
 

AWIPS II Localization 
26 August 2009 

 
Table of Contents 
 
1 Localization................................................................................................................. 1 

1.1 Localization Overview........................................................................................ 1 
1.2 Localization Data Environment .......................................................................... 2 
1.3 Creating a new Localization ............................................................................... 5 

1.3.1 Creating a new CAVE site location configuration file ............................... 5 
1.3.2 Map Scale Localization............................................................................... 6 
1.3.3 SBN Data Ingest Localization..................................................................... 7 
1.3.4 CAVE Menu Localization ........................................................................... 8 
1.3.5 GFE Localization........................................................................................ 8 
1.3.6 AvnFPS Localization ................................................................................ 10 
1.3.7 WarnGen Localization .............................................................................. 10 
1.3.8 TextDB Trigger Localization .................................................................... 12 
1.3.9 CAVE-D2D Perspective Procedures Localization ................................... 14 
1.3.10 AlertViz (Guardian) Localization ............................................................. 14 
1.3.11 LAPS Localization .................................................................................... 14 
1.3.12 MSAS Localization.................................................................................... 14 
1.3.13 FFMP Localization ................................................................................... 14 
1.3.14 SCAN Localization.................................................................................... 15 
1.3.15 SAFESEAS Localization ........................................................................... 15 
1.3.16 FOG Localization ..................................................................................... 15 
1.3.17 SNOW Localization................................................................................... 15 

2 CAVE  Menu Customization ..................................................................................... 15 
3 Warngen Template Customization ............................................................................ 20 
  

1 Localization 

1.1 Localization Overview 
Localization adapts (e.g. configures) the AWIPS national baseline software to the unique 
data and con-ops requirements of the site.    AWIPS-II performs localization dynamically 
at system startup using data from the localization data environment. 
 
Once the localization data is set up for the primary site and the desired backup sites, the 
default site is then set in environment.xml at: 
 

${EDEX_HOME}/conf/res/site 
 
EDEX needs to be restarted when any changes are made to environment.xml. 
Since, all the server services run within the EDEX, all the EDEX services get restarted.  
Restarting EDEX takes around two minutes.  The sitename element is used to reference 
the primary GFE server configuration files and ingest filters. 



 

 
 

 
 
To change CAVE’s active site, go to CAVE>Preferences>Localization to 
bring up the localization settings dialog. 
 
 

 

1.2 Localization Data Environment 
Localization data are on the EDEX server in the utility data tree.  The site sets up it’s 
localization by adding files to this tree.      AWIPS-II has two major components, EDEX 
and CAVE.  When CAVE starts up, the EDEX service UtilitySrv is contacted to serve 
out the localization data. EDEX, which provides the server functions, only has site level 
localization, since the server capabilities support many users.  Note, however, that GFE 
services within EDEX are designed to support multiple sites simultaneously.  CAVE has 
both site and user level localization configuration files.    The details of this data tree 
which support both EDEX and CAVE are described below. 

Set site identifier for 
CAVE. 

Point to local url of 
EDEX for localization

Click Apply then OK.  
Restart CAVE for 
changes to take effect.

Site identifier for EDEX. 



 

 
 
CAVE plugins that are designed to be configurable have a config.xml file.  The data 
in any config.xml can be overridden by the site.  Likewise, each user can have 
overrides to the site config.xml. The utility service in EDEX moves the site and user 
overrides to the local CAVE instance during CAVE startup. Instructions on where and 
how to set this up are discussed below. 
 
The following CAVE plug-ins are configurable using the base/site/user hierarchical 
localization pattern.   Each listed CAVE plug-in has a unique config.xml which is 
site/user localizable.   The location of the site/user versions are on the EDEX utility data 
tree as follows: 
 
      
${EDEX_HOME}/data/utility/cave_config/site/XXX/plugin_name/ 
${EDEX_HOME}/data/utility/cave_config/user/kkk/plugin_name/ 

 
Where XXX = site name (e.g. OAX) 
      kkkkk = user log in name 

                                   
The base (national controlled) CAVE configuration data are stored directly in the plug-in 
jar files as a config.xml file and are immutable.   The site and user overrides are in 
the utility data tree.   The following CAVE plug ins are configurable: 
 

CAVE plugin_name Configuration File Comment 
com.raytheon.viz.core config.xml  
com.raytheon.viz.warngen config.xml  

ESB Protocal

Log In User Name 
Site Name 
EDEX connection 

Local Persistence Of Current
Active Localization 
Note: caveData is perserved 
between CAVE installations 
 

Localization Data
Store 

At CAVE
Start Up 

Base
Site
User

<<EDEX Service>>
UtilitySrv 

Localization
Hierarchy  

EDEX 



 

com.raytheon.viz.gfe config.xml  
com.raytheon.viz.alertviz config.xml  
com.raytheon..viz.aviation config.xml  
com.raytheon.viz.avnconfig config.xml  
com.raytheon.viz.radar config.xml  
 
 
CAVE general purpose data is localizable at the following location: 
 
${EDEX_HOME}/data/utility/cave_static/site/XXX/{data item}               
${EDEX_HOME}/data/utility/cave_static/user/kkk/{data item} 
 
The general purpose data that can be localized is as follows: 
 

Localizable Data Item Description 
bundles/scales The CAVE map scale XML bundles that control the map 

display. 
colormaps CAVE color table files in XML cmap format (note: a 

python tool “convCT.py” is available in the ADE at 
“build.cave/tools” to convert AWIPS-1 netcdf color tables 
to AWIPS-II XML cmap files. 

gfe/combinations Text formatter combination python files and edit area 
combinations. 

gfe/userPython/textProducts Text formatter override python files. 
menus Menu item overrides to the baseline 
 

 
Common data is localizable at the following location: 
 
${EDEX_HOME}/data/utility/common_static /site/XXX/                       
${EDEX_HOME}/data/utility/common_static/user/kkkkk/  
 
The following data items can be localized in the common static tree: 
 

Localizable Data Item Description 
editAreaGroups GFE text files 
editAreas GFE edit areas in new XML format  (Note: these files are 

created automatically  from ERSI shape files) 
hydro Apps_defaults AWIPS-1 file of tokens that control 

applications 
hydro/hydroapps Various AWIPS-1 geo and basin data files 
radar radarsInUse.txt file for the RadarServer process 
testdb afosmasterPil.txt, textCategoryClass.txt, textCCChelp.txt, 

textNNNhelp.txt, textOriginTable.txt 
 
EDEX only data is localizable at the following location: 



 

 
${EDEX_HOME}/data/utility/edex_static/site/XXX/ 

 
The following data items can be localized in the edex_static tree: 
 

Localizable Data Item Description 
mesowest_filters.xml Area filter definitions for the mesonet ingest plugin 
config/gfe localConfig.py and siteConfig.py configuration files 
 

1.3 Creating a new Localization 
Creating a new site localization from the baseline AWIPS-II installation involves the 
followings steps: 

• Creating a site CAVE location configuration file. 
• Creating the site map scale files that become the CAVE map scales. 
• Creating the site ingest filters for Local Data Manager (LDM). 
• Creating the site menu overrides for the CAVE menus. 
• Creating a GFE site server configuration and customizations. 
• Creating a AvnFPS site configuration. 
• Creating a WarnGen site configuration and customizing warning templates. 
• Creating the site TextDB triggers. 
• Creating the site AlertViz configuration. 
• Creating LAPS site configuration 
• Creating MSAS site configuration 
• Creating the site decision aid configurations (FFMP, SCAN, SAFESEAS, FOG, 

SNOW) 
• Hydro site configuration using AWIPS-1 Token files. 

1.3.1 Creating a new CAVE site location configuration file 
CAVE configuration is localized through config.xml files that are part of the CAVE 
plugin design pattern.   The first step is to set the overrides for the CAVE core plugin 
(com.raytheon.viz.core) configuration file (config.xml).  The CAVE core 
plugin configuration contains the basic site identifiers and location information.   The 
override configuration file lives at the following location on the server:     
 

${EDEX_HOME}/data/utility/cave_config/site/XXX/${PLUG_IN} 
 
The following is an example of the overrides to localize CAVE to OAX. 
 

./utility/cave_config/site/OAX/com.raytheon.viz.core/config.xml 
 
<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?> 
<configuration> 
 <siteName>KOAX</siteName> 
 <siteFullName>Omaha</siteFullName> 
 <siteType>WFO</siteType> 
 <siteNode>OMA</siteNode> 
 <siteWmoId>SAUS43</siteWmoId> 
       <homeLocationLongitude>-96.36666666666666</homeLocationLongitude> 



 

       <homeLocationLatitude>41.31666666666667</homeLocationLatitude> 
       <wfoCenterPointLatitude>41.31666666666667</wfoCenterPointLatitude> 
       <wfoCenterPointLongitude>-96.36666666666666</wfoCenterPointLongitude> 
</configuration> 

 

1.3.2 Map Scale Localization 
Map Scales are XML display bundles that control base map projections in the CAVE 
display panes.   Data gets transformed to the map scale as the data is being rendered.   
The CAVE-D2D perspective tool bar has the selection pull down for the map scales 
available to the site.   AWIPS-II has two approaches for generating new map scales.  
First, is a tool that is included in the CAVE menu that contains all the map projections 
available within geotools.   During installation world wide geopolitical map data is 
loaded into the postgisSQL database.   Therefore, a map can be generated for any 
location in the world at any scale. 
 
The second approach, is to reuse the “SUP” files from the AWIPS-1 installation.   The 
SUP files contain the details of the map projection which can be transformed into an 
AWIPS-II map scale bundle.   A tool is planned to transform the AWIPS-1 data to 
AWIPS-II. 

1.3.2.1 Map Scale Localization for a New Site 
To build a new map for your site, use CAVE’s built in map generation tool.   AWIPS-II 
has the map data stored in PostgisSQL database tables.   The database tables are 
initialized during system installation and contain a superset of information that the site 
needs.  See paragraph x.x.x.x for instructions on how to load new map data from ERSI 
shape files into the PostgisSQL map repository. 
 
To run the CAVE map generation tool: Go to  CAVE>New>Map Projection… in the 
CAVE-D2D perspective to bring up the map generation dialog.   Enter the projection 
parameters for your desired scale map.   These projection parameters can be extracted 
from the AWIPS-1 installation’s SUP files. 
 
Save the generated map bundle by using the save bundle dialog at: 
 

CAVE>Procedures>Save Bundle… 
 
Within the save dialog browse to:  
 
${EDEX_HOME}/data/utility/cave_static/site/XXX/bundles/scal
es/ 
 
Give the scale bundle a file name {e.g. CONUS.xml, N. Hemisphere.xml, North 
American.xml, Regional.xml, State(s).xml, WFO.xml…}.   The name you’ve given the 
scale bundle will be the name that shows up in the scale pull down in CAVE-D2D 
perspective.  The scale bundle files only contain map and scale related metadata.   The 
scale bundles know how to get the real map data out of the “PostgisSQL” database. 
  



 

 
 
 
Creating the default procedure 
 
The default procedure is the procedure that executes on CAVE-D2D perspective startup.  
This procedure can be anything you want but generally it loads the the desired map scale 
into each of the small panes and the main pane.   

• Start CAVE and go to the D2D 5pane perspective 
• Using the scale pull down on the tool bar select a scale for the main pane and 

dock it to the desired small pane 
• Select and dock until you have the scales set up as desired 
• Under CAVE>Procedures>Save Procedure…  dialog box put “default-

procedure.xml” into the name field.   Use the Browse for other folders to go 
to ${EDEX_HOME}/data/utility/cave_static/site/XXX   to save the 
procedure. 

1.3.2.2 Map Scale Localization for an Existing Site Using Legacy Data 

1.3.3 SBN Data Ingest Localization 
Localizing the SBN data flow involves modifying the Local Data Manager (LDM) 
configuration.    LDM is used by AWIPS-II as a replacement of the CP ingest software.   
The file pqact.conf located usually at /usr/local/ldm/etc in the LDM 
installation contains the configuration information that tailors the data flow to AWIPS-II. 
The file pqact.conf serves the same purpose as acq_patterns.txt in AWIPS -1.   
The primary difference is configuring the text product data flow to specific products 
rather than directing everything to the text ingest end point.   The unidata web site for 
LDM has detailed instructions on how to perform configuration.  LDM is normally 

Choose from 25 
supported projections. 

Set projection parameters. 

Set map corner points. 
Latitudes -90 to 90 
Longitudes -180 to 180 



 

configured on AWIPS-II to queue data so that EDEX ingest endpoints can recover from 
periods of distruption. 
 

http://www.unidata.ucar.edu/software/ldm/ 

1.3.4 CAVE Menu Localization 
The CAVE menus are highly customizable by XML files that override the base 
configuration.   The menu override files get placed in the localization data store at the 
following: 
 

${EDEX_HOME}/data/utility/cave_static/site/XXX/menus 
 
Likewise for user overrides: 
 

${EDEX_HOME}/data/utility/cave_static/user/UUUUU/menus 
 

See the section on menu customization for how to create the overrides.   Some initial 
examples are in the baseline for OAX and HFO. 
 

1.3.5 GFE Localization 
Localizing GFE to your site reuses many of the same files that AWIPS-1 used.  The 
following are the primary aspects that can get localized: 

• The map scale visible in the spatial editor of GFE 
• The siteConfig.py sets up the local high level GFESUITE identifiers 
• The localConfig.py that overrides the base settings in ServerConfig.py 
• The text product local overrides 
• The local smart inits 
• The local smart tools 
• The local combinations files 
• The local edit areas 

1.3.5.1 GFE Map Scale Localization 
 
All the GFE map scales for all the active AWIPS-I sites are stored in the database table 
“gfe_spatial” in the PostgreSQL metadata database.    The gfe map scales are referenced 
by the the siteid which is set in the “siteConfig.py” file for the site.   See the next section 
for siteConfig.py localization. 

1.3.5.2 GFE siteConfig.py localization 
 
The siteConfig.py files from AWIPS-1 are reusable by placing them at the following 
location in the localization data store: 
 

${EDEX_HOME}/data/utility/edex_static/site/XXX/config/gfe 
 



 

The fields in your siteConfig.py will need to be checked to make sure they are valid. 

1.3.5.3 GFE localConfig.py localization 
 
The localConfig.py files from AWIPS-1 are reuseable by placing them at the following 
location in the localization data store: 
 

${EDEX_HOME}/data/utility/edex_static/site/XXX/config/gfe 
 
LocalConfig.py follows same pattern as AWIPS-1 by being overrides to the base 
ServerConfig.py.    Generally this is where your site’s controls for ISC are located. 

1.3.5.4 GFE local text product overrides 
 
The AWIPS-1 tools are reused to create text formatter product scripts.  These are located 
at the following location: 
 

${EDEX_HOME}/data/utility/edex_static/base/textproducts 
  
Included at this location is a “Readme.txt” that gives detailed instructions on how to set 
up the sites text formatters. 

1.3.5.5 GFE local smart inits 
The baseline smart inits are located at the following: 
 

${EDEX_HOME}/data/utility/edex_static/base/smartinit 
 
The localization of smartinits is TBD. 

1.3.5.6 GFE local smart tools 
 
In progress. 

1.3.5.7 GFE local combinations files 
 
In progress. 

1.3.5.8 GFE local edit areas 
 
In progress. 

 
 



 

1.3.6 AvnFPS Localization 
AvnFPS uses the AWIPS-II localization pattern for storing configuration files.   The site 
specific files are stored on the utility data store at the following location:  
 

${EDEX_HOME}/data/utility/cave_static/site/XXX/aviation 
 
The “Save” buttons in the setup GUIs for AvnFPS save the locally edited setup data to 
the above location.    
 
AvnFPS is localized entirely by the use of the setup dialogs and the user does not need to 
concern themselves with files and where the files are stored. 

1.3.7 WarnGen Localization 
The following describes how to localize WarnGen to a specific WFO site.   Localizing 
WarnGen requires access to the following data locations on the EDEX server: 
 

• ${EDEX_HOME}/data/utility/cave_config/site Contains general 
WarnGen configuration options. 

• ${EDEX_HOME}/data/utility/common_static/base/warngen  
Contains all WarnGen templates – including default (“baseline”) templates, local 
site templates, and backup site templates. 

1.3.7.1 WarnGen Localization Procedure 
• Select CAVE>Preferences to open the CAVE preferences dialog.   Under the 

Localization tab change the Site field to your site (e.g. OAX), then click OK and 
exit CAVE. 

 
• Open a console to the EDEX server and cd to 

${EDEX_HOME}/data/utility/cave_config/site/ 
• Create the directory {XXX}/com.raytheon.viz.warngen where XXX is 

the site identifier. 
• Copy in a new file into the above directory config.xml from an existing 

configuration such as: 
 

${EDEX_HOME}/data/utility/cave_config/site/OAX/com.raytheon.viz.warngen
/config.xml 
 



 

•  Edit the file as necessary.   
Example WarnGen Configuration File 

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?> 
<configuration> 
<warngenOfficeShort>OMAHA/VALLEY NE</warngenOfficeShort> 
<warngenOfficeLoc>OMAHA</warngenOfficeLoc> 
<backupCWAs> 
EAX/KANSAS CITY, 
DMX/DES MOINES, 
BOX/BOSTON, 
LBF/NORTH PLATTE, 
PQR/PORTLAND 
</backupCWAs> 
<siteNode>OMA</siteNode> 
<otherWarngenProducts> 
Severe Weather Statement/SVS, 
Flash Flood Statement/ffs, 
Extreme Wind Warning/eww, 
Extreme Wind SVS/ewws, 
non-convective FFW (Dam Break)/dambreak, 
non-convective Flash Flood Statement/dambreakffs, 
Areal Flood Warning/flw, 
Areal Flood Warning Followup/fls, 
Areal Flood Advisory/fla, 
Areal Flood Advisory Followup/flas, 
Special Marine Warning/smw, 
Marine Weather Statement (SMW Follow)/smws, 
Marine Weather Statement standalone/marinestatement 
</otherWarngenProducts> 
</configuration> 
 

• warngenOfficeShort:  The Office description included in the heading of a 
warning. 

• warngenOfficeLoc: The short office description included in the heading of a 
warning. 

• BackupCWAs:  This is a list of the sites which WarnGen will be able to back 
up, along with a description of the site to be included in the template.  Each item 
in this list must contain both values separated by “/” and the list elements should 
be comma-separated. 

• siteNode: This field provides a default site node if one can not be looked up in 
the afos2awips table.  If afos2awips contains the value then this field remains 
unused. 

• otherWarngenProducts:  This is a list of the WarnGen products in the “other” 
dropdown list and the template associated with it.  For example, the line “Extreme 
Wind Warning/eww” indicates that the dialog should show an option containing 
“Extreme Wind Warning” which refers to the “eww” template.  Each item in this 



 

list must contain both values separated by “/” and the list elements should be 
comma separated.    The items in this list are case sensitive. 

 
Add section for adding local points to WarnGen. 

1.3.8 TextDB Trigger Localization 
These instructions are for setting up AFOS PIL triggers from scratch.   AWIPS-II 
provides the capability of triggering processing in response to product arrival.   This 
script running capability is a part of the EDEX server system.   
 
There are two types of product arrival subscriptions available; AFOS PIL triggers and 
more generic data URI triggers.  These instructions only refer to the AFOS PIL triggers.  
In AWIPS-II, when a text product is ingested and stored in the text database (fxatext), the 
product’s AFOS PIL is sent to the LDAD script runner.   If the PIL matches the 
subscription, it is executed. 
 
Setting up an AFOS trigger involves the following steps: 

1. Identify the AFOS PIL.  AWIPS-II utilizes the same wild card/pattern matching 
as AWIPS-I. 

2. Create the trigger script.  In this case, the script can be any executable that 
satisfies two basic requirements; first, it must be accessible to the EDEX server. 
Secondly, it must be able to handle and process a single string argument; the 
AFOS PIL. 

3. Register the trigger.  On AWIPS-II, registering the trigger is accomplished by 
using the Command Line Interface (CLI) tools.  AFOS PIL triggers are registered 
using the AWIPS-II “textdb” tool. 

4. Validate the trigger.  This can be done either using the CLI subscription tool or a 
standard SQL tool such as PGadmin to check the database table. 

 
When the AFOS PIL trigger executes, two things occur; first the contents of the 
triggering product are written to a file.  The name of the file is the AFOS PIL that 
triggered the script execution; it is located in $FXA_DATA/trigger.   FXA_DATA is set 
into the environment when EDEX starts.  Secondly, the registered script is executed with 
the trigger being passed to the script as the only argument. 
 
When writing an AFOS PIL trigger script, keep in mind that EDEX_HOME (usually 
/awips/edex) and FXA_DATA (usually /awips/edex/data/fxa) are available to the script 
from the environment. 
 
Note, FXA_DATA is set by the start.sh script that starts EDEX.   The EDEX 
installer modifies the script to match the location chosen when the installer runs. 
 
AFOS PIL Trigger Example: 
Consider this scenario: You want to register an AFOS PIL trigger for the following 
products: 

Origin (CCC): OMA 



 

Category (NNN): MTR 
Designator (XXX): any 

When triggered, a script called metar.sh, located in the EDEX bin directory will run. This 
script will reside in the EDEX bin directory (/awips/edex/bin). For this example, metar.sh 
will simply log the event and the contents of the product triggering the event. The result 
will be logged to a file called metar-trigger.log located in the EDEX log directory. 
 

1. Identify the PIL: In this case, the PIL to use is OMAMTRXXX. 
2. Create the trigger script: The code for the trigger script is shown below. Note 

that the script assumes EDEX_HOME and FXA_DATA have been set in the 
environment; the EDEX setup script sets these values at startup. 

 
#!/bin/bash 
#---------------------------------------------------------------------- 
# Test Script for AFOS PIL Trigger 
# Logs execution and product contents into a log file. 
#---------------------------------------------------------------------- 
LOG_FILE=$EDEX_HOME/logs/metar-trigger.log 
TIME_NOW=`date` 
if [ -z $1 ]; then 
   echo "$TIME_NOW: invalid process call, no AFOS PIL provided" >> $LOG_FILE 
   exit 1 
fi 
AFOS_PIL=$1 
if [ -z $FXA_DATA ]; then 
   echo "$TIME_NOW: invalid configuration, \$FXA_DATA not in environment" >> $LOG_FILE 
   exit 1 
fi 
FILE_PATH=$FXA_DATA/trigger/$AFOS_PIL 
if [ ! -f $FILE_PATH ]; then 
   echo "$TIME_NOW: unable to find file matching AFOS PIL: $AFOS_PIL" >> $LOG_FILE 
   exit 1 
fi 
echo "$TIME_NOW: processing $AFOS_PIL" >> $LOG_FILE 
echo "$TIME_NOW: file $FILE_PATH contents:" >> $LOG_FILE 
cat $FILE_PATH >> $LOG_FILE 
exit 0 

 
Save this script in /awips/edex/bin as metar.sh and make it executable. 
 

3. Register the trigger: The CLI is used to register the AFOS PIL trigger. It can 
be registered using either the CLI textdb tool or the CLI subscription tool. The 
preferred method is to use the CLI textdb tool, which has been written to 
support the same options as the AWIPS I textdb tool. 
 
To register this trigger, first change directory into the install directory of the 
CLI tools. (The location of the CLI tools may vary; on AWIPS II only 
systems, it is normally installed in /awips/fxa/bin. Make sure you identify the 
correct install directory; it will also include executable files named 
subscription and uengine.) Once in the correct directory, execute 
 

./textdb –ldad -a OMAMTRXXX <EDEX_HOME>/bin/metar.sh 
 
After a short pause, textdb should print “Database insert was successful.” and 
exit. 



 

 
Note: replace <EDEX_HOME> with the EDEX install location, usually 
/awips/edex. 

 
4. Validate the trigger: To verify that the insert was successful, run the trigger 

registered, run the following command from the command line: 
./subscription -o read -p OMAMTRXXX 

 
After a short pause, the tool will display: 

ID     ACTIVE TYPE  RUNNER TRIGGER   SCRIPT 
------ ------ ----- ------ --------- ------ 
   208 True    ldad   ldad OMAMTRXXX null 

 
You can also verify the trigger by connecting to the AWIPS II metadata 
database (using a standard database tool) and executing the following SQL 
command (entered on a single line): 

select * from subscription.subscriptions where 
trigger='OMAMTRXXX' 

 
From psql the result is 

id  | active | type | runner |  trigger  | script |                
filepath                | arguments  
-----+--------+------+--------+-----------+--------+-------
---------------------------------+----------- 
 208 | t      | ldad | ldad   | OMAMTRXXX |        | 
/common/mfegan/awips/edex/bin/metar.sh | %TRIGGER% 

 
This approach provides additional information; specifically the full path of the 
script and the argument passed to the script. In this case, %TRIGGER% 
indicates the trigger PIL is passed to the script. 

 
DataURI Trigger Example:   To be added. 

1.3.9 CAVE-D2D Perspective Procedures Localization 

1.3.10 AlertViz (Guardian) Localization 
Work in progress. 

1.3.11 LAPS Localization 
To be delivered with Application 

1.3.12 MSAS Localization 
To be delivered with Application 

1.3.13 FFMP Localization 
To be delivered with Application 



 

1.3.14 SCAN Localization 
To be delivered with Application 

1.3.15 SAFESEAS Localization 
To be delivered with Application 

1.3.16 FOG Localization 
To be delivered with Application 

1.3.17 SNOW Localization 
To be delivered with Application 
 

2 CAVE  Menu Customization 
The CAVE menu is designed to be highly customizable through XML files.   The menu 
system allows considerable flexibility in structuring menus.  It is possible to structure 
menus in as few or as many files as desired to improve manageability.   The baseline 
CAVE-D2D menu structure is defined in standard Eclipse RCP plugin.xml files in the 
following plug ins:    
 

com.raytheon.viz.ui.personalities.awips/plugin.xml 
 

com.raytheon.uf.viz.d2d.ui/plugin.xml 
 
Individual CAVE-D2D plug ins build on these menus by making their own baseline 
contributions.   The following baseline contributions for CAVE-D2D  are as follows: 
 

Plug in menu contribution path CAVE-D2D menu items 
menus/lightning Lightning plots under Obs>Lightning 
menus/radar kxxx radar and Radar menus 
menus/satellite Satellite menus 
menus/xml Volume Browser sub menus 
menus/warnings Warning displays under Obs>Hazards   
menus/mos Local menus 
menus/obs Contributions in Obs 
menus/upperair Contributions in Upper Air 
 
Localizing the menus involves adding your own XML files to the EDEX utility data tree 
at the following location: 
 

${EDEX_HOME}/data/utility/cave_static/site/XXX/menu/…                
${EDEX_HOME}/data/utility/cave_static/user/kkk/menu/… 

 
If you do not have any local contributions, this directory tree can be blank. 

 



 

The following describes how to make your own site/user overrides to the baseline menu 
configuration.   All menus are connected together using an “index” XML file that 
specifies which subfiles to use.  For example, here is how overrides to the CAVE-D2D 
obs menu would be made for the site OAX.   The file index.xml can be overridden at 
the site level to add or remove items without changing the “base” files.  Create an 
index.xml file and put it at the following location on the EDEX utility tree: 
 

${EDEX_HOME}/data/utility/cave_static/site/OAX/menu/obs/index.xml 
 
The following is an example of index.xml overrides: 

 
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 
<menuContributionFile> 
    <include installTo="menu:#Levels?after=METAR"  
             fileName="menus/obs/baseMetar.xml"/> 
    <include installTo="menu:obs?after=METAR" 
             fileName="menu/obs/koaxMetar.xml"/> 
    <include installTo="menu:obs?after=MARITIME"  
             fileName="menus/obs/koaxBuoy.xml">            
             <remove>FixedBuoys</remove> 
             <remove>MovingMaritime</remove> 
    </include> 
</menuContributionFile> 
 
Two local additions were added: 

• A site has added their own contribution files presumably adding additional menu 
items.  (koaxMetar.xml and koaxBuoy.xml) 

• A site has removed two menu items form the base configuration. (FixedBuoys 
and MovingMaritime) 

 
The fact that the base file is not modified directly means that upgrades will be smoother 
without requiring the merging of new files into the site’s custom files. 
 
Menu item positioning is done by URI and placed using the “id” components.   For 
example: 
 

• menu:obs?after=METAR  (finds the obs menu, and installs contributions after 
the separator or menu item ID’d as “METAR”) 

 
Now on to the menu files which like the index.xml files subscribe to a strict schema 
that is validated at parse time.  (menu schema is available in CAVE in the 
com.raytheon.uf.viz.menus…jar plug in as menus.xsd) 
 
For example, OAX decided to add the menu file koaxBuoy.xml which had a previous 
reference added to the index.xml: 
 
${EDEX_HOME}/data/utility/cave_static/site/OAX/menu/obs/koaxBuoy.xml 
 
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 



 

<menuTemplate xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 
     <contribute xsi:type="bundleItem" 
file="bundles/maritimeFixedBuoy.xml"  
                 menuText="Fixed Buoys" id="FixedBuoys"  
                 productInterval="3600" productOffset="1800"> 
         <dataURI>/sfcobs/%/1005/%</dataURI> 
    </contribute>    
</menuTemplate> 
 
This file installs a menu item with the label “Fixed Buoys” and id “FixedBuoys”.  
The display bundle file “bundles/maritimeFixedBuoy.xml” will be executed.   
The dataURI reference “/sfcobs/%/1005/%” will be used for updating the display 
time in the menu and is used to control the query for the data when the menu item is 
selected. 
 
The  productInterval and productOffset  refer to the time controls for 
updating the looping frame for the data display layer in the CAVE-D2D perspective.  The 
productOffset  is the time in seconds before the data’s valid time that a new loop 
frame gets created.  Then productInterval is the interval between frames for this 
data display layer.   In the example above, for the “Fixed Buoys” display item, a new 
frame gets created 30minutes before the valid time and the frame is 60minutes long. 
 
DataURIs in AWIPS-II refer to specific data items in the metadata database.   The fields 
in the dataURI are metadata attributes with % being a wild card.   The wild card (%) is 
typically used for time fields so the when the menu item is selected the default behavior 
of retrieving the latest data that matches the dataURI is retrieved.   
 
DataURIs are created automatically during data ingest for each data item, get stored in 
the metadata database, and are used for real time alerting.    The datatype plug in contains 
a record class that has java annotations for each field of the dataURI.   The structure of 
the dataURI is as follows: 
 

/PlugInName/dataTime/position1/…/positonN 
 
The first field is always the PlugInName and the second field is always the dataTime.   A 
wild card (%) is typically used in a menu reference for dataTime to indicate that the latest 
data is to be retrieved. The set of available PlugInNames are listed in column 1 in the 
following table.  Column three lists the dataURI fields that get specified in 
position1…positionN for that particular plug in.   
 
A tool is planned  (DR#2891) for a latter release for generating this table based on the 
installed set of plug ins.  This tool would be available from the CAVE menu. 
 

PlugInName Plug In Record Class DataURI fields in Postion Order 
airep AirepRecord.java reportType, corIndicator, 

location 
binlightning BinLightningRecord.java startTime, stopTime 

Bufrua UAObs.java reportType, corIndicator, 



 

location 
Ccfp CcfpRecord.java validtime, issuetime, 

location 
Gfe GFERecord.java parmId, dbId 

Goessounding GOESSounding.java location 

Grib GribRecord.java modelInfo 

Obs MetarRecord.java reportType, stationed, 
stationLat, stationLon 

Sfcobs ObsCommon.java reportType, corIndicator, 
location 

Pirep PirepRecord.java reportType, corIndicator, 
location 

Poessounding POESSounding.java location 

Profiler ProfilerObs.java reportType, location 

Radar RadarRecord.java icao, productCode, 
primaryElevationAngle,  

Recco RECCORecord.java reportType, corIndicator, 
location 

Redbook RedbookRecord.java wmoTTAAii, productId, 
corIndicator, originatorId, 
fcstHours, fileId 

satellite SatelliteRecord.java Source, creatingEntity, 
sectorID, physicalElement 

Taf TafRecord.java stationed, corIndicator, 
amdIndicator, issue_time 

Text TextRecord.java productId 

Warning WarningRecord.java pil, xxxid, countyheader, 
act, etn, seg, phensig 

Cwat CWATRecord.java icao, fieldname 

Qpf QPFRecord.java Icao, fieldname 

Acars ACARSRecord.java tailNumber, location 

Acarssounding ACARSSoundingRecord.java timeObs, location 

mesowest MESOWestRecord.java networkType, timeObs, 
location 

 
For example, to retrieve the latest visible satellite imagery, the following dataURI would 
be used in the menu reference: 
 

<dataURI>/satellite/%/NESDIS/GOES%/%/Imager_Visible</dataURI> 
 

Positon1…PositionN is defined in SatelliteRecord.java.  Note, the reference 
to the GINI satellite ICD for the valid names to use. 
 
    /** 
     * The source of the data - NESDIS 
     */ 
    @Column(length = 31) 
    @DataURI(position = 1) 
    @XmlAttribute 
    @DynamicSerializeElement 
    private String source; 
 
    /** The creating entity. See table 4.5 of GINI satellite ICD */ 
    @Column(length = 63) 



 

    @DataURI(position = 2) 
    @XmlAttribute 
    @DynamicSerializeElement 
    private String creatingEntity; 
 
    /** The sector ID. See table 4.6 of the GINI satellite ICD */ 
    @Column(length = 63) 
    @DataURI(position = 3) 
    @XmlAttribute 
    @DynamicSerializeElement 
    private String sectorID; 
 
    /** The physical Element. See table 4.7 of the GINI satellite ICD */ 
    @Column(length = 63) 
    @DataURI(position = 4) 
    @XmlAttribute 
    @DynamicSerializeElement 
    private String physicalElement; 
 
Variable substitution in the index.xml file allows you to reuse an entire menu with 
global substitutions.   For example, the baseRadar menu system is reused but with a 
different icaos: 
 
<menuContributionFile> 
    <include installTo="menu:radar?after=LOC1"  
             fileName="menus/lightning/baseRadar.xml"  
             subMenu="koax"> 
        <substitute key="icao" value="koax"/> 
    </include> 
    <include installTo="menu:radar?after=LOC1"  
             fileName="menus/lightning/baseRadar.xml"  
             subMenu="kdsm"> 
        <substitute key="icao" value="kdsm"/> 
    </include> 
</menuContributionFile> 
 
Submenus can be created in the menu files using the “submenu” type and nesting 
structures.  For example: 
 
<contribute xsi:type="subMenu" menuText="Other Plots"> 
    <contribute xsi:type="bundleItem" 
file="bundles/15minSurfacePlot.xml" 
                menuText="15 min Plot" id="15MinSurfacePlot"  
                 productInterval="900" productOffset="450"> 
         <dataURI>/obs/%</dataURI> 
    </contribute>    
</contribute> 
 
Submenus can also be created by using the “submenu” tag on the <include> statement.  
For example: 
 
<menuContributionFile> 
    <include installTo="menu:obs?after=HAZARDS"  
             fileName="menus/lightning/baseLightning.xml"  
             subMenu="Lightning"/> 
</menuContributionFile> 
 
Menu item types can be the following: 



 

• Bundle Loader 
• Separator (lines) 
• Placeholder (displays “not implemented” dialog) 
• Submenu 

 
In general, the menu system described above can coexist with the standard Eclipse RCP 
menus which are defined in “plugin.xml” files.    The Eclipse RCP plugin.xml files 
should be used for setting up the basic menu structures, and contributing items like 
dialogs and programs. 
 
Menu files can be placed in CAVE plugins for the base localization at: 
“localization/menus/pluginName”. 
 

3 Warngen Template Customization  
WarnGen templates for the AWIPS II system are *.vm files written in the Velocity 
Template Language (VTL) with supporting configurations in an xml file with *.cfg 
suffixes. Velocity and the VTL is released under the Apache Jakarta Project and thus the 
current documentation can be found on the Apache Jakarta Project website. The 
following URLs are direct links to the web-based VTL reference. 
http://svn.apache.org/repos/asf/velocity/engine/tags/V_1_0_1/docs/vtl-reference-
guide.html  http://click.sourceforge.net/docs/velocity/vtl-reference-guide.html 
 
Configuration Values in WarnGen *.cfg files.    
Values in red are system level settings and should only be modified if necessary 

• polygonShape: Use “1” for the pathcast shape based on storm track or “2” for a 
square 

• followups: Defines the options which can appear in the “UPDATE LIST” 
dropdown 

• phenomena: Defines which Phenomena this template can create Followup 
products for. 

• Significance: Defines which Significance this template can create Followup 
products for. 

• DefaultDuration 
• Durations 
• Bullets 
• bulletText:  Defines the text displayed in the WarnGen dialog. 
• bulletName:  Defines a name to refer to the bullet as in the template code. 
• bulletGroup: Provides a mechanism for limiting selections in WarnGen. Only 

one item perbulletGroup can be selected so related items should list the same 
bulletGroup. 

• bulletType: bulletType=”title” makes the bullet unselectable, bulletType=”basin” 
correlates the bullet to a geometry of the same name in the customlocations table. 

• pathcastConfig 
• enabled: “1” will enable the Storm Track, “2” will disable the Storm Track 



 

• defaultSpeedKt: Default Storm Track speed in knots 
• defaultDirection: Default Storm Track direction 
• overThreshold: Distance for a city or POI to be considered “over” the Storm 

Track 
• nearThreshold: Distance for a city or POI to be considered “near” the Storm 

Track 
• lineofStormsDistance: The distance in km between the 2 original storm points 

when Line of Storms is selected. 
• lineofStormsAzimuth: The azimuth between the 2 original storm points when 

Line of Storms is selected. 
• areaSource: Relation to a table in the maps database 
• pointField: Relation to a field name in a table in the maps database 
• pointFilter:  A filter when making a query to the map database. This can be used 

to include or exclude points of interest with specific WarngenLev values. 
• areaNotationField: Relation to a field name in a table in the maps database 
• areaField: Relation to a field name in a table in the maps database 
• fipsField: Relation to a field name in a table in the maps database 
• parentAreaField: Relation to a field name in a table in the maps database 
• timezoneTable: Relation to a table in the maps database 
• timezoneField: Relation to a field name in a table in the maps database 
• areaNotationTranslationFile: File noting the difference between “county” and 

“parish” 
• areaConfig 
• inclusionPercent: The minimum percentage for a county or zone to be included 

in a warning 
• inclusionAndOr: Determines which of the inclusion Area and Percentage are 

used for inclusion 
• inclusionArea: The minimum area in square kilometers for a county or zone to 

be included in a warning 
• pointField: Relation to a field name in a table in the maps database 
• pointFilter: A filter when making a query to the map database. This can be used 

to include or exclude points of interest with specific WarngenLev values. 
• fipsField: Relation to a field name in a table in the maps database 
• parentAreaField: Relation to a field name in a table in the maps database 
• timezoneField: Relation to a field name in a table in the maps database 
• closestPointsConfig 
• numberOfPoints:  This configuration sets the number of “Closest Points” which 

will be used in the first bullet. Any point included in the “Closest Points” variable 
will be excluded from the “Other Points” variable so that a location is not 
repeated. 

• pointFilter: A filter when making a query to the map database. This can be used 
to include or exclude points of interest with specific WarngenLev values. 

• geospatialConfig 
• pointSource:  Relation to a table in the maps database 
• areaSource: Relation to a table in the maps database 



 

• parentAreaSource:  Relation to a table in the maps database 
• maskSource: Relation to a table in the maps database 
• maskFilter:  Filter used to exclude geometry outside of the local CWA 
• basinConfig 
• maskSource: Relation to a table in the maps database 
• bulletColumn: Relation to a field name in a table in the maps database 
• maskFilter: Filter used to exclude geometry outside of the local CWA 

 
Values passed to Warngen *.vm templates 
The following values from the Java WarnGen plugin code are passed to the templates for 
WarnGen products: 
 
    
    
 

• vtecOffice – is the 4 letter id set by the logic in “getSite4LetterId” shown above 
• siteId – String: The 3 letter WFO set in Localization 
• officeShort – String set in site localization config.xml 
• officeLoc – String set in site localization config.xml EX: officeShort: 

“OMAHA/VALLEY NE” officeLong: “OMAHA” 
• backupSite – The officeLoc value for a site that WarnGen is backing up via 

backup mode. 
• localtimezone – Time Zone where the warning starts in single letter format 
• secondtimezone – If the Warning spans multiple time zones, the second Time 

Zone is stored here 
• stormType – “line” if it is a line of storms, “single” otherwise 
• now – Date value representing now 
• start – Date value representing the start time 
• expire – Date value representing the expire time 
• event – Date value representing the event time 
• fipsline – String representing the UGC Header 
• fipslinecan – String representing a UGC Header 
• areaPoly – String representing the polygon 
• movementInMph – double representing movement speed 
• movementDirectionRounded – double representing movement direction 
• movementDirection – double representing movement direction 
• movementInKnots – double representing movement speed 
• action – String representing the VTEC Action 
• oldvtec – String representing the old VTEC tracking number for followup 

products 
• phenomena – String representing the VTEC pp field 
• mode – String representing test mode if applicable 
• bullets – Array of Strings representing the bullets selected in Warngen 
• eventLocation – array of Point2D values (java.awt.geom.Point2D) – Do not edit 



 

• otherPoints – array of Strings representing other points impacted by the storm – 
Do not edit 

• pathCast – PathCast value (com.raytheon.viz.warngen.gis.PathCast) – Do not 
edit 

• closestPoints – array of ClosestPoints 
(com.raytheon.viz.warngen.gis.ClosestPoint) – Do not edit 

• areas – array of AffectedAreas (com.raytheon.viz.warngen.gis.AffectedAreas) – 
Do not edit 

• cancelareas – array of AffectedAreas 
(com.raytheon.viz.warngen.gis.AffectedAreas) – Do not edit 

• timeFormat – Hashtable containing 6 SimpleDateFormats 
 

Hashtable key Hashtable Value 
header hhmm a z EEE MMM d yyyy 
plain hhmm a z EEEE 
clock hmm a z 
ymdthmz yyMMdd'T'HHmm'Z' 
ddhhmm ddHHmm 
Time HHmm 
 

• list – ListTool (org.apache.velocity.tools.generic.ListTool) 
Method use examples: 
$primes is an array of integers containing {2, 3, 5, 7} 
$lists.size($primes) -> 4 
$lists.get($primes, 2) -> 5 
$lists.set($primes, 2, 1) -> (primes[2] becomes 1) 
$lists.get($primes, 2) -> 1 
$lists.isEmpty($primes) -> false 
$lists.contains($primes, 7) -> true 
 

• mathUtil – WarnGenMathTool (extending 
org.apache.velocity.tools.generic.MathTool) 

Methods: 
(http://velocity.apache.org/tools/devel/javadoc/org/apache/velocity/tools/generic/MathTo
ol.html) 
$mathUtil.roundTo5(num) 
$mathUtil.roundToInt(num, multiple) 
$mathUtil.abs(num) 
$mathUtil.add(num1, num2) 
$mathUtil.ceil(num1) 
$mathUtil.div(num1, num2) 
$mathUtil.floor(num1) 
$mathUtil.getAverage(nums) 
$mathUtil.getRandom() 
$mathUtil.Total(nums) 
$mathUtil.matchType(num1, num2) 



 

$mathUtil.max(num1, num2) 
$mathUtil.min(num1, num2) 
$mathUtil.mod(num1, num2) 
$mathUtil.mul(num1, num2) 
$mathUtil.pow(num1, num2) 
$mathUtil.random(num1, num2) 
$mathUtil.round(num1) 
$mathUtil.roundTo(decimals, num2) 
$mathUtil.sub(num1, num2) 
$mathUtil.toDouble(num1) 
$mathUtil.toInteger(num1) 
$mathUtil.toNumber(num1) 
 

• dateUtil – DateUtil (com.raytheon.viz.warngen.util.DateUtil) 
Methods 
$dateUtil.format(Date, DateFormat) 
$dateUtil.format(Date, DateFormat, Interval) 
$dateUtil.format(Date, DateFormat, Interval, TimeZone) 
$dateUtil.format(Date, DateFormat, TimeZone) 
 
Here is a listing for reference of the logic used by WarnGen to create the 4 letter office 
id.  Note that it accounts for the OCONUS sites. 
    /** 
     * Converts a 3 letter site ID into a 4 letter ID, e.g. OAX to KOAX 
     *  
     * @param site3LetterId 
     *            the 3 letter site id 
     * @return 
     */ 
    public static String getSite4LetterId(String site3LetterId) { 
        // this code was ported from legacy GFE 
        if (site3LetterId.equals("SJU")) { 
            return "TJSJ"; 
        } else if (site3LetterId.equals("AFG") || site3LetterId.equals("AJK") 
                || site3LetterId.equals("HFO") || site3LetterId.equals("GUM")) { 
            return "P" + site3LetterId; 
        } else if (site3LetterId.equals("AER") || site3LetterId.equals("ALU")) { 
            return "PAFC"; 
        } else { 
            return "K" + site3LetterId; 
        } 
    } 
 
How to access the data contained in a value in a template. 
In general, any String or primitive type method or attribute can be accessed directly 
within the Warngen template using the following syntax: 
 

String or primitive type: ${myStringValue} 
 
In the above context, myStringValue was a String passed directly into the template 
String method: ${dateUtil.format(${pc.time}, ${timeFormat.clock}, ${localtimezone})} 
 
In the above context, dateUtil is a com.raytheon.viz.warngen.util.DateUtil Object which 



 

contains the method format, which accepts 3 arguments. Additionally, ${pc.time} (A date 
value from the pathCast) is replaced by the time attribute of the pc object, 
${timeFormat.clock} is replaced by the SimpleDateFormat addressed in the timeFormat 
Hashtable by “clock,” and ${localtimezone} is replaced by the localtimezone object. 
 
Template Modifications 
Plain text in Warngen templates can be freely edited as needed. When modifying the 
Velocity Template Language careful attention should be paid to the syntax so that errors 
are not introduced. Any line which begins with a pound (#) symbol or any variable 
surrounded by ${} could potentially be dangerous to alter. 
 
Modifying Bullets in Warngen 
Bullets can be added to warngen by editing cave/etc/warngen/severethunderstorm.cfg. 
The <bullets> tag contains several existing bullets and additional bullets can be added by 
following the  basic pattern <bullet bulletName=”x” bulletText=”y”> in the proper order. 
After the bullet has been successfully added to severethunderstorm.cfg, the 
cave/etc/warngen/severethunderstorm.vm file must be modified to take that bullet into 
account. 
 
When adding a Call To Action a statement similar to Example #4 in the following 
section should be  followed. First check if the list contains the bulletName using an if 
statement. Insert the text for the Call to Action on the following line, followed by an 
empty line. Finally, finish the if statement with a #end. 
 
VTL Examples 
The following VTL examples are taken directly from the severethunderstorm.vm 
template: 
 

Example #1: 
 

#if(${mode}=="test" || ${mode}=="practice") 
TEST...SEVERE THUNDERSTORM WARNING...TEST 
#else 
SEVERE THUNDERSTORM WARNING 
#end 
 
The above example is a typical if statement. If the mode is set to test or practice then 
“TEST...SEVERE THUNDERSTORM WARNING...TEST” is printed to the SVR 
product, otherwise “SEVERE THUNDERSTORM WARNING” is printed 
 

Example #2: 
${officeLong} HAS ISSUED A 
 
The above example will output “THE NATIONAL WEATHER SERVICE IN OMAHA 
HAS ISSUED A” if officeLong is set correctly in 
caveData/configuration/site/OAX/com.raytheon.viz.warngen/config.xml 



 

 
Example #3: 

#if(${list.contains($bullets, "doppler")}) 
  #if(${stormType} == "line") 
     #set ($report = "NATIONAL WEATHER SERVICE DOPPLER 
RADAR INDICATED A LINE OF SEVERE THUNDERSTORMS") 
  #else 
     #set ($report = "NATIONAL WEATHER SERVICE DOPPLER 
RADAR INDICATED A SEVERETHUNDERSTORM") 
  #end 
#end 
 
The above example shows a compound control structure. If the bullets list sent from 
warngen contains the “doppler” bullet (as indicated by the bulletName in 
cave/etc/warngen/severethunderstorm.cfg) the inner if statement is reached. At that 
point if the  stormType is line then the report text is set to a message indicating a line of 
storms. Otherwise the  report text is set to a message indicating a single storm. Finally, 
the first #end ends the stormType if  statement and the second #end ends the list.contains 
if statement. 
 

Example #4: 
#if(${list.contains($bullets, "torWatchRemainsInEffect")}) 
${testMessage}A TORNADO WATCH REMAINS IN EFFECT FOR THE 
WARNED AREA. IF A TORNADO IS SPOTTED... ACT QUICKLY AND 
MOVE TO A PLACE OF SAFETY IN A STURDY STRUCTURE...SUCH AS A 
BASEMENT OR SMALL INTERIOR ROOM. 
 
#end 
 
This example is a typical call to action line and should be replicated for any additional 
Call to Action lines. The line beginning with #if determines if the 
torWatchRemainsInEffect bullet was highlighted in Warngen. If it is, the contents of 
the testMessage variable are printed followed by the next three lines of text. The #if 
statement ends at the #end line. 
 

Example #5: 
#foreach (${city} in ${pc.points}) 
#if(${city.roundedDistance} < 3) 
## close enough to not need azran, considered OVER the area 
${city.name}## 
#else 
## needs azran information 
${city.roundedDistance} MILES 
#direction(${city.roundedAzimuth}) OF ${city.name}## 
#end 
#end 
 



 

This example shows a foreach loop. pc.points is an array of cities affected by the 
pathcast of the storm. These objects should not be modified, but they can be used and 
displayed. 
 
The loop covers the first line of the example until the final line for each item in the array 
pc.points. Each item in this array is temporarily renamed to city when it goes 
through the rest of the template. The #if statement checks if the roundedDistance of 
the city (which determines how far the city is from the pathcast) is less than 3 miles. If 
this is true the cities name is printed. Otherwise, the roundedDistance is printed to 
indicate in the warning that the storm is roundedDistance miles in 
roundedAzimuth direction of the city.  Notice that the line beginning with two pound 
symbols (##) is a comment. These can be used anywhere within a template. 


