates
– TO T1 Training Materials

 Velocity Template Language (VTL).
– Velocity and the VTL is released under the Apache Jakarta Project.
– http://click.sourceforge.net/docs/velocity/vtl-reference-guide.html

http://click.sourceforge.net/docs/velocity/vtl-reference-guide.html

Page 152 6/22/07

Module 15 – TO 9 ADE Updates

Page 153 6/22/07

Advanced Weather Interactive
Processing System II (AWIPS II)

 AWIPS Development Environment (ADE)
and the

Common AWIPS Visualization
Environment

(CAVE)

 Module 15: AWIPS II ADE Updates for TO9

September 9, 2008

Page 154 6/22/07

Objectives
 Upon completion of this module, the student will understand

modification made to the AWIPS II ADE for TO 9

Page 155 6/22/07

Topics
 ADE platform updates
 AWIPS II installer updates
 System Installation now supported by Flow Tags

Page 156 6/22/07

Platform Updates

Page 157 6/22/07

Platform Updates - Java
 Update:

– Java has been updated to Java 1.6.0_05 (from 1.6.0_01)

 Rational:
– Latest Java Version available at the appropriate time in the TO,

contains latest Java bug fixes and enhancements

 Impacts:
– Required update of several support packages

 Install:
– packaged with AWIPS II Installers

Page 158 6/22/07

Platform Updates - PostgeSQL
 Update:

– Postgres has been updated to PostgreSQL 8.3.0

 Rational:
– Latest Version available at the appropriate time in the TO, contains

latest bug fixes and enhancements

 Impacts:
– Minimal changes required – will need a need version of pgAdmin III

 Install:
– packaged with AWIPS II Installers

Page 159 6/22/07

Platform Updates - Eclipse
 Update:

– Eclipse has been updated to Version 3.3.2

 Rational:
– Latest Version available at the appropriate time in the TO, contains

latest bug fixes and enhancements

 Impacts:
– Minimal changes required – will be installed by the ADE installer

 Install:
– packaged with AWIPS II ADE Installer

Page 160 6/22/07

Platform Updates – Other Packages
 Other software has been updated as needed to be

compatible with the platform
– Specific version information is available in the AWIPS II SVD document

(included on the install media)

Page 161 6/22/07

Questions?

Page 162 6/22/07

AWIPS II Installer Updates

Page 163 6/22/07

Installer Updates – ADE Installer
 AWIPS II ADE installer now includes

– ADE Baseline (EDEX/CAVE source code and JavaDoc)
– ANT 1.70
– Eclipse 3.3.0
– Java JDK 1.6.0u5

 All components except the ADE Baseline are optional
 ADE Installer is designed to coordinate with an existing

EDEX runtime installation
– EDEX development requires an EDEX runtime installation
– ADE installer defaults to standard EDEX locations – may be changed

by the user

Page 164 6/22/07

Installer Updates – EDEX Installer
 EDEX Installer includes updated versions of platform

software
 EDEX installer adds required environment settings to startup

scripts used to run EDEX as a service on Linux servers

Page 165 6/22/07

Installer Updates – CAVE Installer
 CAVE Installer includes updated versions of platform

software
 CAVE is now designed to run using a startup script, cave.sh

– cave.sh sets environment appropriately for running CAVE
– starting CAVE directly will result in runtime errors

Page 166 6/22/07

Questions?

Page 167 6/22/07

AWIPS II Installation Flow Tags

Page 168 6/22/07

AWIPS II Installation Flow Tags
 Starting with TO 10, AWIPS II

Installers are supported with
Installation Flow Tags

 Flow tags consist of detailed
instructions for performing a specific
installation

 Flow Tags are available for
– Cluster based EDEX/CAVE install
– Standalone EDEX/CAVE install
– Developer (ADE) install

 Flow Tags have been tested/refined
in the Omaha lab
– feed back will be appreciated

Page 169 6/22/07

Questions?

Page 170 6/22/07

Wrap-Up

Page 171 6/22/07

Summary
 Discussed ADE platform updates
 Discussed AWIPS II installer updates
 Discussed Flow Tags for system installation

Page 172 6/22/07

Resources
 On the ADE TO9 DVD

– Current code available for examination in the ADE baseline
– JavaDoc documentation available

 Also available
– TO 9 Training Updates
– TO T1 Training Materials

Page 173 6/22/07

TO 10 Look Ahead

Page 174 6/22/07

TO 10 Platform Updates
 Move to Eclipse 3.4 in ADE
 Move to either Mule 1.4.4 or 2.0 for EDEX
 Move to ActiveMQ 5.0
 Update other FOSS packages as needed

Page 175 6/22/07

AWIPS II Baseline Reorganization
 The plan is to reorganize both CAVE and EDEX into a “core”

vs “non-core” as opposed to CAVE vs EDEX organization.
– the intent is to support distributed development
– EDEX may be organized more like CAVE

 EDEX build will include more packaging options

Page 176 6/22/07

More use of Proxy Pattern for Services
 Currently, IndexSrv is configurable as to the data decoder

each service endpoint uses
 The plan is to extend this to other service endpoints
 Potential candidates for this treatment

– ProductSvr
– AutoBldSrv
– PurgeSrv

Page 177 6/22/07

Enhanced µEngine Scripting
 µEngine will become a script runner factory

– Script runners (currently JScript and Python) will conform to a well
defined interface

 Endpoints will use the µEngine factory to obtain an
appropriate script runner
– May be configured at the endpoint or based on data

 Additional script runners can be created

Page 178 6/22/07

Text Database Implementation
 Enhanced implementation of the Text Product decoder

– decoded products are stored
– product notifications are sent to CAVE

 Text Workstation component of CAVE will have more
features added

 Command line interfaces will be provided
– textDB – provides a command line interface to the text database

 existing command line interface will be preserved on the client
 local apps using the existing command line interface will work w/o

modification
– uEngine – provides a command line interface for executing µEngine

scripts
 (new) provides access to uEngine script running

Page 179 6/22/07

CAVE Enhancements
 Implementation of additional legacy features
 Will be looking at improved serialization mechanism (also for

EDEX)
 Will be streamlining the IVisResource interface

– will simplify visualization implementations

Page 180 6/22/07

Database Enhancements
 General reorganization to facilitate operation

– Structure of some tables will change
– more use of primary keys and indices

 Improved Purge
– currently time based, will provide other strategies
– extensible using Proxy Pattern

 DAO Pool will be removed
 Possibly update Hybernate

– leverage Java SE6 style annotations

Page 181 6/22/07

Questions?

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

Page 182 6/22/07

Wrap-Up

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

Page 183 6/22/07

Resources
 On the ADE TO9 DVD

– Current code available for examination in the EDEX baseline
– JavaDoc documentation available

 Also available
– TO 9 Training Updates
– TO T1 Training Materials

AWP.TRG.SWCTR/TO8.ADE/CAVE12.00 ADE/CAVE Module 12: TO8 ADE 1.0 Developer Updates

	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visualization �Environment�(CAVE)�� TO9 Developer Briefing - Agenda ��September 9, 2008
	Purpose of Course
	Training Prerequisites
	Course Content
	Course Objectives
	Course Objectives (Continued)
	TO 8 Look Back
	TO 8 Training Material Additions/Corrections
	Slide Number 9
	Module 13 – TO 9 EDEX Updates
	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visualization �Environment�(CAVE)�� Module 13: EDEX Updates for TO 9 ��September 9, 2008
	Objectives
	Topics
	Platform Updates
	Platform Updates - Java
	Platform Updates - PostgeSQL
	Slide Number 17
	Critical Fixes
	AWIPS II Problem Fixes
	Slide Number 20
	Scripting Enhancements
	Scripting Enhancements
	Why Python?
	Why Python?
	Why Python?
	More on JEP
	Python Benefits
	Java/Python Bridge Issues
	Java/Python Bridge Issues
	Python µEngine Scripts in AWIPS II
	µEngine Scripting: �Three-Tiered Approach
	EDEX Test Driver Support
	Exercise:
	Test Driver Scripts – Top Tier
	Data Retrieval Scripts – Middle Tier
	Exercise: Hello World Revisited
	HelloWorld: Tier Three
	HelloWorld: Tier Two
	HelloWorld: Tier One
	HelloWorld: Testing the Script
	Slide Number 41
	Apache Velocity
	Apache Velocity
	Slide Number 44
	Python outside of the µEngine
	Python from Java: PythonScript Class
	Python from Java: PythonScript Class
	Python from Java: PythonScript Class
	Python from Java: PythonScript Class
	Exercise:
	Hello World: Python From Java
	Hello World: Python From Java
	Slide Number 53
	EDEX Localization
	EDEX Localization
	Slide Number 56
	Database Updates
	Database Updates
	com.raytheon.edex.db.query Package
	Exercise:
	Solution:
	Slide Number 62
	Endpoint enhancements
	EDEX Endpoint Enhancements
	Monitoring Endpoint
	Monitoring Endpoint – Class Diagram
	Monitoring Endpoint – Configuration
	Monitoring Endpoint – Configuration
	Memory Status Logging
	Memory Status Logging
	JMX Control of Logging
	JMX Control of Logging
	Exercise:
	Exercise:
	Exercise:
	Slide Number 76
	�Decoder Enhancements
	Decoder Enhancements
	Slide Number 79
	Slide Number 80
	Summary
	Resources
	Module 14 - TO 9 CAVE Updates
	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visualization �Environment�(CAVE)�� Module 14: Cave Updates for TO9 ��September 9, 2008
	Objectives
	Topics
	Platform Updates
	Platform Updates - Java
	Platform Updates - Eclipse
	Platform Updates – Other Packages
	Slide Number 91
	Addition of Python Editing Perspective
	Python Editing Perspective
	Python Editing Perspective
	Python Editing Perspective
	Python Editing Perspective
	Python Editing Perspective
	Python Editing Perspective
	Python Editing Perspective
	Python Editing Perspective
	Slide Number 101
	Use of Apache Velocity
	Apache Velocity
	Velocity Templates
	Example (from Velocity Web Site)
	Example: µEngine Script Generation
	Example: µEngine Script Generation
	Slide Number 108
	WarnGen Templates
	WarnGen Template Files
	template.vm
	Exercise:
	template.cfg
	Exercise:
	Accessing Data in a Template
	WarnGen Example: Variable Substitution
	WarnGen Example: #If directive
	WarnGen Example: Nested Control
	WarnGen Example: Looping
	Slide Number 120
	Localization
	CAVE Localization: File locations
	CAVE Localization: Coding Changes
	Slide Number 124
	Scripting engine updated
	CAVE µEngine Script Generator
	Template File: StandardTemplate.vm
	Calling Velocity from CAVE
	Example: “select” macro
	Slide Number 130
	Derived parameters
	Derived Parameters
	Derived Parameters
	Derived Parameter Scripts
	Interface Requirements
	Parameter Specification
	Class Definition
	Java/Python Interface
	Java/Python Interface
	Complete Example
	Saving the Script
	Slide Number 142
	Modified CAVE Startup
	Modified CAVE Startup - Developer
	Modified CAVE Startup - Developer
	Modified CAVE Startup – Installed User
	Modified CAVE Startup – Installed User
	Slide Number 148
	Slide Number 149
	Summary
	Resources
	Module 15 – TO 9 ADE Updates
	Advanced Weather Interactive Processing System II (AWIPS II)� AWIPS Development Environment (ADE)�and the�Common AWIPS Visualization �Environment�(CAVE)�� Module 15: AWIPS II ADE Updates for TO9 ��September 9, 2008
	Objectives
	Topics
	Platform Updates
	Platform Updates - Java
	Platform Updates - PostgeSQL
	Platform Updates - Eclipse
	Platform Updates – Other Packages
	Slide Number 161
	AWIPS II Installer Updates
	Installer Updates – ADE Installer
	Installer Updates – EDEX Installer
	Installer Updates – CAVE Installer
	Slide Number 166
	AWIPS II Installation Flow Tags
	AWIPS II Installation Flow Tags
	Slide Number 169
	Slide Number 170
	Summary
	Resources
	TO 10 Look Ahead
	TO 10 Platform Updates
	AWIPS II Baseline Reorganization
	More use of Proxy Pattern for Services
	Enhanced µEngine Scripting
	Text Database Implementation
	CAVE Enhancements
	Database Enhancements
	Slide Number 181
	Slide Number 182
	Resources

