
Localization Overview
Briefly, the localization process is defined as automatically providing a minimally functional
version of the site specific data required to support operations at a local office based on a single
national configuration data set. The localization process provides the means to override that
default functionality locally.

Most everything that has to do with localization lives in the directory ${FXA_HOME}/data or
its subdirectories. FXA_HOME is an environment variable that currently points to /awips/fxa by
default. Assume that LLL is an arbitrary localization ID (examples of this would be EAX and
BOX, which refer to the WFOs at Pleasant Hill, MO and Taunton MA, respectively). Here are
the directories that are important to localization.

${FXA_HOME}/data/ Contains a few of the national configuration
data set files.

${FXA_HOME}/data/localization/nationalData/
Contains the rest of the national data set files.
This directory is cross mounted to the data
device.

${FXA_HOME}/data/localization/LLL/ Contains the files specific to the LLL site that
are delivered with each software release.

${FXA_CUSTOM_FILES}/

Contains locally installed customizations that
are not delivered with each software release.
This currently defaults to
/data/fxa/customFiles.

${FXA_HOME}/data/localizationDataSets/LLL/

When running a localization for site LLL, files
get written to this directory. Files in this
directory are read at runtime and make the
behavior of the LLL localization unique.

${FXA_HOME}/data/localization/scripts This directory contains all of the localization
scripts.

${FXA_HOME}/data/localization/documentation This directory contains online documentation
about localization.

Please note that the contents of the directories ${FXA_CUSTOM_FILES}/ and
${FXA_HOME}/data/localization/LLL/ cannot affect the way the workstation or ingest behave,
they can only change the way a localization runs. The directories that can affect the way AWIPS
process behave are ${FXA_HOME}/data/, ${FXA_HOME}/data/localization/nationalData/ and
${FXA_HOME}/data/localizationDataSets/LLL/.

One should also note that any change made manually in the directory
${FXA_HOME}/data/localizationDataSets/LLL/ can potentially be overwritten the next time a
localization is run; thus this is the wrong place to make changes to the default functionality. This
not only refers to modifying existing files, but changes implemented by adding or removing files.
It is reasonable to do testing by making manual modifications in

${FXA_HOME}/data/localizationDataSets/LLL/, but one should never attempt to permanently
implement a change this way.

An even more important corollary to this is never make a file in the localization data set
unwritable in an effort to preserve it. This can cause the localization to break. There have been
instances where an attempt to distribute new national data sets has been disrupted by widespread
presence of unwritable files. Because of this, localization starts by making all of the files in the
localization data set writable. If one really needs to modify a file that localization has produced,
it is better to create a script patch file with sed, awk, or perl commands to modify the file. See
section 2 of fileChanges or scriptOverride for more information about script patch files.

Changes in ${FXA_HOME}/data/ or ${FXA_HOME}/data/localization/nationalData/ will not
be overwritten by running a localization, but they will be overwritten when a new build is
released. Furthermore, they can inadvertantly affect other localizations that an office might need
to support backup responsibilities. Thus, implementing changes here is also not recommended.

Changes in ${FXA_HOME}/data/localization/LLL/ are not guaranteed to survive an upgrade,
but they will not be overwritten by running localizations and will not affect other localizations.
This is often the best place to implement a change, but one needs to save any files placed here in
case they need to be restored after a new build is delivered.

The best place to implement a change is in ${FXA_CUSTOM_FILES}/. A file here that begins
with `LLL-' will be specific to a particular localization; without that prefix it can potentially
affect all localizations. Files here will survive both running localizations and the installation of a
new build. However, not every override file can be implemented in this directory. One should
see the on-line localization document fileChanges for more information about which override
files can be implemented where.

There are some very important things to keep in mind when making local modifications to
AWIPS. First, don't change things on the data servers unless you are instructed to. A corollary to
this is to make sure you try changes on one workstation before you propagate them to the others.
Second, if applicable, always make a copy of the file you are modifying in case you need to back
out of the change. Third, always keep a copy of your new file in case you either have to restore it
after an upgrade or just to back it up in case you have a disk failure or something.

The script ${FXA_HOME}/data/localization/scripts/mainScript.csh is what is actually executed
to run a localization. Running the script with a single argument `h' will print a usage message.

Documentation
There is a known limitation concerning this documentation: a good deal of it was written in order
to support other developers that might have to maintain localization code and thus it is reference
rather than tutorial in nature. That being said, there is still a lot of information that one can glean
from these documents. Furthermore, using the online documents delivered with the load reduces
the chance that a person would be working with information not applicable to the current
software build.

Here is a catalog of the localization documentation. Where documentation files refer to utility
programs, the name of the program is the same as the name of the documentation file without the
extension, and the programs can be found in ${FXA_HOME}/bin.

Descriptive Documents

localization

This is the most detailed and complete document concerning localization. Definitely not light
reading.

adaptivePlanViewPlotting

Information about how to change the look and feel of existing plan view plot displays and how to
add new ones.

characterSets

This contains a high level treatment of AWIPS character sets, including illustrations.

developers

Originally written to help developers make the transition from pre-localization environment to
the post-localization environment, this is a useful high level treatment of how to run
localizations.

directives

Information about how to manipulate software switches that appear in the mainConfig.txt and
wwaConfig.txt files. Includes a useful high-level treatment of file override.

families

This document discusses the mechanism by which families are auto-generated in the localization.

fileChanges

Contains a fairly detailed treatment of how file override works. It also contains tables that are a
comprehensive list of all of the files in localization that can have their functionality overridden,
in which directories that override can be implemented, and which localization tasks need to be
run to complete the implementation.

gridTables

Information about how to manage the tables that control what products are available through the
Volume Browser.

ldadContouring

Information about how to configure contour depictions of arbitrary LDAD mesonet variables.

mainScript

The usage message printed by mainScript.csh.

purgeTables

This document discusses how the purger configuration tables work.

radarLocalization

General information on radar localization, with some emphasis on new OB3 features.

radarMosaics

Describes how to manage the radar mosaics that are generated on the fly.

README.GRIDS

Contains a high-level treatment of managing the metadata associated with the Volume Browser.
Very developer oriented, it should be used with care.

satDirs

This is an overview of the default satellite data directory structure on AWIPS.

scriptOverride

Explains how overriding the functionality of localization scripts works. This document was
written because the way script override works changed significantly in OB5.

shapeFileDisplay

This describes how one can display shape files directly as map backgrounds.

staticProgDisc

Information about how the visibility of stations in plan view plots is controlled as one zooms in.

styleRules

Information about how to change the look and feel (for example, contour intervals) of Volume
Browser products.

TextTemplate

Information about how to change the functionality of warnGen templates.

warngenBackup

A very high level description of how to set up service backup for warnGen.

Utility Programs

bcdProc

Usage documentation for the utility program that manipulates binary cartographic data files (.bcd
and .bcx files), which are the primary real time source for vector map background data.

fileMover

Usage documentation for the utility program fileMover. This utility program is used nearly every
time a file is moved into the localization data set from some other directory, instead of a mv or
cp command. The way the utility program fileMover works is central to making file override
work correctly.

GELTtest

Usage documentation for the utility program that is a unit test for the software that reads
geographic entity lookup tables. It is also used in localization scripts to extract information from
GELTs.

image_mask

Usage documentation for the utility program that is used to manipulate the contents of one GELT
based on another.

initCdlTemplate

Usage documentation for the utility program that writes geographically dependent and
topographic information into a template netCDF file.

keyMunge

Usage documentation for the utility program that is used to automatically change key values in
any AWIPS key indexed file.

makeGridKeyTables

Usage documentation for a program that builds all of the keys for the Volume Browser based on
the source, field, and level tables.

maksubgrid

Usage documentation for the utility program that makes geographic depictor files that represent a
clipped portion of a grid.

maksuparg

Usage documentation for the utility program that creates geographic depictor files (.sup files).

makthermo

Usage documentation for the utility program that makes thermodynamic depictor files.

makxsect

Usage documentation for the utility program that makes cross section depictor files.

newGELTmaker

Usage documentation for a utility program that creates geographic entity lookup tables (GELTs).
This program is a more flexible and user friendly version of the older program makeGeoTables
(this program is obsolete and has been removed from AWIPS). It also has some useful overview
information about GELTs.

pasteUtil

Usage documentation for the utility program that merges several files together, interleaving the
data as columns.

processStyleInfo

Usage documentation for a program that creates all of the style information for Volume Browser
products based on .rules files.

rangeAzimuth

Usage documentation for the utility program that is used to do range and azimuth calculations in
scripts.

reformatTest

Usage documentation for a utility program that was written primarily to convert older netCDF
point data files and convert them to the new format required to support adaptive plan view
plotting. This program can also be used to create and modify such data sets for testing.

shp2bcd

Usage documentation for the utility program that reads data from shape files and writes out
binary cartographic data files.

testDepictorTable

Usage documentation for the utility program that makes depictor tables, which are used to
optimize the use of two geographic depictors in remapping operations.

testFileNotify

Usage documentation for a utility program that allows one to generate notifications for data sets
not brought in through the normal AWIPS ingest.

testGridKeyServer

Usage documentation for a program that is a unit test for the software that reads in source, level,
and field tables for the Volume Browser. It is also used in localization scripts to extract
information from these tables.

testGridSliceWrapper

Usage documentation for a program allows access to AWIPS gridded data sets. Returns data as
plain ASCII.

test_grhi_remap

Usage documentation for the utility program that is a standalone gridded data to image data
remapper.

testPlotDesign

Usage documentation for a utility program that can be used to test and verify the parsing of
design files. Can also test the inventory and data access functions.

textBufferTest

Usage documentation for the utility program that can read a text file, interpreting all of the
#include commands and removing comments and blank lines.

va_driver

Primarily usage documentation about the utility program which is used to create progressive
disclosure information for plan view plots. Includes a useful treatment of the files involved in
this process.

The WFO-Advanced Localization Process

Table of Contents

1. What is localization?
2. Some background
3. Overview

3.1) The Localization Software Environment
3.2) Defining Localizations
3.3) Creating and Using Localizations

4. Functional breakdown - Localization Scripts
4.1) mainScript.csh
4.2) Some generic utility scripts
4.3) makeDataSups.csh
4.4) makeScales.csh
4.5) makeClipSups.csh
4.6) assembleTables.csh
4.7) makeTextKeys.csh
4.8) makeTopoFiles.csh
4.9) updateGridFiles.csh
4.10) updateRadarFiles.ksh
4.11) makeMapFiles.csh
4.12) makeWWAtables.csh
4.13) makeStationFiles.csh
4.14) makeDirectories.csh
4.15) createAuxFiles.csh
4.16) makePurgeTables.csh
4.17) fxatextTriggerConfig.sh
4.18) LAPS localization
4.19) MSAS localization

5. Files in the national data set
5.1) Scale table
5.2) Process config files
5.3) Main and manual data and depict key files
5.4) Text database and depictable localization
5.5) Satellite data and depictable keys
5.6) Product button file
5.7) Menu files
5.8) Shape files
5.9) Vector map background files
5.10) Topography files

5.11) Gridded data and Volume Browser tables
5.12) Display style files
5.13) Radar-related files
5.14) Files related to WarnGen
5.15) Files that control stochastic progressive disclosure
5.16) Color table files
5.17) Run time config files
5.18) Files which control plan view plotting
5.19) Files that specify the MSAS domain, background, and user-definable variables

6. Other site-specific control files
6.1) Localization config files

6.1.1) LLL-mainConfig.txt
6.1.2) LLL-cwa.asc
6.1.3) LLL-wwaConfig.txt

6.2) Files referred to through #include
6.2.1) Depict keys, data keys, and product buttons
6.2.2) Menu files

6.3) File override expansion
6.3.1) Menu files
6.3.2) Map background files
6.3.3) Topography and cdl files for gridded data sources
6.3.4) Product templates for WarnGen
6.3.5) GELT script files
6.3.6) Station lists

6.4) Files used to activate and deactivate data sets
7. Localization programs

7.1) fileMover
7.2) Programs that create depictor files
7.3) Programs that manipulate key files and menu files
7.4) Programs that manipulate cartographic data sets
7.5) Programs that manipulate tables for gridded data and the Volume Browser
7.6) Program that creates geographic entity lookup tables
7.7) Programs that create station and localization lists

8. Realization definition files
9. Customization

1. What is localization?

The WFO-Advanced workstation and data ingest software have been installed in every National
Weather Service (NWS) Weather Forecast Office (WFO), River Forecast Center (RFC), and
Regional Headquarters in the nation, as well as at some national centers. While a great deal of
the system functions and data sets are common to nearly all of these offices, much will be
unique to each site. The localization process is defined as automatically providing a satisfactory
version of the site specific data required to support operations at a local office based on a single
national configuration data set.

The form of the national configuration data set has been designed in a joint effort between the
NWS and FSL, and is still under development. The national configuration data set currently
contains information about counties, cities, zones, topography, rivers, etc., and is maintained at
NWS headquarters in cooperation with the local offices. Changes to these basic data sets will be
distributed to each office. Each office is able to incorporate these changes into all of their local
configuration data sets by running a single script.

This document was originally written with other developers as a target audience. If one is new
to the world of localization, it's best to first read the Localization Overview.

2. Some background

When the WFO Advanced system was first developed, all of the configuration data sets were
treated like source code; that is, they were manually maintained and kept in a source code
control system. As the complexity of the configuration data sets increased, it became
impractical to maintain each individual configuration data item manually. This meant that for
some configuration data sets, we began to maintain tables that described how to construct
these data sets, and created these configuration data sets by running programs. The gridded
data sets accessible through the Volume Browser were the first to use this paradigm. These
dependent configuration data sets were initially still maintained in source control.

The real beginnings of the localization process (although at the time it was not called that) were
when we removed these dependent configuration data sets from source control and began
generating them on a regular basis in our software builds. What this did, in effect, was to
generate a default Denver localization each time we did a software build. This created a
problem in that our software directory structure was designed to handle the interrelationships
in our source code well, but it did not well reflect the interrelationships between our
dependent data sets and the programs that created them. As such the data targets in our
software builds got to be very messy, so some sort of separate process for generating the
dependent data sets would have eventually been developed even if national deployment was
not an issue.

When it became known that the WFO-Advanced system was going to be deployed nationwide,
it was immediately apparent that developing an automated localization process independent of

our software build process was absolutely essential. Design for this started in October 1996 and
development began in December that year. By mid January 1997, enough of the localization
process was working that we were able to remove the default Denver localization from the
software build process. In late January the first of the data sets provided by NWS headquarters
were incorporated into the localization process. The WFO-Advanced system that went to the
AMS conference in February 1997 was the first deployment of a WFO-Advanced system that
relied on the localization process for its configuration data. The WFO-Advanced upgrade
installed in the Denver WFO at the end of February 1997 was based on the localization process,
as was the first major software hand-off the NWS in March 1997. In October 1997, a formal
methodology for including local customization was developed. As of this writing, the basic
structure of the localization scripts is complete, and all of the major data sets that make up the
national configuration data set are implemented.

3. Overview

3.1) The Localization Software Environment

The localization process in WFO Advanced relies on a national configuration data set, a set of
scripts and programs for creating the local configuration data sets from the national data, and a
set of files that allow one to tailor a specific localization beyond what would be available from
the national configuration data set and the default behavior of the localization scripts.

In our source code control system in $FXA_HOME/src, there is a subdirectory called
'localization' where all of the scripts, national data, and local data used by the localization
process reside. Source code for programs used by the localization scripts is distributed amongst
the other source directories; the localization directory contains only scripts, configuration data,
and documentation.

There are five subdirectories in the localization source directory: 'scripts,' 'nationalData,'
'documentation,' 'localData,' and 'realizations.' As the names would suggest, the scripts
directory is where the localization scripts reside, the nationalData directory is where the
national configuration data set resides, and the documentation directory is where user and
developer documentation is kept. The localData directory is where the site-specific control files
are kept, and the realizations directory is the home of special site-specific control files that
change the behavior of groups of localizations.

Running the 'data' target in the localization source directory causes all of the files needed to
create localizations to be moved to the directory $FXA_HOME/data/localization. When
localizations are created, they use the data and scripts from $FXA_HOME/data/localization, not
from the source tree. This is because it is necessary to create localizations in the field, and field
sites will not have a source tree, only $FXA_HOME/bin and $FXA_HOME/data. It is important to
remember that the act of running the data target in the localization source directory only
moves files over to the directory $FXA_HOME/data/localization; it does not create a usable
localization.

Upon running the data target in the localization source directory, the files in the nationalData,
scripts, and documentation subdirectories get moved directly to subdirectories of the same
name in the directory $FXA_HOME/data/localization.

The files in src/localization/localData get exploded into a directory structure. The name of every
site-specific control file in localData looks like LLL-blahblah.blah, where LLL is the identifier of a
localization (not necessarily 3 characters long). A file in src/localization/localData called LLL-
blahblah.blah ends up being moved to the directory named data/localization/LLL by the data
target in the localization source directory. The reason for this is that while it is painful to add
directories in our source code control system, we want what is installed in the field to have a
separate site control directory for each localization. Because a '-' is used as the delimiter that
separates the localization identifier from the rest of the file name for site specific control files,
one should never try to use a '-' in a localization identifier.

Files in src/localization/realizations behave similarly. The name of every realization file in
realizations looks like RRR--blahblah.blah, where RRR is now the realization identifier. Such a
file ends up in data/localization/realizations/RRR. Two '-' characters are used as the delimiter so
it is harder to mistake a realization file from a local site specific file. Realizations are mentioned
here so that the reader will understand their general function. Not much else will be said about
them until much later because most localizations are not associated with a realization.

In order to make use of the results of the localization process, all of the WFO Advanced
workstation and data ingest processes use a single software module, called InfoFileServer, to
locate static metadata files. This module always checks a series of predefined directories, some
specific to a given localization and some generic, in a well-defined order when trying to locate a
file. Incorporated into most of the software that actually reads static metadata files is the ability
to interpret C/C++ style #include statements, along with automatic environment variable
translation in these statements. This means that any new software written that reads static
metadata files should always use the InfoFileServer class to locate these files.

All of the discussion in the next two sections is predicated on the user having access to a full
build of the WFO Advanced software tree.

3.2) Defining Localizations

So far, localization identifiers have been discussed in only generic terms. It is not possible to just
pick a character string at random and use it as a localization identifier -- a localization identifier
must first be defined.

The NWS has provided us with a file that contains information about county warning areas. The
identifiers of all county warning areas are automatically defined to be valid localization
identifiers. One can produce a list of these identifiers by running the command

 $FXA_HOME/data/localization/scripts/cwaIds.csh

Running this same command with the -a option will provide a list of all currently defined
localizations.

It is also possible to define additional localizations by creating certain types of site-specific
control files. As the reader will recall from the previous section, site-specific control files exist in
the source tree in the directory src/localization/localData, have file names that look like LLL-
blahblah.blah, and get moved to data/localization/LLL when the software tree is built. A
localization can be defined with a site-specific control file that is named either LLL-
mainConfig.txt or LLL-cwa.asc. The cwa.asc file is just a one line file with a latitude and
longitude around which to center the WFO scale. Files with names that look like LLL-
blahblahConfig.txt contain what are referred to as directives (see directives.html), which are
lines in a file that begin with @@@. In order for a mainConfig.txt file to properly define a
localization, it must contain a @@@WFO directive, a @@@CLONE directive, or a
@@@REALIZATION directive. The argument of a @@@WFO directive must be a county
warning area identifier, and the argument of a @@@CLONE directive must be the identifier of
some other defined localization which is not itself a clone (see also Section 6.1). The argument
of a @@@REALIZATION directive must be the identifier of a correctly defined realization (also
see Section 8).

Here we have mentioned only two possible types of site-specific control files and two possible
directives. There will be much more on this later.

3.3) Creating and Using Localizations

To actually create a localization, one also needs to define some environment variables. Here is a
list of the environment variables that are currently applicable to the localization process, along
with their values:
 FXA_NATL_CONFIG_DATA = ${FXA_HOME}/data/localization
 FXA_LOCALIZATION_SCRIPTS = $FXA_HOME/data/localization/scripts
 FXA_LOCALIZATION_ROOT = $FXA_HOME/data/localizationDataSets
 FXA_LOCAL_SITE = LLL
 FXA_INGEST_SITE = III
FXA_NATL_CONFIG_DATA points to where the source data for localizations reside, and
FXA_LOCALIZATION_ROOT points to where the finished localization subdirectories go.
FXA_LOCALIZATION_SCRIPTS is where all of the localization scripts are run from.
FXA_LOCAL_SITE is meant to point to the localization currently being used, and
FXA_INGEST_SITE is meant to point to the localization currently being run on the data server.

There is also a bare minimum set of programs that must be built in order for one to run all tasks
of a localization. Programs not needed to run the default list of tasks are noted with an asterisk.
The function of these programs will be described in detail later. For now, the list of programs is:

 $FXA_HOME/src/dm/shapefile/shp2bcd
 $FXA_HOME/src/dm/grid/initCdlTemplate
 $FXA_HOME/src/dm/grid/makeGridKeyTables
 $FXA_HOME/src/dm/grid/processStyleInfo

 $FXA_HOME/src/dm/grid/testGridKeyServer
 $FXA_HOME/src/dataMgmt/fileMover
 $FXA_HOME/src/dataMgmt/keyMunge
 $FXA_HOME/src/dataMgmt/pasteUtil
 $FXA_HOME/src/util/textBufferTest
 $FXA_HOME/src/geoLib/bcdProc
 $FXA_HOME/src/geoLib/maksuparg
 $FXA_HOME/src/geoLib/test_grhi_remap
 $FXA_HOME/src/geoLib/maksubgrid
 $FXA_HOME/src/geoLib/rangeAzimuth
 $FXA_HOME/src/mapping/testDepictorTable
 $FXA_HOME/src/mapping/makthermo
 $FXA_HOME/src/mapping/makxsect
 $FXA_HOME/src/mapping/testDepictorTable
 $FXA_HOME/src/staticPlotData/va_driver
 $FXA_HOME/src/staticPlotData/masterToGoodness
 $FXA_HOME/src/geoTables/newGELTmaker
 $FXA_HOME/src/geoTables/GELTtest
 $FXA_HOME/src/geoTables/image_mask
 $FXA_HOME/src/dm/point/reformatTest
 $FXA_HOME/src/dm/point/testPlotDesign
 $FXA_HOME/src/tstorm/localize/create_radarLoc *
 $FXA_HOME/src/tstorm/localize/sitefinder *
 $FXA_HOME/src/ffmp/localize/localizeForFFMP *
In an environment with no source tree, all of these programs will, of course, be in
$FXA_HOME/bin.

In order to actually create a localization, go to the directory
$FXA_HOME/data/localization/scripts and issue the command 'mainScript.csh LLL LLL'. This will
build the localization with the identifier LLL. mainScript.csh takes 5-20 minutes to run,
depending on the type of machine one is running on and the complexity of the localization. It
will produce quite a few diagnostics, which will be discussed later. The files for this localization
are put in a directory named $FXA_HOME/data/localizationDataSets/LLL.

To run a workstation or an ingest process, the environment variable FXA_LOCAL_SITE must be
set to the identifier of a successfully created localization. This is because there is a single
software module used throughout the WFO Advanced software to find static metadata files.
When asked to find a file, it first looks in $FXA_LOCALIZATION_ROOT/$FXA_LOCAL_SITE, then
in $FXA_NATL_CONFIG_DATA/nationalData, then in $FXA_HOME/data, and if all these fail it will
try the current working directory.

The environment variable FXA_INGEST_SITE is important because it is possible for a data server
to be running one localization when a workstation is running a different one. In general, the
data server will run the same localization over time, where workstations might run different
localizations. If, when building a localization, one issued the command 'mainScript.csh LLL III',
this will build a localization named LLL on the assumption that its data server is using the
localization named III. Issuing the command 'mainScript.csh' is the same as issuing the
command 'mainScript.csh $FXA_LOCAL_SITE $FXA_INGEST_SITE', and the command

'mainScript.csh LLL' will produce the same result as running the command 'mainScript.csh LLL
$FXA_INGEST_SITE'. What this means is that FXA_INGEST_SITE is set to be whatever localization
the data server is running, so that when localizations are built using a single localization
identifier, they will be able to properly interpret data from the data server.

4. Functional breakdown - Localization scripts

As previously described, all of the localization scripts are placed in the software tree in the
directory $FXA_HOME/src/localization/scripts, and run out of the directory pointed to by the
environment variable FXA_LOCALIZATION_SCRIPTS. FXA_LOCALIZATION_SCRIPTS is currently
defined to be $FXA_HOME/data/localization/scripts.

4.1) mainScript.csh

The script mainScript.csh is mostly an executive; it delegates the creation of localization data
sets to subordinate scripts. mainScript.csh verifies that the correct localization environment
exists and that the localization that the user is attempting to build is viable. mainScript.csh also
performs a couple of functions that are hard to isolate in a single subordinate scripts; assuring
that any out-of-date mapping tables are disposed of and removing any files created in the
localization data set that are identical to files in $FXA_HOME/data or nationalData/. It also
allows the user to select which portions of the entire localization function are to be performed.

The usage of mainScript.csh is as follows:

mainScript.csh {h} {n} {f} {t} {v} {+task} {-task} {-task} {loc_id} {ingest_id}
Note that all of the arguments are optional. However, if run with no arguments at all in an
environment without a source tree, it will print out a usage message. The usage message can
also be printed out by using the 'h' argument. If run with no arguments with a source tree
present, mainScript.csh will perform all default localization tasks with the localization identifier
of $FXA_LOCAL_SITE and an ingest localization identifier of $FXA_INGEST_SITE. The 'loc_id'
argument allows one to specify the localization identifier on the command line, and the
'ingest_id' argument allows one to specify the ingest localization identifier on the command
line.

The 'n' option must be used if one is changing the customization environment for an existing
localization. This means when the value of the environment variables FXA_CUSTOM_FILES or
FXA_CUSTOM_VERSION changes. See section 9.0 on customization for more information about
this. The 'n' flag must also be used if one wants to rerun an existing localization using a different
ingest site.

There is now some logic in localization that allows it to detect when certain files are up to date
and thus avoid recreating those files. If the 'f' option is present, this logic is disabled.

When mainScript.csh runs, it will echo to the user the list of localization tasks it is performing.
Also, it will tell the user which subordinate script it is currently running, and some of the
subordinate scripts produce some diagnostics of their own. The 'v' option will cause it to echo
individual commands executed in the subordinate scripts. Currently, the complete list of default
task options is as follows:

dataSups scales clipSups tables text topo grids radar maps wwa station
The '+task' option means perform that task and any tasks that follow. The '-task' option means
just perform that task. One should use the +task option only once and it should be the first task
option. One can use as many -task options as needed. Using the option '+dataSups' would be
the same as the default behavior. To just verify whether a localization is viable, one can use a -
task option for a non-existent task, such as '-x'. There are also seven non-default tasks, all of
which but the first two run after all the default ones. They are invoked with one of the following
list of task IDs:

laps msas dirs auxFiles scan purge trigger
The 'laps' task is used to create metadata specifically for running the Local Analysis and
Prediction System. Likewise, the 'msas' task creates metadata for running the MAPS Surface
Assimilation System (MSAS). The 'dirs' task will assure the creation of all data directories on
$FXA_DATA, as determined by the current state of the dataInfo.txt file, with all of its include
files. 'auxFiles' will create any other miscelleanous files that need to be moved to the data
device. The 'scan' task creates metadata for running SCAN/FFMP. The 'purge' task will build the
purge tables for the new purger. 'trigger' creates text product triggers.

A task option of '-all' will cause all default and non-default tasks to run. Additionally, the
arguments '-WS', '-DS', and '-PX' will result in running only those tasks absolutely necessary for
localizations that reside on the workstation, data server, and application server, respectively.
The task -WWA (upper case as opposed to lower case) will run just enough localization tasks to
support running WarnGen for a localization ID that has not yet been run. A leading 't' option
will cause it to only verify that the localization ID selected is valid, list the tasks that would be
run, and verify the path to each of the subordinate scripts being used.

The task selection functionality of mainScript.csh would be subverted should the user choose to
define localization identifiers that begin with a '-' or '+', so this should never be done.

The user should note that the task options cannot change the order in which the subordinate
scripts are run; it can only specify which subordinate scripts are run. This is because some tasks
are dependent on previous tasks to function correctly. In general, one can expect to get
meaningful results from running a given task only when the all of the preceding tasks have been
successfully completed.

Within mainScript.csh it will also try to run subordinate scripts called test1.csh, test2.csh, or
test3.csh if the task options '-test1', '-test2', or '-test3' are supplied. The user can place a test
script by any of these names into $FXA_LOCALIZATION_SCRIPTS and have them run within the
localization environment. These tasks always run after the regular tasks have completed, and

will not be activated by the '-all' task option. Another task that behaves just like the test tasks is
(run last, not with -all) is the 'fixGeo' task. Running this task on the data server will remedy the
situation where the template files in the gridded data directories do not contain the correct
geographic information.

The environment variable FXA_LOCALIZATION_LOG, if set, will cause the diagnostic output from
mainScript.csh to be written to that file. Also, this will cause additional diagnostic output to be
generated, including lists of files changed since the last time a localization was run. Using the 't'
or 'v' flags will cause logging to be turned off.

Sections 4.3 through 4.14 will talk about all of the subordinate scripts in turn.

4.2) Some generic utility scripts

There are three generic utility scripts that are used by virtually every subordinate script to help
do their work. getPath.csh is a generic file finding script that is very analogous to the module
InfoFileServer found in $FXA_HOME/src/foundation. fileGrab.csh is used to move groups of site
specific control files with similar names from $FXA_HOME/data/localization to their proper
place in $FXA_HOME/data/localizationDataSets. doPatches.csh is actually meant to be sourced
rather than run as an independent script. In a subordinate script named blahblahblah.csh,
sourcing doPatches.csh will cause the site specific control file LLL-blahblahblah.patch to be
sourced if it exists. This allows an easy way to add functionality to subordinate scripts that
cannot be done with a file replacement operation. There is also an analog to doPatches.csh
called doPatchesI.csh that can be sourced to do the same thing based on the ingest localization
instead of the display localization. See scriptOverride.html for more information on overriding
script behavior.

There are four other generic utility scripts that are not as widely used, but nonetheless are very
important: configValue.csh is used to obtain the value of directives; newerUtil.csh provides a
means to determine if a dependent file is older that the file from which it is created, and thus
must be recreated; scaleSup.csh is used to get the geographic information file (depictor file) for
a given scale index; and stdErr.ksh gives a unified way of sending text to standard error -- this is
the only way to produce diagnostics in scripts that output data to standard output as their
primary function.

4.3) makeDataSups.csh

The script makeDataSups.csh is controlled by the 'dataSups' task option. The purpose of this
script is to create all of the geographic information files (depictor files) that describe the
geographic characteristics of various data sets. In order to do its job, this script makes use of
the programs maksuparg and makthermo and the script raobUtil.csh.

4.4) makeScales.csh

The script makeScales.csh is controlled by the 'scales' task option. The purpose of this script is
to create all of the geographic information files (depictor files) that describe the geographic
characteristics of displays. This includes display scales, of course, but also includes the default
state of the movable cross section, time section, and sounding depictors. It is also where the
scaleInfo.txt file is handled. In order to do its job, this script makes use of the programs
maksuparg, makxsect, makthermo, and rangeAzimuth. This is the only subordinate script where
the generic .patch file replaces functionality instead of adding functionality when available and
sourced.

Unlike the other subordinate scripts in the localization process, this one has an optional
command argument. The optional argument is meant to be a localization identifier. When the
optional argument is supplied, the depictor files created for each scale will be tagged with that
localization identifier instead of named generically.

4.5) makeClipSups.csh

The script makeClipSups.csh is controlled by the 'clipSups' task option. When the 'clipSups' task
is invoked, makeScales.csh is first called with the ingest localization identifer
($FXA_INGEST_SITE by default) as an argument. This creates a set of scale depictors that are
specifically identified as being associated with the localization that is assumed to be running on
the data server. Then, makeClipSups.csh is called, which actually generates those scale
dependent data set depictor files that are other than just tagged scale depictors, such as the
one for the clipped mesoEta grids. This is necessary because some data sets are created in a
manner that is dependent on a display scale, such as the regional satellite sector, the mesoEta
grids, or the LAPS grids. If a workstation were running a different localization than the data
server and only had access to its own generically named depictor files, it would attempt to map
these clipped data sets as if they were clipped according to its own localization, not the data
server's. The user should note that it is within this second invocation of makeScales.csh that the
decision is made as to whether to use east or west satellite.

4.6) assembleTables.csh

The script assembleTables.csh is controlled by the 'tables' task option. This script performs
many functions. It sees to it that files containing the manually defined data and depictable keys
are in place, and creates keys for satellite products. Satellite keys are adjusted for east vs west
CONUS sectors and to use the regional clip area of the data server through the inclusion of a
depictor file specifically tagged with the ingest site localization ID. assembleTables.csh grabs
files containing locally defined data and depictable keys as well. For product buttons, it also
verifies that the default manually defined version of that table is in place and grabs the file with
locally defined buttons, if needed. For menus, it makes use of the raobUtil.csh script to
construct a local RAOB menu with about 5 to 10 sites close to the center of the localization, and
to place the 2 to 4 closest RAOBs directly on the Upper Air menu. It sees to it that the default
menus are in place and will move any locally defined menus into the localization data set.
assembleTables.csh is where file override is implemented for design files and lookup table files,

which control plan view plotting (see adaptivePlanViewPlotting.html for more info). This script
is also where color tables are handled.

4.7) makeTextKeys.csh

The script makeTextKeys.csh is controlled by the 'text' task option. Using the textUtil.csh script,
makeTextKeys.csh determines the proper AFOS CCC to use and places it in the fxa.config file. It
also does distance based assignment of the number of versions of certain text products to keep,
and automatically generates data and depictable keys for text depictables that only use some
regional or local text products.

4.8) makeTopoFiles.csh

The script makeTopoFiles.csh is controlled by the 'topo' task option. This script makes the
topography data for high resolution topographic images and for those gridded data sources
whose geography is dependent on the location of the display scales. This script has 2.5 minute
world topography and 1km US topography at its primary data sets to derive other topography
data from. It also has 1km Alaska, 30 second Pacific and 30 second Carribean data sets
available. For creating certain data sets, the maksuparg program is used to determine whether
the area in question overlaps the US, Pacific, Alaska, or Carribean topography, otherwise it will
use the world topography. The program test_grhi_remap is what is used to make the derived
data sets. Topography data for gridded data sources can also be made available by moving
*.topo files from site specific control files into the localization data set.

4.9) makeGridSourceTable.csh and updateGridFiles.csh

The scripts makeGridSourceTable.csh and updateGridFiles.csh are controlled by the 'grids' task
option. These two scripts collectively perform all the tasks necessary to make gridded data
available through the Volume Browser. The script makeGridSourceTable.csh, whose job it is to
create the final version of gridSourceTable.txt, generally runs before any other task because
other tasks need that file. (The one exception to this rule is that the 'msas' task, if selected, will
run before the 'grids' task to create the files that define the MSAS domain.) The file
gridSourceTable.txt defines some characteristics for gridded data sources and specifies which
ones are currently active.

The script updateGridFiles.csh is used to create template files from the .cdl files for active
gridded data sources, and build the depictable keys and data keys associated with gridded data.
updateGridFiles.csh also creates style information (for example, contour intervals) from style
rules files, generates Volume Browser selection menus for sources and cross sections, and
generates the depictor files that represent the predefined lat/lon cross section baselines.
updateGridFiles.csh uses the program testGridKeyServer to generate lat/lon baselines and
Volume Browser menus, the program ncgen to make .cdlTemplate files, the program
initCdlTemplate to place geographically dependent static information into those .cdlTemplate

files, the program makeGridKeyTables to create the depictable and data keys, and the program
processStyleInfo to generate style information.

This script has the capability to utilize non-default versions of the files dataFieldTable.txt,
dataLevelTypeTable.txt, gridPlaneTable.txt virtualFieldTable.txt, and the *.rules files. How these
files are used to manage gridded data and the Volume Browser is a complex enough subject
that it is treated separately in the documents gridTables.html and styleRules.html.

4.10) updateRadarFiles.ksh

The script updateRadarFiles.ksh is controlled by the 'radar' task option. This script is used to
create the data, depictable, product button and multi-load keys associated with nexrad radar
data, as well as the needed menu structures. This is the only subordinate script written in the
korn shell, and is probably the most complex, as it has six subordinate scripts of its own.

There are four files that control which radars are ingested and displayed and on which scales,
all of which will have a default version generated if an override version is not supplied.
radarsInUse.txt and radarsOnMenu.txt control, respecitvely, which radars are ingested and
which radars appear on the menu. If needed, the default versions of these are constructed
using radar metadata in the shapefile nationalData/fsl-w88d plus some distance tests in a utility
script called radarUtil.csh. The files mosaicScales.txt and mosaicInfo.txt control which on-the-fly
mosaics are available on which scales. The default versions of these files will set up a single
mosaic available on scale 4 (usually the state scale) containing the nine nearest radars on the
menu.

updateRadarFiles.ksh calls genRadarDataKeys.ksh to make data keys, genRadarDepictKeys.ksh
to make depict keys, and makeRadarSups.csh to generate depictor files for all of the radars
known to the ingest. It also calls genRadarDataMenus.ksh to make menus,
genRadarProdButtonInfo.ksh to make product buttons, and genRadarMultiLoadKeys.ksh to
make multi-load entries for each radar on the menu. Finally, it calls doMosaicProcessing.ksh to
create depict keys, product buttons, and menus for selected products that are displayed as on-
the-fly mosaics.

updateRadarFiles.ksh and its subordinate scripts make use of several utility programs; shp2bcd,
keyMunge, pasteUtil, and maksuparg. See radarLocalization.html and radarMosaics.html for
more information about how radar localization works.

4.11) makeMapFiles.csh

The script makeMapFiles.csh is controlled by the 'maps' task option. The primary function of
this script is to make files that the workstation can read to draw vector map backgrounds. It
does this in three ways: first, it uses the program shp2bcd to convert shape files into either .bcd
files (binary cartographic data files) or .bcx files (extended binary cartographic data files), which
are the two formats the workstation can read to draw vector map backgrounds. Second, it uses

the program bcdProc to perform operations such as clipping and thinning on existing .bcd and
.bcx files. Finally, it can move .bcd and .bcx files that are site specific control files into the
localization data set.

4.12) makeWWAtables.csh

The script makeWWAtables.csh is controlled by the 'wwa' task option. The purpose of the
makeWWAtables.csh script is to construct the geographic entity lookup tables (GELTs) that are
needed by the WarnGen program, as well as the template files that are used to describe the
specific format of each type of product that can be generated by WarnGen.

This script manipulates two types of files to make the files that serve as templates for the
individual types of wwa products. Files in nationalData/ that have .preTemplate extensions are
used to create files that have .template extensions in the localization data set. These files
describe how to make generic blocks of text that can be used by many different wwa products,
such as county, city, and zone lists, or UGC code headers. These files are brought into the
specific templates for wwa products through an include mechanism. Files in nationalData/ that
have .preWWA extensions are used to create files that have wwaProd extensions in the
localization data set, and these files are the specific templates for WarnGen products. The
manner in which both the list templates and the product specific templates are created is
controlled by several different directives (see Section 6.1.3). For a description of how wwa
product templates are interpreted by the WarnGen program, see TextTemplate.html.

This script also uses the utility program newGELTmaker (see
href="newGELTmaker.doc.html">newGELTmaker.doc.html) to create geographic entity lookup
tables (GELTs). These tables form the basis for how the WarnGen program is able to create
descriptions of the area covered by a watch, warning, or advisory. newGELTmaker uses binary
cartographic data files, shape files, and other files with ASCII lists of locations and identifiers
(such as the CitiesInfo.txt file) as the raw material from which to construct geographic entity
lookup tables. Currently, makeWWAtables.csh tries to construct eight different GELTs: a table
for the county warning area of the localization, a wwa county table, a regional county table, a
wwa zones table, a regional zones table, a warning cities table, a watch cities table, a wwa
marine zones table, and a regional marine zones table. The files that control how these tables
are made are called gelt script files. The default gelt script files live in nationalData/ and have
file names that look like *_gsf.txt. Any override file named *_auto_gsf.txt will result in the
localization trying to automatically use that file as a GELT script file to create a GELT.

4.13) makeStationFiles.csh

The script makeStationFiles.csh is controlled by the 'station' task option. The purpose of the
makeStationFiles.csh script is to construct station lists that contain progressive disclosure
information in them. There are two types of station lists created here, station plot info files (.spi
files), which are meant to be used to control the progressive disclosure for plots or

stochastically distributed hydrometeorological data, and location plot info files (.lpi files) which
are just meant to be used for constructing map backgrounds with location information.

The source data for these are so called goodness files, which are files with a .goodness
extension and have two possible formats, compatible with either creating .spi or .lpi files. It is
also possible to create .lpi files from the .id file that is a component of a GELT or from the data
in the file $FXA_HOME/data/CitiesInfo.txt file. The goodness files are so named because they
contain a 'goodness factor' for each location, which is an arbitrary integer that says how
desirable it is to see a given station at a low zoom level; the higher the number the more
desirable it is to see the station at a low zoom. The program va_driver is used by
makeStationFiles.csh to convert these goodness factors into progressive disclosure parameters.
The progressive disclosure parameter used in WFO-Advanced is the distance in kilometers to
the nearest other station which is at least as likely to be seen at a given zoom.

makeStationFiles.csh uses the program shp2bcd to construct goodness files from shape files,
the program GELTtest to restrict station lists to only those in a given geographic entity (such as
a county warning area), and bcdProc to restrict station lists to only those within the area of a
depictor file (which describes a display scale, for instance).

Station plot info (.spi), location plot info (.lpi), .goodness files, and CitiesInfo.txt are all plain
ASCII, and so can be managed manually. The preferred method is to change the .goodness files
and then rerun makeStationFiles.csh, rather than to edit .spi or .lpi files directly.

Finally, makeStationFiles.csh uses the utility program reformatTest to create any predefined
static plan view plot data sets. For those instances where there are corresponding *.cdl and
*.dat files, and there is a data key for an adaptive plan view plotting data set with a file name
but no directory, it will attempt to generate a blank *.nc file using ncgen on the *.cdl file and
then use the contents of the *.dat file and the program reformatTest to initialize the file with
data. See staticProgDisc.html for more information about how static progressive disclosure files
are handled.

4.14) makeDirectories.csh

The script makeDirectories.csh is controlled by the non-default 'dirs' task option. The main
purpose of the makeDirectories.csh script is to create the data directory for every entry in the
dataInfo.txt table, including all of its include files. It also creates the directories for gridded data
files and moves the *.cdlTemplate files for each gridded data source into those directories and
names them 'template', and creates the template files for plan view point data sets stored in
netCDF.

4.15) createAuxFiles.csh

The script createAuxFiles.csh is controlled by the non-default 'auxFiles' task option. The main
purpose of the createAuxFiles.csh is to create directories and files on $FXA_DATA that are not

standard data directories. Currently, this script sets up default RPS lists, creates the correct
acquisition patterns, creates some files needed by the thunderstorm application, and copies
some localization files to the ldad server.

4.16) makePurgeTables.csh

The script makePurgeTables.csh is controlled by the non-default 'purge' task option. The main
purpose of the makePurgeTables.csh is to take the various files that describe how to purge
grids, radar, satellite, and other keys and move them all into the localization data sets directory.

4.17) fxatextTriggerConfig.sh

The script fxatextTriggerConfig.sh is controlled by the non-default 'trigger' task option. The
purpose of this script is to create text triggers, which can cause an action to occure upon arival
of a given text product.

4.18) LAPS localization

The Local Analysis and Prediction System (LAPS) is a high resolution hourly surface and 3D
analysis that normally runs on the PX. LAPS is treated more or less as COTS by the WFO
Advanced system, but it still needs some localization-generated geographic information in
order to be properly configured. Invoking the non-default 'laps' task option will result in LAPS
being configured to run over the local area associated with the ingest localization.

4.19) MSAS localization

The MAPS Surface Assimilation System (MSAS) produces an hourly surface analysis that runs on
the PX, and is also used to quality control LDAD mesonet observations. MSAS needs some
localization-generated information in order to be properly configured. Invoking the non-default
'msas' task option will result in MSAS being configured to run over the domain associated with
the ingest localization.

The default MSAS domain for CONUS sites is a 60-km grid covering CONUS and neighboring
areas of Canada and Mexico. For Alaska sites, the default is a 30-km grid covering Alaska, and
for Puerto Rico, a 30-km grid covering Puerto Rico and nearby areas of the Caribbean is used. At
this time, MSAS is not enabled for sites in the Pacific Region.

Each site can choose to modify the location, size, and resolution of its local MSAS domain.
Changes in domain size are linked to changes in resolution in such a way as to minimize AWIPS
impacts and guarantee that overall MSAS computational demands remain the same. For
example, forecast offices could choose a 15-km, regional-scale domain, or a 60-km CONUS
domain, but not a 15-km CONUS domain.

Each site can also specify the background grid utilized in the MSAS analysis. The default
background over CONUS remains a linear combination of persistence and Eta-211, but forecast
offices will also be allowed to specify that the AVN-213 be incorporated in the background grid,
either in combination with persistence, or alone as a pure-model background. Off CONUS, the
default background is a pure-model grid, using Eta-207 in Alaska and AVN-213 in Puerto Rico.
Alaska sites can also choose AVN-213 to be used in the backround grid.

Each site can also choose to redefine the "MSAS MSL Pressure" and "3hr Pressure Change"
variables from builds 5.2.1 and earlier.

Pressure Reduction Level can range from 0 to 2000 meters. The MSAS pressure reduction
algorithm will be used to produce a pressure analysis at that level. The default is 0, for sea level,
and will match the original "MSAS MSL Pressure". Notice that if AVN 213 is used, the only
pressure reduction level available is sea level (0 meters).

Pressure Change Interval can range from 1 to 6 hours. The default is 3, which will match the
original "3hr Pressure Change".

For instructions on how to modify the default settings, see the msas_sysdef.txt file in
nationalData (CONUS) or localData/III-msas_sysdef.txt for Alaska and Puerto Rico sites. For
more information on MSAS localization, e.g., how and why to select different options, see
http://www-sdd.fsl.noaa.gov/MSAS/localization.html

5. Files in the national data set

This section will cover all of the general categories of files that can be found in the national data
set. The location, format and function of each type of file will be described. Whether and how
its function can be overridden or augmented by override files will also be mentioned. For a
more detailed itemized list of files in the national data set, see fileChanges.html.

Site specific control files and realization files will be referred to with the prefixes 'LLL-' and 'RRR-
-' as before, where LLL is an arbitrary localization identifier and RRR is and arbitrary realization
identifier (again not necessarily three characters). Files in the national data set that exist in
$FXA_HOME/data will be referred to with the prefix 'data/' and ones that exist in
localization/nationalData will be referred to with the prefix 'nationalData/'. Occasionally, a file
will be referred to with the prefix 'III-', which is similar to the 'LLL-' prefix except that it refers to
the identifier of the localization being used on the data ingest machine. All other first
references to file names are assumed to be files in the final localization data set.

One concept that is very important to this section is file override. Here is an idealized example
of how file override works. Suppose there is some file needed by the localization called
locFile.dat. Very commonly, the existence of the following files will be checked:
data/locFile.dat, nationalData/locFile.dat, RRR--locFile.dat, and LLL-locFile.dat. (It is also
possible to provide override files from a directory pointed to by $FXA_CUSTOM_FILES, but the

focus here will be on files that exist in source code control. See Section 9 for more on this.) The
last of these files that actually exists is what is used by the localization. An additional
understanding of how file override works can be gained by reading the header documentation
of the getPath.csh and fileGrab.csh scripts.

In what will be referred to as functional override, the file is merely located using the
getPath.csh script, in which case the file will be used as input data to create some other file or
control some aspect of the localization process. Sometimes, functional override will be
implemented by copying the files into the localization data set and the removing them once
they have been used. In what will be referred to as copy override, the file will actually be
moved using the fileGrab.csh script to create the file locFile.dat in the localization data set. In
what will be referred to as replacement override, the override file is moved into the localization
data set only when the RRR-- or LLL- version is present, and the workstation will rely on the
InfoFileServer class to find it directly in the national data set otherwise. The fileGrab.csh script
can also operate in append mode, which means it would try to concatenate each of these files
to locFile.dat in the localization data set with the >> redirect operator. That way, the national
data set version will be at the beginning of the file in the localization data set and the local
override version would be at the end. This final override method is referred to as append
override.

When a file is subject to copy override or append override, a version of that file is always
created in the localization data set. When a file is subject to functional override, no version of
that file is ever permanently created in the localization data set. When a file is subject to
replacement override, a version of that file is created in the localization data set only when the
selected version is a local or realization file. This point is very important; it is possible for the
same file to be subject to different types of override from different sources. For example, a file
might be subject to copy override if an RRR-- version was found, but then subject to append
override if an LLL- version was found.

File override selection always operates on a file by file basis. The fileGrab.csh script can operate
on groups of files, so it is possible that one use of the fileGrab.csh script would result in files
originating from several different source directories all ending up in the localization data set.

For every file mentioned in the national data set catalog, what type of file override it is subject
to will be mentioned. Some files are not subject to any override, and this will be stated as well.
When a file is 'renamed', this means that it is copied to the localization data set and given a
new name; files in the national data set are never removed or changed by the localization
process. When a file is renamed, it is usually changed by sed or some other program.

5.1) Scale table

The file nationalData/scaleInfo.txt contains a list of all of the scales for the localization, along
with names, depictor files and default maps for each scale. scaleInfo.txt is subject to copy
override, with the caveat that comments are stripped as it is moved.

5.2) Process config files

Process config files are files that control how a process in the workstation or data ingest
behaves. The file data/fxa.config is the main process config file. It actually just contains five
include files, 'ws.config', 'scales.config', 'ipc.config', 'text.config', and 'wwa.config'. ws.config is
where such things as default looping parameters and zoom levels are defined. scales.config is
where the startup scale index for each IGC is set. ipc.config is where the interprocess
communication targets are set. The file text.config is generated from the file
textConfig.template and for now just holds the AFOS CCC. The file wwa.config is generated
from wwaConfig.template and contains the list of active WarnGen product titles and file names,
as well as a list of the alternate localizations with which it is allowable to restart WarnGen.
fxa.config, ws.config, scales.config, and ipc.config are subject to replacement override.
wwaConfig.template and textConfig.template are subject to functional override.

5.3) Main and manual data and depict key files

The files data/dataInfo.txt and data/depictInfo.txt are not subject to file override. These are the
top level files that the depictable key and data key table modules read. These files actually only
contain #include statements that bring in files for manually maintained keys, satellite keys,
radar keys, and grid keys. The files in localization/nationalData called dataInfo.manual and
depictInfo.manual contain the manually defined data and depictable keys, as well as #include
statements that bring in text keys and keys just defined for the localization. These files are
subject to replacement override, and have extensive header documentation in them that is
meant to provide information needed to maintain the file.

5.4) Text database and depictable localization

The files in the directory localization/nationalData called versions_lookup_table.template,
national_category_table.template, and ispan_table.template, are subject to functional
override. The active versions of these files are renamed to versions_lookup_table.dat,
national_category_table.dat and ispan_table.dat. During the move, sed commands replace
occurrences of the string @@@ with the AFOS CCC. versions_lookup_table.dat also has purge
parameters for METAR text products added based on distance from the localization center. The
file nationalData/cccLatLon.txt, which contains a location for each AFOS CCC, is used to
determine these distances. The files in nationalData/ called textDataKeys.template and
textDepictKeys.template are the raw data that specify how data and depictable keys for text
based displays are generated, and are both subject to functional override. When
makeTextKeys.csh and textUtil.csh create depictable key and data key entries for text
depictables, the file nationalData/afosMasterPIL.txt is used as a final sanity check for whether
any given text product can actually be used in a text depictable, and the file
nationalData/stateMatch.dat is used to get a state ID from an XXX where needed.
afosMasterPIL.txt also has @@@ as stand in for the local CCC. While cccLatLon.txt is not
subject to any override, afosMasterPIL.txt and stateMatch.dat are subject to functional
override.

5.5) Satellite data and depictable keys

The files in localization/nationalData called eastSatDataInfo.template,
eastSatDepictInfo.template, westSatDataInfo.template, and westSatDepictInfo.template are
used to create the files which comprise the data and depictable key entries for satellite data.
There are east and west versions because it is possible for any given localization to be served by
either the east or west satellite. The central position of the localization being used by the data
server is always written into the file 'IngestCenter.dat' by the makeScales.csh script when it is
called by makeClipSups.csh. If the longitude in IngestCenter.dat is east of 100W, then the east
files are used, otherwise the west files are used. This default behavior can be changed with the
SATEW directive. None of these files are subject to override. Assuming xxxx is either east or
west, as appropriate, then xxxxSatDataInfo.template and xxxxSatDepictInfo.template are
renamed to satDataInfo.txt and satDepictInfo.txt. During the move, a sed operation replaces
'@@@' strings with the localization ID of the data server for satDataInfo.txt and both files have
their comments stripped. satDataInfo.txt and satDepictInfo.txt are both pulled into the main
data and depict key files through #include statements.

Although this is not the usual procedure, it is also possible to obtain versions of
satDepictKeys.txt and satDataKeys.txt directly through copy override.

5.6) Product button file

The file nationalData/productButtonInfo.txt contains a table of all of the default product
buttons, as well as a #include statement that can bring in locally defined product buttons. The
productButtonInfo.txt file is subject to replacement override.

5.7) Menu files

This section deals with menu files in general. Radar menus will be discussed at greater length in
a later section. There are currently fifteen menu files that exist in the directory
localization/nationalData/ and are under source code control: dataMenus.txt,
backgroundMenus.txt, aircraftMenus.txt, aviationDataMenus.txt, commonLdadMenus.txt,
mosaicDataMenus.template, otherUaMenus.txt, radarDataMenus.template,
scanDataMenus.template, tdlAnalysisMenus.txt, tdlRadarBackgroundMenus.template,
tdlRadarDataMenus.template, tdlSurfaceMenus.txt, tdlToolMenus.txt, and
tdwrDataMenus.template. Additionally, there are seven menu files that exist by default in
localization/nationalData/ which are downloaded from the noaa1 server: raobMenus.txt,
redbookHazardMenus.txt, redbookNCOMenus.txt, redbookHPCMenus.txt,
redbookCPCMenus.txt, redbookMarineMenus.txt, and redbookUpperAirMenus.txt. These files
are subject to replacement override. The default version of dataMenus.txt contains the main
default set of menu entries for the workstation, and has many #include statements in it. The
include statements for raobMenus.txt, raobLocalMenus.txt, and radarDataMenus.txt, plus
those listed above all invoke default functionality; all others are activated by the presence of an
override file. The default set of menus for RAOBs is in raobMenus.txt, and the file

raobLocalMenus.txt is constructed from it using raobUtil.csh. raobLocalMenus.txt contains a
local RAOB menu with about 5 to 10 sites close to the center of the localization, and is used to
place the 2 to 4 closest RAOBs directly on the Upper Air menu. The NexRad radar menus are
brought in with radarDataMenus.txt, and the map background menus are brought in with
backgroundMenus.txt. The aircraftMenus.txt file brings in entries for PIREP and MDCRS
displays, commonLdadMenus.txt brings in entries for LDAD displays, the ones starting with
'redbook' bring in entries for redbook graphics, and the ones starting with 'tdl' bring in entries
for functionality developed by MDL.

5.8) Shape files

A shape file is actually made up of three components; a '.dbf' file, a '.shp' file and a '.shx' file. All
of the shape files currently used in the localization process currently are found in the directory
localization/nationalData, and are not subject to override. Shape files are the primary
repository for the national configuration data set provided by NWS headquarters. At present
there are five different shape files available, and the all contain data sets for the entire
conterminous U.S. Most important to the localization process are usa_cwa, uscounty, c11-zone,
and fsl-w88d, which contain information about county warning areas, counties, forecast zones,
and Nexrad radars, respectively. One can also find usa_lake, marine_zones, timezones, and
basins, us_inter, which contain information about lakes, marine forecast zones, time zones,
river basins, and interstate highways, respectively.

Because of their size, the files c11-zone.shp, usa_cwa.shp, and uscounty.shp are kept in the
source tree in compressed form. Thus, when new versions of these files are made available
from NWS headquarters, they must be compressed before being checked into the source tree.
The software that reads them will automatically uncompress them when required. In an
environment without a source tree, it is perfectly OK to just replace these files directly in
localization/nationalData without worrying about compressing them.

Shape files control a number of things. They are the primary source of data for creating map
backgrounds. The county warning area information in the shape file usa_cwa provides the basis
for defining the scales for all of the different localizations. Shape files are also the main source
of data for creating geographic entity lookup tables, which form the basis for how the WarnGen
program is able to create descriptions of the area covered by a watch, warning, or advisory.

5.9) Vector map background files

There are two AWIPS-specific file types that the workstation reads directly to create vector map
backgrounds; binary cartographic data files (.bcd files) and extended binary cartographic data
files (.bcx files). The .bcd file type is used for drawing lines only, .bcx files allow annotated lines
to be drawn. For example, a .bcd file is used to draw county boundaries, a .bcx file is used to
draw interstates. For county names, because one would label the center of the county instead
of the border, a separate file containing a location list is used. AWIPS can also read shape files
directly: see shapeFileDisplay.html for more information about this.

Currently, all .bcx files and many .bcd files are created using the utility program shp2bcd with
shape files as input. The utility program bcdProc can also perform many other operations on
.bcd and bcx files. The .bcd files that do not come from shape files all exist in the
$FXA_HOME/data directory. These files are all subject to replacement override, and are used to
describe data sets that we do not yet or will not have available from shape files. Some examples
of this are continental and other international boundaries, snowfall contours for an orographic
snow model covering the mountains of Colorado, some highway and river data for Colorado,
and ARTCC boundaries.

5.10) Topography files

In nationalData there are five files containing raw topography data; usTopo.dat.gz,
worldTopo.dat.gz, akTopo.dat.gz, pacTopo.dat.gz, and caribTopo.dat.gz. These are used as the
raw data to create topography grids and images specific to the display scales. Because of their
size, these files are kept in the source tree in compressed form; the program that maps the data
to specific scales can decompress them on the fly. None of these files are subject to any
override behavior. These files are binary flat files that are grids of two byte integers, the values
of which are elevation in meters. The file usTopo.dat is a one kilometer grid of data covering
the conterminous U.S., and worldTopo.dat is 2.5 minute data covering the whole world. The file
akTopo.dat is a one kilometer grid of data covering Alaska, and pacTopo.dat and caribTopo.dat
are 30 second data covering the Pacific and Carribean, respectively. The utility program
test_grhi_remap is used to remap this data and to convert it into the format that the
workstation needs. Normally, three netCDF files are created that hold high resolution image
topography for the state, CONUS, and Northern Hemisphere scales. ASCII flat files are created
for LAPS topography and clipped mesoEta topography.

5.11) Gridded data and Volume Browser tables

There are five tables which control the overall characteristics of gridded data and the Volume
Browser: gridSourceTable.txt, dataLevelTypeTable.txt, gridPlaneTable.txt, dataFieldTable.txt,
and virtualFieldTable.txt. The file gridSourceTable.txt is managed in the
makeGridSourceTable.csh script, the rest being managed in the updateGridFiles.csh script. A
version of all these files except for gridSourceTable.txt exists in the localization/nationalData
directory; gridSourceTable.txt is built primarily from nationalData/gridSourceTable.template. All
these file are subject to replacement override from realizations and append override from
other override files, except for gridSourceTable.txt. This file is primarily overridden from
localGridSourceTable.txt, by a mechanism that is a hybrid of include and append override. The
localization will also append nationalData/tdlGridPlaneTable.txt,
nationalData/tdlVirtualFieldTable.txt, nationalData/tdlDataFieldTable.txt,
nationalData/tdlDataLevelTypeTable.txt, nationalData/tdlSourceTable.template to the
respective files mentioned above.

If a III-gridSourceTable.txt file is available for the data server localization, then it will be used as
the core of the source table, otherwise, the file nationalData/gridSourceTable.template will

provide the core. The localization will also append the file
nationalData/tdlSourceTable.template to the core and attempt to append III-
localGridSourceTable.txt to the core. Both gridSourceTable.template and
tdlSourceTable.template are subject to functional override. To create the gridSourceTable.txt
file, a sed command is invoked on the core to tag the depictor files for LAPS and mesoEta with
the data server localization identifier. gridSourceTable.template also has all gridded data
sources marked as inactive. The file nationalData/activeSources.txt contains a list of unique IDs
for those gridded data sources to activate. It is subject to copy override for realizations and
append override for localizations. The file inactiveSources.txt, if present as a site specific control
file, can be used to turn off sources.

The structure of the netCDF files that contain the gridded data for each source are defined in
.cdl files. The .cdl files for all of the default data sources exist in the $FXA_HOME/data
directory, and are subject to replacement override.

Briefly, it is the job of the utility program makeGridKeyTables to use these five tables and the
.cdl files for the individual gridded sources to create the files gridDataKeys.txt, and
gridDepictKeys.txt. It is the job of the utility program testGridKeyServer to create the depictors
and Volume Browser menus for the predefined latitude and longitude cross section baselines,
as well as the Volume Browser menus for selecting the data source. To see a detailed write-up
of how this works, please see gridTables.html, makeGridKeyTables.doc.html, and
testGridKeyServer.doc.html.

5.12) Display style files

Style information is metadata that controls the look and feel of how data is displayed, such as
contour intervals, or how to label the color bar. There are eleven primary files in the directory
localization/nationalData/ that are used to control style information: contourStyle.rules,
gridImageStyle.rules, iconStyle.rules, arrowStyle.rules, barbStyle.rules, graphStyle.rules,
streamlineStyle.rules, imageStyle.txt, radarImageStyleInfo.template,
radarGenericImageStyle.txt, and tdwrImageStyleInfo.template. The files
nationalData/tdlContourStyle.rules and nationalData/tdlGridImageStyle.rules are appended to
their respectively-named files before the rules files are processed. The *.rules files are subject
to replacement override for realizations and to append override for localizations, and are used
by the processStyleInfo utility program in updateGridFiles.csh to create contourStyle.txt,
gridImageStyle.txt, iconStyle.txt, arrowStyle.txt, barbStyle.txt, graphStyle.txt, and
streamlineStyle.txt which contain all of the style information for products from the Volume
Browser. For more details on how these work, see styleRules.html.

The file nationalData/imageStyle.txt is managed in assembleTables.csh and is also subject to
replacement override. It contains manually maintained style information for all images except
those from gridded data, nexrad data, and topography data. Style information for gridded data
images is in gridImageStyle.txt and style information for nexrad images comes from
radarImageStyleInfo.template, radarGenericImageStyle.txt, or from within the data itself. See

the next section for more information on radar style information. Style information for
topography images is written to the file topoImageStyle.txt and is generated by the same
test_grhi_remap utility program that generates the images. There is a #include statement in
imageStyle.txt that is used to bring in the topoImageStyle.txt file. There is also a #include for
the file localImageStyle.txt; if a site wants to modify or add image style entries for displays
other than radar or grids locally, it should be done here rather than changing these other files.
There is also extensive header documentation in imageStyle.txt that is meant to provide
information needed to maintain the file.

5.13) Radar-related files

The file radarInfoMaster.txt is a master list of all nexrad radars, with their locations, identifiers,
and immutable indices, and is subject to non-standard override. If an III-radarInfoMaster.txt or
RRR--radarInfoMaster.txt exists, then that file will be used as is. Otherwise, the shp2bcd utility
program is used to generate it from the shape file nationalData/fsl-w88d, which is not subject
to override. The files radarsInUse.txt and radarsOnMenu.txt control, respectively, which radars
the ingest knows about and which radars appear on the menu, and these files are both subject
to a similar non-standard override functionality. If the files III-radarsInUse.txt or LLL-
radarsOnMenu.txt are available, then they will be used as is, otherwise they will be generated
from the fsl-w88d shape file, using distance tests to make an estimate of which radars are
appropriate for ingest and display. The files mosaicScales.txt and mosaicInfo.txt are subject to a
very similar non-standard override; they control the availability of on-the-fly mosaics.

There are several .template files in nationalData/ that control what key, button, and menu
entries for each nexrad radar look like. In these files the string '@@@@' is a stand in for an
arbitrary radar ID, and a single @ is a stand in for a key list. All of the keys in these files are
generic keys in the range 10000-65535. Except for areal composite product keys, all of these
keys are converted into radar specific keys based on the arbitrary immutable index for each
radar. radarDataKeys.template contains generic entries for nexrad data keys,
radarDepictKeys.template contains generic entries for nexrad depict keys, and
radarProductButtonInfo.template contains generic entries for nexrad product buttons. The file
radarMultiLoadInfo.template contains generic entries for multi-loads, which is how the
workstation handles such things as reflectivity/velocity combo and four-panel displays. The file
radarDataMenus.template serves as a template for creating the menu entries for one nexrad
radar. A similar set of files exists for TDWR radars: tdwrDataKeys.template,
tdwrDepictKeys.template, tdwrProductButtonInfo.template, tdwrMultiLoadInfo.template, and
tdwrDataMenus.template. The 'Radar' menu is where the user accesses mosaics and dial
radars. The files mosaicDataMenus.template, mosaicDepictKeys.template, and
mosaicProductButtons.template contain generic entries of menus, depict keys, and product
buttons for areal composite products. All of the files mentioned in this paragraph are subject to
append override.

Style entries for radar data are controlled in three files. Files radarImageStyleInfo.template and
tdwrImageStyleInfo.template work just like the files mentioned above and are used to create

entries in the output files radarImageStyleInfo.txt and tdwrImageStyleInfo.txt, respectively,
which are radar-specific keys that control how individual radar images are displayed. The file
radarGenericImageStyle.txt is not processed to produce radar specific keys; it stays as is. This
file contains the display style for mosaics and the style which describes the image count to data
value mapping for 8-bit products.

For more information on managing localization for radar displays, please see
radarLocalization.html and radarMosaics.html.

5.14) Files related to WarnGen

The file nationalData/wwaDefaults.txt contains some default values of some directives for
generating WarnGen product templates. See Section 6.1.3 for more details on how these
directives work.

The files in nationalData/ with names like wwa_blahblah_blah.preWWA are source data for the
default set of WarnGen product templates. Each file like this gets converted by the
makeWWAtables.csh script into a file that look like wwa_blahblah_blah.wwaProd, and these
files are the actual WarnGen product templates. The *.preWWA files are subject to functional
override. In the conversion process, sed commands are used to substitute the value of several
directives in these files (see Section 6.1). For every WarnGen product template, entries are
made in the wwa.config file, which are the name of the file and the title of the product; this
registers the file and its description to the WarnGen program. The title of the product must be
present in a commented line (// style) in the .preWWA file with the title in quotes. WarnGen
templates are sorted on the WarnGen menu based on the title; any text in the title that occurs
before an optional vertical bar(|) is used only for sorting purposes and will not appear on the
WarnGen menu. The function of the WarnGen product template files is described in
TextTemplate.html.

WarnGen product templates can access through #include statements one or more files with
names like wwa_blah_blah.template. These files contain unified mechanism for generating UGC
codes, or lists of items such as counties, cities, or zones. The source data for these files are files
in nationalData/ with names like wwa_blah_blah.preTemplate. The makeWWAtables.csh script
converts the *.preTemplate files into the *.template files. In the process, sed commands are
used to substitute the value of several directives in these files (see Section 6.1). The
*.preTemplate files are not subject to any override functionality. The functionality that
performs this conversion is somewhat complex; sometimes the wwaUtil.csh is used to put
several different versions of a *.preTemplate together into one *.template file.

A related group of files is the nationalData/*.abrev files, of which there are currently three:
areas.abrev, county_type.abrev, and state.abrev. These files are used by WarnGen to translate
abbreviations into plain language, and are subject to copy override only from realization files.
They refer to parts of states, how to describe sub-state political divisions in areas that don't
have counties, and two-letter postal codes.

Files in nationalData/ that have file names like *_gsf.txt are referred to as GELT script files.
These files are subject to functional override from all places. They are used by the program
newGELTmaker to create Geographic Entity Lookup Tables. Also many of the files that the
program newGELTmaker typically reads in are subject to various types of override, as well.

5.15) Files that control stochastic progressive disclosure

The file data/MTR.goodness and files in localization/nationalData that have '.goodness'
extensions are the most common of the files that control stochastic progressive disclosure.
These files are ASCII station or location lists in which each line in the file refers to one station or
location. The term station is meant to apply to a site at which some hydrometeorological data is
available for plotting, whereas location refers to a site that is used merely for georeferencing
(i.e. for drawing a map background). Both station and location lists contain a latitude, longitude,
ASCII identifier, and an arbitrary desirability factor. These arbitrary desirability factors have
acquired the name 'goodness values', hence the file naming. A goodness value is an arbitrary
integer for which larger values mean that a given station or location is more likely to be
viewable on the screen for a given zoom factor. The script makeStationFiles.csh hands these
.goodness files to the program va_driver to create either station plot information files (.spi files)
or location plot information files (.lpi files). It is the job of va_driver (see va_driver.doc.html for
more information) to convert the arbitrary goodness values to progressive disclosure distances
that the workstation can use to perform stochastic progressive disclosure. The file
data/MTR.goodness differs from the other .goodness files in that it is updated by a program
rather that maintained manually. All .goodness files are subject to functional override. The
goodness files that are currently available in the national data set are MTR.goodness,
88D.goodness, BUOY.goodness, profiler.goodness, raob.goodness, twebRoutes.goodness, and
twebStations.goodness. These contain information about METAR stations, Nexrad radars,
stationary buoys, profiler, RAOBs, TWEB route markers, and TWEB route anchor points.

An additional source of information for controlling stochastic progressive disclosure is the file
data/CitiesInfo.txt. This file is the main source of information for constructing the cities map
background, as well as the WarnGen cities table and the warning cities map background. The
format of this file is also documented in va_driver.doc.html.

Another type of file that affects stochastic progressive disclosure is files that have a '.primary'
extension. These are lists of station or location identifiers that are to be made visible at lower
zoom factors regardless of the goodness value associated with them. These files are subject to
reverse append override.

Two related files are data/anchors.txt and data/selsAnchors.txt. These are used for labeling
cross section baselines and decoding SAW products respectively. These are not subject to any
file override and (especially selsAnchors.txt) should normally be centrally maintained, but it is
useful to know about these files in case either of these functions fails to work as expected.

5.16) Color table files.

The source data for the default color tables delivered with the system is the file
data/colorMaps.mark, and this file is subject to functional override. The file colorMaps.nc is the
file that is read at run time to get default color table information; this is a netCDF file which is
created by assembleTables.csh by doing an ncgen on colorMaps.mark. When custom color
tables are created by using the color table editor, they are written to
data/customColorMaps.nc. Doing an ncdump on this file after creating a custom color table is
the best source of data for making permanent modifications to the default color tables. Such
modifications are best placed in the file LLL-localColorMaps.mark, with table numbers changed
to be in the 500-999 range. The script assembleTables.csh will use an ncgen command to create
localColorMaps.nc from this file; the color tables in localColorMaps.nc will also become part of
the default set.

5.17) Run time config files.

The workstation reads the file data/fxa.config at start-up to define many things, such as
allowable zoom factors and which scales each window starts with, to name a couple. Unlike the
mainConfig.txt and wwaConfig.txt files, which just control the way localizations run, fxa.config
can directly change the way the workstation and ingest softwarte behave. The file fxa.config
actually just contains a bunch of include statement for the files ws.config, scales.config,
ipc.config, text.config, wwa.config, and tdl.config. These files control aspects of, respectively,
display configuration, start up scales, interprocess communication, text data retreival,
WarnGen, and other miscelaneous configurables needed by non-FSL developers. The files
text.config and wwa.config are actually generated by the localization from the files
nationalData/textConfig.template and nationalData/wwaConfig.template, both of which are
subject to functional override. The rest of the *.config files exist in their default runtime states
in nationalData/. These are subject to copy override from realization files and append override
from site specific control files. Append override works well for these because duplicate entries
for the same configuration item will result in the last entry being used.

5.18) Files which control plan view plotting.

There are two main types of files that exist specifically to control plan view plotting, design files
and lookup table files. The default versions of both types of files live in nationalData/. Design
files have file names that look like *Design.txt, and lookup table files have file names that look
like *_*.txt. Both are subject to copy override from realization, site specific, and customization
files. Briefly, a design file allows one to specify the layout of a single plan view plot display, and
lookup table files are used during the display of plan view plots to do arbitrary data
conversions. The adaptive plan view plotting capability, which is new to AWIPS for build 5, is
complex enough that a separate document exists that describes it in detail. See
adaptivePlanViewPlotting.html.

5.19) Files that specify the MSAS domain, background, and user-definable variables.

The following nationalData/ files are used to specify the MSAS domain, background, and user-
definable variables: msas_sysdef.txt, msasDepictKeys.txt, msasFieldConfig.txt, and
msasProductButtons.txt. The msas_sysdef.txt file is used to specify the domain and options.
The other files are modified by internal MSAS programs, using information from
msas_sysdef.txt, and should not be edited or replaced by the user. For more information, see
section 4.1.9 above, or go to the MSAS localization Web pages at:
http://www-sdd.fsl.noaa.gov/MSAS/localization.html

6. Other site specific control files

In the previous section, which discussed the files in the national data set, site specific control
files were mentioned, but only in the context of where they overrode the functionality of
analogous files in the national data set. This section will focus mainly on files with no direct
analog in the national data set.

This discussion will use the same file identification convention as the previous section.
Specifically, the prefixes 'LLL-' and 'RRR--' will refer to site specific control files and realization
files, the prefixes 'data/' and 'nationalData/' will refer to national files in the directories
$FXA_HOME/data and localization/nationalData, and all other references to file names are
assumed to be files in the final localization data set.

6.1) Localization config files

Localization config files are files that control how the localization scripts behave. They have the
file name pattern LLL-blahblahConfig.txt and contain items called directives (also see
directives.html). A directive is a single line in a file that looks like

@@@DDD argument
Each directive begins with 3 at signs followed immediately by a directive type, which is not
necessarily 3 characters, but is all upper case by convention. The 'argument' can be any
arbitrary text; how it is used varies among different directives. There are currently two types of
localization config files.

6.1.1) LLL-mainConfig.txt

The main purpose of this file is to contain directives that can define additional localizations. The
are two directives that can be used to define a localization. The first is the 'WFO' directive,
which must have as its argument one of the county warning area identifiers in the usa_cwa
shape file in localization/nationalData. Executing the script cwaIds.csh in localization/scripts will
provide a list of these county warning area identifiers. The second is the 'CLONE' directive. The
argument of the CLONE directive must be the identifier of some other valid localization which is
not itself defined by a clone directive. A localization defined by the WFO directive will not
inherit any site specific files from the localization with the same name as the county warning
area identifier, whereas a localization defined by the CLONE will inherit any site specific files

from the localization it is cloned from. Any site specific files belonging to the new cloned
localization will override any from the localization it is cloned from.

The final type of directive that can define a localization is the 'REALIZATION' directive. The
REALIZATION directive has as its argument the name of the realization to associate this
localization with (see chapter 8). For a complete list of usable directives, the readed is directed
to directives.html.

6.1.2) LLL-cwa.asc

This file does not contain directives, but it is related to the WFO directive in LLL-mainConfig.txt.
This file can be used to define a localization centered about some arbitrary point or area, not
just one of the predefined county warning identifiers. This file contains any number of latitude-
longitude points. Each point is on one line in the file, and is in ASCII format, space delimited.
The localization ends up being centered around that point or group of points. It is not
recommended to define a localization with both a LLL-cwa.asc file and either a WFO or CLONE
directive in the LLL-mainConfig.txt file.

6.1.3) LLL-wwaConfig.txt

This file contains directives that change how the WarnGen functions. A file in nationalData/
called wwaDefaults.txt contains default settings for some of these directives, but any instances
of these directives in LLL-wwaConfig.txt will override those in wwaDefaults.txt. For a complete
list of the directives that one can place in the wwaConfig.txt file, one is again directed to
directives.html.

6.2) Files referred to through #include

There are several cases where site specific control files do not override an existing file in the
national data set, rather they are referred to by #include statements that already exist in files
found in the national data set. These files do not have to be supplied; if they are not the
software that ingests these files will just ignore #include statements that cannot be resolved. All
files referred to here must originate as LLL- or RRR-- files to become part of the localization.

6.2.1) Depict keys, data keys, and product buttons

The file nationalData/dataInfo.manual has a #include statement for bringing in the file
localDataKeys.txt, which must come from the file LLL-localDataKeys.txt. This allows any
arbitrary additional data keys to be added that are specific to the localization. Also, in
nationalData/depictInfo.manual, there is an analogous #include statement that refers to
localDepictKeys.txt. Finally, in the file nationalData/productButtonInfo.txt, there is a #include
statement for the file localProductButtons.txt, which can bring in any arbitrary additional
product buttons that are specific to the localization.

6.2.2) Menu files

Unlike depict keys, data keys, and product buttons, which are order insensitive, entries in the
menus files are order sensitive. Thus, there are many different places in the default menus
where site specific control files can be brought in by #include statement. The file
nationalData/backgroundMenus.txt, which is the default map background menu, has a #include
statement for the file otherBackgroundMenus.txt. In nationalData/dataMenus.txt, there are
many #include statements designed to bring in site specific control files. The files
otherToolMenus.txt and otherVolumeMenus.txt allows localization specific additions to the
Tools and Volume menus. The file ldadMenus.txt is where non-default LDAD data plots are
added to the surface menu. The file analysisMenus.txt allows localization specific surface
analysis menus to be brought in, and otherSurfaceMenus.txt allows any other arbitrary
additions to the end of the surface menu. Finally, otherUaMenus.txt and otherSatMenus.txt
allow for arbitrary additions to the end of the upper air and satellite menus.

6.3) File override expansion

So far, when file override has been discussed, it has been talked about in terms of a localization
or realization file directly replacing an existing file in the national data set. There are cases
where site specific control files can add to a group of related files, rather than just replace
existing files in that group. Usually, when this is done, it is not enough to just add the new file;
something else must be changed so that the system can recognize the new file as something
that should be used by the workstation.

6.3.1) Menu files

Any file in the localization specific files (LLL- files) or realization specific files (RRR- files) that has
a file name pattern like '*Menus.txt', '*MenuHeader.txt', or '*MenuFooter.txt' will be moved
into the localization data set. However, to become a useful menu, one of the existing default
menus must be overridden and a #include statement for the new menu file added.

6.3.2) Map background files

Any file in the localization specific files or realization specific files that has a file name pattern
like '*.bcd' or '*.bcx' will be moved into the localization data set. A new file such as this cannot
be used for drawing a map background until data key, depict key, product button, and menu
entries have been defined. In this case, this would usually be handled using the files LLL-
localDataKeys.txt, LLL-localDepictKeys.txt, LLL-localProductButtons.txt, and LLL-
otherBackgroundMenus.txt, respectively.

6.3.3) Topography and cdl files for gridded data sources

Any file in the localization specific files or realization specific files that has a file name pattern
like '*.cdl' or '*.topo' will be moved into the localization data set. These files are associated with

gridded data sources. The .cdl files are used to define the exact variables and levels stored for a
given gridded data source, and the .topo files contain the surface topography used for a given
gridded data source. Before new files like these can be used by the system, one must also add a
new gridded data source to the system that specifically refers to these new .cdl and/or .topo
files. This can be done by functionally overriding the file in nationalData/ called
gridSourceTable.template, or by providing a file called III-gridSourceTable.txt, which will be
used as a direct replacement for the grid source table.

6.3.4) Product templates for WarnGen

Any file in the localization specific files or realization specific files that has a file name pattern
like 'wwa_*.preWWA' will be moved into the localization data set. These files are used to create
analogous files with names like 'wwa_*.wwaProd' that serve as WarnGen product templates. In
order for a new file like this to be used by the WarnGen program, one must make sure it has a
title line, which is a commented out line (// style) with the title in quotes immediately after the
comment.

6.3.5) GELT script files

GELT script files are files that contain instructions that are used by the program newGELTmaker
to create Geographic Entity Lookup Tables, which are used by WarnGen to identify which
counties, cities, etc., fall within a warned area. GELT script files have file names that look like
*_gsf.txt, and the defaults live in nationalData/. Any file in the site specific, realization, or
customization files that has a file name pattern like this will be used to try to create a GELT.
These override files can be used to change how a default GELT is created or to generate
additional GELTs.

6.3.6) Station lists

Any file in the localization specific files or realization specific files that has a file name pattern
like '*.goodness' and '*.primary' will be used to create either station plot information (.spi) files
or location plot information (.lpi) files in the localization data set, depending on the format of
the .goodness file. A .primary file only modifies how a .goodness file is interpreted, so a
.primary file by itself is meaningless (unless it refers to a .goodness file already in the national
data set). In order for the resulting .lpi or .spi files to be used to create point based map
backgrounds, entries must be made for data keys, depict keys, product buttons, and menus. In
this case, this would usually be handled using the files LLL-localDataKeys.txt, LLL-
localDepictKeys.txt, LLL-localProductButtons.txt, and LLL-otherBackgroundMenus.txt,
respectively.

6.4) Files used to activate and deactivate data sets

The files activeSources.txt and inactiveSources.txt are subject to copy override from realization
files and to append override from site specific files. By default, no gridded data sources are

active. The become active in the default system by virtue of the fact that a national data set
version of activeSources.txt exists. After applying file override to build versions of these files, all
sources mentioned in activeSources.txt but not mentioned in inactiveSources.txt will be
activated.

The files removeMenuItems.txt and preserveMenuItems.txt are subject to copy override from
realization files and to append override from site specific files. They allow a localization to have
certain menu items removed from the user interface without having to edit or override files in
the default menus. After applying file override to build versions of these files, menu items listed
in removeMenuItems.txt but not in preserveMenuItems.txt will be removed from the user
interface. Each menu item listed contains an object to delete from menus plus an optional
leading comma delimited file name. If the file name exists, then that will be the only that file
name will be searched for items to delete. The object to delete can be a button number, an
appButton name, an include file name, or a submenu name. If a submenu name, use a '.' for
spaces or metacharacters. In the case of a submenu name, it will delete the whole submenu,
accounting for nesting, but will not do the right thing for files where the submenu statement is
in a different file from the endSubmenu statement.

7. Localization programs

This chapter will give short descriptions of each of the utility programs used by the localization
process. For detailed user documentation for these programs, one should see the
corresponding individual documentation files.

7.1) fileMover

The utility program fileMover (see fileMover.doc.html) is new for 5.1.1. Just about every time a
file is brought into the localization data set, the utility program fileMover is used, as opposed to
a unix cp, cat, or mv command. Among other things, it is used to reliably strip always end in a
newline. In fileMover is implented a feature that allows one to change the type of override a
file is subject to. If a file is normally subject to replace override, one can change that to append
override by making the first line in the file literally '#append'. The converse can be done with a
first line of '#replace'.

7.2) Programs that create depictor files

Depictor files are the files withing the WFO advanced system that describe a frame of
reference. The most common of these are geographic depictor files, which have .sup
extensions. These are most often generated by the program maksuparg (see
maksuparg.doc.html). Those geographic depictor files that represent some portion of a data
grid are sometimes generated by the program maksubgrid (see maksubgrid.doc.html). Depictor
files that describe a thermodynamic diagram have a .thermo extension and are generated by
the program makthermo (see makthermo.doc.html). Depictor files that describe a cross section
have a .xsect extension and are generated by the program makxsect (see makxsect.doc.html).

7.3) Programs that manipulate key files and menu files

The program keyMunge (see keyMunge.doc.html) is used to take generic radar keys and make
them radar specific. The program pasteUtil (see pasteUtil.doc.html) functions much like the
unix paste utility, and is used to create both key tables and station lists. The program
rangeAzimuth (see rangeAzimuth.doc.html) can do distance and bearing calculations between
two points and is used to generate menu entries based on the distance from the site.

Finally, many of the key tables in WFO advanced are actually put together at run time through
the use of an include mechanism. The program textBufferTest (see textBufferTest.doc.html) can
be used to locate and output to standard output the entire contents of such a table.

7.4) Programs that manipulate cartographic data sets

The program bcdProc (see bcdProc.doc.html) is used mostly to clip and remove redundant data
from binary cartographic data (.bcd) files. The program shp2bcd (see shp2bcd.doc.html) is
mainly used to generate bcd files from shape files, but can also be used to query shape file
attributes. The program test_grhi_remap (see test_grhi_remap.doc.html) is used to create scale
specific topography images from raw topography data.

7.5) Programs that manipulate tables for gridded data and the Volume Browser

The program makeGridKeyTables (see makeGridKeyTables.doc.html) is the program that
generates the Volume Browser data and depictable keys based on the field, source, and plane
tables. The program processStyleInfo (see processStyleInfo.doc.html) is responsible for
generating the style information (such as contour intervals) for each displayable item in the
Volume Browser based on the contents of the *.rules files. The program testGridKeyServer (see
testGridKeyServer.doc.html) has as its basic function serving as a unit test for the code that
reads and parses the field, source, and plane tables, but it can also be used to query
information from these tables. As such it is used in the creation of cdlTemplate files and
directories for gridded data, and for generating lat/lon cross section depictors and their Volume
Browser menu entries. The program initCdlTemplate (see initCdlTemplate.doc.html) is used to
fill empty gridded data files (created with ncgen) with geographic information and static grids,
namely topography, grid spacing, and Coriolis parameter. For more information on this one is
directed to gridTables.html and styleRules.html.

7.6) Programs that create and manipulate geographic entity lookup tables

The program newGELTmaker is responsible for generating geographic entity lookup tables
(GELTs), which is how WarnGen can associate a given geographic location with a county, city, or
forecast zone. The program image_mask is used to modify portions of one GELT based on the
contents of another.

7.7) Programs that create station and location lists

The program va_driver is the primary manner in which a meaningful progressive disclosure
strategy is assigned to a list of stations or locations.

The creation of a GELT naturally creates a location list, and as such GELTs are often used as a
source of information for such lists. Program GELTtest, while primarily a unit test for the
geographic entity lookup table software, is used in the localization to restrict the contents of
station lists based on the contents of a geographic entity lookup table. Program
masterToGoodness can convert a station list from a GELT into a form that can be interpreted by
va_driver.

8. Realization definition files

As was mentioned before, a realization is a way of associating site specific control files with
groups of localizations. By this point, enough has been said about file override and related
topics that one can understand the basic functioning of a realization. Most localizations are
associated with the default WFO realization. One important point about the use of realizations
is that $FXA_LOCAL_SITE and $FXA_INGEST_SITE should normally both refer to localizations
that use the same realization. Having the ingest and display localizations be from different
realizations may work in some cases, but in general it should be avoided.

Currently, there are four valid realizations defined: 'RFC', 'NC', 'radonly', and 'cwb'. The 'RFC'
realization is used to create localizations suitable for use in river forecast centers. The 'NC'
realization is used to create localizations suitable for use by National Centers. The 'cwb'
realization is used to create localizations suitable for use by the Central Weather Bureau in
Taiwan. The 'radonly' realization is used to create localizations suitable for displaying Nexrad
radar data only, occasionally being used in Alaska and Hawaii.

9. Customization

Until this point, all of the files and data sets that have been discussed are part of or exist in
directories controlled by the default WFO-Advanced software load. What this means is that any
changes made on site to the files discussed so far will go away the next time new software is
delivered. Obviously, it would be desirable if users could make changes on site that would be
preserved when new software was delivered. The mechanism by which this is accomplished is
referred to here as customization.

There are two additional environment variables that are important to customization:
FXA_CUSTOM_FILES and FXA_CUSTOM_VERSION. FXA_CUSTOM_FILES can point to any
arbitrary directory in the file system; it could be either a local or remote mounted disk.
FXA_CUSTOM_VERSION needs to point to a subdirectory in the directory pointed to by
FXA_CUSTOM_FILES. By default, FXA_CUSTOM_FILES points to the directory
$FXA_DATA/customFiles. Since this is a cross-mounted disk, a change made here will affect
future localizations run on any machine. It is important to note that the current configuration

does not allow any customization files to directly affect the operation of the workstation or
ingest software; customization files can only change the way a localization is built.

In order to make use of the customization features, the environment variable
FXA_CUSTOM_FILES (and, optionally, FXA_CUSTOM_VERSION) must be set prior to running any
localization that one wishes to be customized. Unlike FXA_LOCAL_SITE and FXA_INGEST_SITE,
there is no way to set FXA_CUSTOM_FILES or FXA_CUSTOM_VERSION on the command line. If
either are left unset, they will normally default to their previous values the last time a given
site's localization was run. If one wants to rerun a site's existing localization using different
values of FXA_CUSTOM_FILES or FXA_CUSTOM_VERSION, one must use the leading 'n' flag (not
'-n') in the command line of mainScript.csh.

Customization works by extending the existing file override capabilities to also include files in
$FXA_CUSTOM_FILES or $FXA_CUSTOM_FILES/$FXA_CUSTOM_VERSION. If both
FXA_CUSTOM_FILES and FXA_CUSTOM_VERSION are defined, then the following file paths can
also participate in file override:

 $FXA_CUSTOM_FILES/*
 $FXA_CUSTOM_FILES/$FXA_LOCAL_SITE-*
 $FXA_CUSTOM_FILES/$FXA_CUSTOM_VERSION/*
 $FXA_CUSTOM_FILES/$FXA_CUSTOM_VERSION/$FXA_LOCAL_SITE-*
If append override is being used, as is very often the case with customization files, then this is
the order in which they get appended. If using copy override, then this is the order in which
they are copied so the last in the list that exists is what is used.

Here is an example of how the custom version might be used. Suppose one wanted to move the
regional area 200 km to the south in the summer. In directory $FXA_CUSTOM_FILES/summer,
one could create a file mainConfig.txt, containing the entry '@@@REGNORTH -200' (see
directives.html for more information). Then all localizations would be rerun twice a year, spring
and fall, with the value of FXA_CUSTOM_VERSION specifically set to 'summer' or an empty
string, and using the 'n' flag (not '-n') to enable changing the customization environment. In the
fall, FXA_CUSTOM_VERSION would be defined to an empty string, and in the spring it would
have a value of 'summer'. What this would do is move the regional scale 200 km south of the
default for the warm season and put it back to the default for the cool season. Between these
two localization runs that were meant specifically to adapt to the season, other localization
runs would just pick up the last specifically set value of FXA_CUSTOM_VERSION.

When the concept of a separate place for local site modifications was originally conceived, it
was thought to be something that would be used in a very limited way. Thus, not many files
were set up to be overridable from customFiles/. In hindsight, this was a huge blunder; allowing
files to be overridable from customFiles/ should have been the rule rather than the exception.
At the current time, things have evolved to the point where most files are overridable from
customFiles/ in some fashion or another.

What follows is a list of files in $FXA_HOME/data or nationalData/ that are not overridable from
customFiles/. An asterisk means that, while the file is not directly overridable in customFiles/ by
a file of the same name, the basic functionality is overridable in customFiles/ by other means.

* gridSourceTable.txt
* gridSourceTable.template
* tdlSourceTable.template
* tdlActiveGridSources.txt
* tdlInactiveGridSources.txt
scaleInfo.txt
usTopo.dat.gz
akTopo.dat.gz
caribTopo.dat.gz
pacTopo.dat.gz
worldTopo.dat.gz
* dataInfo.txt
* depictInfo.txt
* dataInfo.manual
* depictInfo.manual
GOESImagerInfo.txt
SatImagerInfo.txt
* imageStyle.txt
* tdlImageStyle.txt
ijklSatDatamenu.txt
mnopqSatDatamenu.txt
* colorMaps.mark
cccLatLon.txt
cccLatLonPatch.txt
wmoExceptions.txt
natMosaicDataMenus.txt
natMosaicProductButtons.txt
natMosaicDepictInfo.txt
natMosaicDataKeys.txt
allHomeDataKeys.template
allHomeDepictKeys.template
tdlRadarDataMenus.template
countyPlus.bcd
* wwaDefaults.txt
* CitiesInfo.txt
MarineInfo.txt
synopticStationTable.txt
metarStationTable.txt
maritimeStationTable.txt
profilerStationTable.txt

raobStationTable.txt
modelBufrStationTable.txt
goesBufrStationTable.txt
poesBufrStationTable.txt

Adaptive Plan View Plotting
Table of Contents

1) Introduction
2) Key Entries for Plan View Plot Displays

2.1) Plan View Plot Displays
2.2) Sounding Displays

3) Design Files
3.1) Overall structure of design files
3.2) A design file example
3.3) Local modification and testing

4) Lookup Table Files
4.1) String to string lookup table
4.2) String to number lookup table
4.3) Number to string lookup table
4.4) Number to number lookup table
4.5) Number to byte lookup table

Appendix 1) Keywords
A1.1) Global keywords
A1.2) Item keywords
A1.3) Raw data keywords
A1.4) Function keywords
A1.5) Display keywords

Appendix 2) Functions
A2.1) Special functions
A2.2) Conversion functions
A2.3) Mathematical functions
A2.4) Meteorological functions
A2.5) Logical functions
A2.6) List handling functions

Appendix 3) Display methods
Appendix 4) Constants with predefined meanings
Appendix 5) Enhancements to the netCDF files
Appendix 6) Standard lookup tables

1) Introduction

Adaptive Plan View Plotting refers to an AWIPS capability that allows one to add new kinds of
plan view plots or change the way existing ones look simply by changing plain text static
metadata. We refer to plain text data files as design files.

These design files are used in several ways. They are used to make plan view plots, to help pass
data from point data files to the code that creates sounding and profiler displays, and to help
pass data from point data to the volume browser. This document will focus on plan view plots,
sounding and profiler displays.

In order to make this work, the data to be plotted need to be in a self describing format. To this
end, the plotting of all point data sets is done from netCDF files. In 5.0, all pre-existing netCDF
files were enhanced by adding some additional variables and attributes. However, none of the
existing variables or attributes were changed, so existing applications that read netCDF point
data still work.

While there is a performance penalty for this additional flexibility, it is not prohibitive. The
additional flexibility should be extremely useful for LDAD data, allowing each site to plot
whatever data ends up in their LDAD netCDF files.

2) Key Entries for Plan View Plot Displays

Under the new paradigm, menu entries and product button entries work exactly as before to
display a given depict key. Depict key and data key entries are somewhat different.

2.1) Plan View Plot Displays

Here is a sample depict key entry; we are using the standard METAR plot from
depictInfo.manual:

120 |72 |82,27001,1003| |0,1003|1 |METAR |METAR Plot |1|0|1| | |900

Depict key entries for plan view plots include two changes. First, all entries have a depictable
type (second vertical bar delimited column) of 72. This is because all of these displays use the
same software module to create the display; what makes them different is the associated static
metadata. Second, column three, which is the list of associated data keys, contains a new entry
(27001 in this case), which points to what is refered to as a `design file.' For the new adaptive
plan view plotting, the first data key must point to the data directory, the second must point to
a design file, and the third optional key must point to a static progressive disclosure file.

Here are the associated data keys from dataInfo.manual:

82 | | | | | | |point/metar/netcdf | | |metar.cdl METAR decoded reports
27001 | | | | | | | |metarStdDesign |.txt |standard metar Plot design file
1003 | | | | | | | |MTR |.spi |METAR station map data

Notice that the data directory key has the associated cdl file name in the description field. This
refers to a version of this cdl residing in localization/nationalData/. It allows the localization (-
dirs task) to automatically publish this cdl to the data directory, using ncgen, as the template
file. A default version of each of the design files also can be found in localization/nationalData/.

For a static data set, the depict, design file, and static progressive disclosure (if needed) key
entries are analogous, but the key for the data file is a little different. This example is for a new
spotter sampling display.

61 | | | | | | | |spotters|.nc|spotters.cdl netcdf spotters data set

Note that there is no directory entry (eighth column) but there is a file and extension entry
(ninth and tenth column). In this case, the localization (-station task) would expect a file called
spotters.dat to be available to the program reformatTest (see reformatTest.doc.html) to
initialize the file spotters.nc. There is a bogus example spotters.dat in nationalData/, but it is
expected that in practice this would be replaced by a customized one on site. Actually, for any
data key entry that conforms to the above pattern and for which there is a corresponding *.cdl
and *.dat file, this initializaton will occur.

2.2) Sounding Displays

Sounding displays (profiler time-height, RAOB skew-Ts), use the new paradigm only for
gathering data from netCDF files. The difference is evident in the depict keys, as in these
examples:

11006|17|11006,27108|profTH|11000|2|Winfield LA (kts)|WNFL1|8|0|0|18,100
 9016|7 |9016,27503 |PASNraob|9000|1 |PASN Skewt |PASN |1 |0 |0 |

Although there is a design file specified in each of these, it is not used in the same way as those
governing plan view plots. First, note that the depict type here is not 72. Second, an
examination of the design files (profTHdataDesign.txt and raobSkewtDesign.txt, according to
dataInfo.manual) reveals that they include no display methods, just data-gathering functions.

3) Design Files

This is the most important section of this document, because the design files are where one
exerts most of the control over how plan view plots are created. All of the default design files
exist in nationalData/ and have file names that look like *Design.txt. They are subject to copy
override from realization, site specific, and customization files (for more info on file override,
see section 5 of localization.html).

We will begin by discussing the overall structure of design files. Then an example of a design file
will be presented and discussed in detail. Finally, we present some notes on local modification
and testing.

3.1) Overall structure of design files

Design files are plain text files. As the text for a design file is interpreted, any line that is all
spaces, blank, or begins with // is ignored. A backslash at the very end of a line is considered a
line continuation. Each interpreted line consists of a keyword followed by one or more space-
delimited arguments. (Within the remainder of this document, except in actual examples,
keywords will be `quoted' and their arguments will be italicized.) A keyword and its arguments
must appear on the same line; the continuation can be used to make long entries more
readable. Because arguments are primarily space delimited, the user is allowed to use a tilde (~)
to stand for a space in string arguments. In such strings, an escaped tilde (\~) is used to
represent a tilde. When such escaping is in force, \t will be converted to a tab, \n will be
converted to a carriage return, and anything else escaped will be converted to that same single
character. This means that \\ will result in a single backslash, and an argument with a single
backslash will be interpreted as an empty string. Spaces are not allowed in file names, item IDs,
keywords, and other reserved words, so escaping is generally ignored for these.

A design file is broken into two major sections, the global definitions and the item definitions.
The global definitions are all entries that refer to the design file as a whole; the item definitions
are all entries that refer to a specific item. All global definitions must appear before any item
definitions, but the individual global definitions can be in any order. A complete list of keywords
for both global and item definitions can be found in Appendix 1.

The presence of an `item_id' keyword is what triggers the existence of an item. The entries that
define an item span from that `item_id' to the entry immediately before the next `item_id.'
`item_id' is always the first entry of an item definition, but within an item definition other
individual entries may appear in any order. Also, the items as a whole may appear in any order.

An item is a logical entity that may contain raw data from a netCDF file, the result of a function,
a constant, or a display method. Each item that contains a display method will normally also
contain raw data or a function result, although there is a new feature that allows one to display
constants directly in some instances. Containing raw data is mutually exclusive with containing
either a function result or a constant. Functions results were previously mutually exclusive with
constants, but new features allow constants to be the result of functions in some cases. Certain
functions will now produce constant output if all the inputs are constant, and there are new
functions that are designed to produce constant output. Another thing to note about constants
is that there are certain predefined constants that are used to communicate information and
control back and forth between design files and the rest of the system (see Appendix 4).

Each item is defined by its characteristics and the data it contains. Here we will focus on what
these characteristics mean; how they are determined will be discussed later. One primary

characteristic of an item is its dimensionality (keyword `dimension'), which can be constant,
scalar, or list. A constant item contains just one constant value, a scalar item contains one value
per station or record, and a list item contains two or more values per station or record. Another
primary characteristic of an item is its indexing; most items contain data on a per station basis,
but some contain some data on a per netCDF file record basis. Station versus record indexing is
meaningless for a constant item. A third primary characteristic is the base data type. The base
data types are float, int, short, and string. It is also possible to talk of the major data type of an
item, which is either string or numeric. Constants have only a major type, string versus numeric.

The most important characteristic of an individual data value is whether or not it is null. Each
base data type has a corresponding well-defined null value, 9e99 for doubles, 1e37 for floats,
2147483647 for ints, 32767 for shorts, and a zero length string for strings. The null double value
is important because numeric constants are held as doubles and all numeric values from lookup
tables are presented as doubles. Where it is important to assign an arbitrary non-null value to a
data item, 0 is used for numeric values and "0" is used for strings.

A constant item not produced from a function contains only one additional entry beside its
item_id, with a keyword of `constant.' If the first argument is a single equals sign followed by
another argument that is a numeric value, then the constant will be numeric. Otherwise, the
first argument will be used to define a string constant. Spaces are allowed in string constants,
so here a tilde should be used for a space. It is possible to override the value of a constant in a
design file directly from the associated depict key entry. This is done in the 13th vertical bar
delimited field, the so-called extraInfo field, which contains a list of comma-delimited strings. In
this case, each pair of strings is assumed to be the ID of a constant item followed by an override
value.

An item is identified as containing raw data primarily by the presence of a `netcdf_id' keyword.
This keyword is followed by the name of the netCDF variable from which it reads data. The
most common other keywords for a raw data item are `type,' `dimension,' and `record.' The
possible arguments for the keyword `type' are string, float, int, and short. The reason the user
supplies this information rather than it being obtained from the netCDF file is so that the
validity of function relationships can be determined when the design file is parsed. The possible
arguments for the keyword `dimension' are scalar and list. If scalar, there is one value for each
record, meaning that variable should be dimensioned in the netCDF file as (recnum), or
(recnum,strlen) in the case of a string. If list, then there are multiple values for each record,
meaning that variables should be dimemsioned (recnum,listlen), or (recnum,listlen,strlen) in
the case of a string. Here recnum must refer to the UNLIMITED dimension, and listlen and strlen
to any valid dimension appropriate for the variable. A recent enhancement allows a variable
with no dimensions to be read in as a scalar of type float, int, or short. That single data value
gets copied to each station or record to fill out the data for the item.

If the argument of the `record' keyword is true, then that item will contain values
corresponding to records in the netCDF file. Otherwise, it will contain data for each station. This
distinction is important because a single station may have data available at multiple times. In

order to be displayable, all data eventually needs to be station indexed--the primary reason for
defining record indexed items is to exert specific control over how the single station data value
is selected from several records with data from the same station. Normally the data selected
will be from the observation closest to the time stamp of graphic being created. The conversion
of record indexed data to station indexed data is affected by the keywords `by_record,'
`remove_by,' `indexing_table,' `accum_period,' `valid_period,' `average_period,' and by the
`rec_to_sta' function.

Because the basic station and time identification of a record in the netCDF file can involve
multiple client variables (see description of idVariables and timeVariables global attributes in
Enhancements to the netCDF files), special arguments to the `netcdf_id' keyword are available
to allow access to these, namely _ids_ and _times_. These variables need to be treated as string
scalar and int scalar, respectively.

An item is identified as containing a function output primarily by the presence of a `function'
keyword. This keyword is followed by the function name (see Appendix 2 for a complete list of
available functions). A function item must also contain an entry with an `inputs' keyword. The
arguments that follow `inputs' are a list of the item_ids that are input to the function. These
may be other function outputs, raw data, or constants, depending on the requirements of the
function. (Note that numeric strings cannot be used as function inputs; any additive or
multiplicative value must be pre-defined as a constant. This is not true of display keywords, for
which numeric inputs are allowed, as demonstrated in the example in the next section.) There
is no need to specify the data type or dimensionality of a function; that is all determined by the
characteristics of the inputs and the function used.

An item is identified as having a display method primarily by the presence of the keyword
`placement.' The kind of display is determined by the argument to the keyword `method.' For
some methods, the placement is predetermined by the method and the argument to the
keyword placement is just free. Otherwise it is one of nine predefined placement positions
(upper_left, center, etc.). While most display methods require only one input, some require
multiple inputs, in which case a special function called `gather' is used to hand multiple items to
a single display method. The reader is directed to Appendix 3 for a complete list of display
methods. The reader should be aware that while some display keywords such as `multiplier'
look as though they could be used to change the data values contained in an item, they cannot.
All display keywords can do is change how data is displayed. A function must be used to change
the data values contained in an item.

3.2) A design file example

What follows is a sample design file. Again we use the standard METAR plot
(nationalData/metarStdDesign.txt) as an example.

Annotated metarStdDesign.txt
// Standard metar plot

size 45
time_step 3600
//stations_path metar_stations.

In this example the last global definition is "time_step 3600" and the first item definition is
"item_id RT." The entry "size 45" specifies that each plot model is to be treated as 45 pixels in
size for the purpose of calculating progressive disclosure. The entry "time_step 3600" means
that each graphic of this type in a time sequence will be separated by one hour, which is 3600
seconds. All time periods in design files are in units of seconds.

item_id RT
type string
dimension scalar
record true
indexing_table rank_report_type.txt
netcdf_id reportType

Normally, when the code figures out which data record to copy to a station, the record with a
time closest to the valid time of the whole data set is used. Here, the item RT is used to specify
that we prefer to use observations with a report type of METAR if avaliable, instead of a SPECI
that may be closer to the data set time. To make this work, this item is specified to be a record
item and an entry with the keyword `indexing_table' is supplied. The file rank_report_type.txt
contains the data for what is called a lookup table. This particular table is a string to number
lookup table, and is used to assign arbitrary rankings to the strings METAR and SPECI.

item_id TXT
type string
dimension scalar
netcdf_id rawMETAR
sample true

This item is reading in the raw text of the METAR. Since the keyword `sample' is there with the
argument of true, this text is what is presented for sampling. In order to sample, an item must
be a scalar string type with station indexing.

item_id CLOUDS
type string
dimension list
netcdf_id skyCover

This item pulls in the cloud information but does not directly display it. That will be done by a
later item (and note that the display does not have to be done by the immediately following
item). This item has a list argument to its `dimension' keyword because there can be multiple
cloud decks.

item_id DPTYP

type short
dimension scalar
netcdf_id pressChangeChar
item_id DPVAL
type float
dimension scalar
netcdf_id pressChange3Hour
item_id DP3
function gather
inputs DPVAL DPTYP
method trend
placement right
multiplier 0.1
format %3.2d

DPTYP and DPVAL are used to pull in the characteristic and amount of the pressure change. DP3
uses the gather function, which is a special function used only to pass one or more previously
defined items to a display method. The display method here is trend, which is specifically
tailored for the task of displaying pressure change data. In the design of the capability, we have
tried to avoid specifically tailored functions or display methods, but a few exist. Note that the
units conversion from pascals to tenths of millibars is done with the generic `multiplier'
keyword rather that being folded into the method.

item_id SPD
type float
dimension scalar
netcdf_id windSpeed
item_id DIR
type float
dimension scalar
netcdf_id windDir
item_id GUST
type float
dimension scalar
netcdf_id windGust
item_id WIND
function gather
inputs SPD DIR GUST
method barb
placement free
multiplier 1.944

SPD, DIR and GUST are used to pull in the wind speed, wind direction, and gust speed,
respectively. The item WIND uses gather to present these to the barb method. Note than since
this method predetermines the placement of what is being plotted, free placement is used. The
multiplier is used to convert from meters per second to knots.

item_id WX
type string

dimension scalar
netcdf_id presWeather
placement left
method translation
table_file wx_symbol_trans.txt
alt_char_set weather

This is an example of a raw data item that is immediately handed to a display method. The
method translation specifies that a string to string lookup table is expected, and the recursive
translation method of that table will be called to produce the text for output. The `table_file'
keyword is used to supply the name of the file containing the lookup table. All text that cannot
be translated will be shown as plain ASCII, but the text that is translated will be displayed using
the weather character set.

item_id TC
type float
dimension scalar
netcdf_id temperature
item_id TdC
type float
dimension scalar
netcdf_id dewpoint
item_id T10
type float
dimension scalar
netcdf_id tempFromTenths
item_id Td10
type float
dimension scalar
netcdf_id dpFromTenths
item_id T
function or
inputs T10 TC
placement upper_left
method formatted
multiplier 1.8
offset -459.67
format %d
min_trans -60
max_trans 130

TC is used to pull in the value decoded from the regular temperature field in the METAR, which
is in degrees Celsius. U.S. METARs also sometimes have a temperature in tenths (used to
recover the precision of the Fahrenheit observation) in the remarks section; the T10 item is
used to pull that in. Then the T item pulls these two in using the or function and displays them.
The order is important: by putting T10 first, it will use the T10 value if available, and revert to
using the TC value otherwise. These kelvin temperatures are converted to Fahrenheit using the
multiplier and offset of 1.8 and -459.67. The `min_trans' and `max_trans' keywords are used to
supply sanity check limits to the results of the units conversion. A completely analogous thing

happens with the items TdC, Td10, and Td (below) in order to display the dewpoint.

item_id Td
function or
inputs Td10 TdC
placement lower_left
method formatted
multiplier 1.8
offset -459.67
format %d
min_trans -60
max_trans 100
item_id SLP
type float
dimension scalar
placement upper_right
method formatted
multiplier 0.1
netcdf_id seaLevelPress
format %5d
trim_count 2
min_trans 8000
max_trans 11000

This is yet another example of handing raw data directly to a display method. The multiplier of
0.1 turns pascals to tenths of millibars, and %5d is used to format that result. Keyword
`trim_count' is followed by the number of characters to strip off the front of the formatted
string before displaying it. This is how we follow the convention of not displaying the hundreds
of millibars in the pressure field.

item_id VV
type float
dimension scalar
netcdf_id vertVisibility
item_id OBSstr
constant OBS
item_id OBS
function and
inputs OBSstr VV

What happens here is that OBSstr is defined as the string "OBS". Then, if VV is non-null, the
"and" of OBSstr and VV will be that same string (because the first item is passed forward). Thus,
the item OBS will be either null or "OBS". This is used below as input to the CEILING definition.

item_id CLGDECK
function select
function_table cloud_select.txt
inputs CLOUDS

This is a list item; select is used to choose one value from the list, based on the CLOUDS field
assigned above. The file named as the argument to the `function_table' keyword is a string to
number table that is used to assign arbitrary rankings to each cover type; the cover type with
the lowest ranking number is used.

item_id CEILING
function or
inputs OBS CLGDECK
placement center
method lookup
table_file cloud_chars.txt
alt_char_set special

CEILING will be OBS (string "OBS" - obscured) if that's been set, else CLGDECK determined
above. The display method used is lookup, which means use a lookup table to do a simple
translation (not the recursive one done for WX) to produce the output text. The table used is a
string to string table defined in cloud_chars.txt, and the result is displayed using the special
character set).

The standard METAR design file retrieves many of the netCDF variables stored by the decoder.
Most of the other variables are used by one or another METAR plots, which you can see by
examining other design files in /awips/fxa/data/localization/nationalData. A companion
document, METARelements.html, provides additional examples of how to access and display
the remaining variables.

3.3) Local modification and testing

As noted, default design files delivered with an installation reside in nationalData/. Suppose you
want to change the profiler perspective plot to use arrows instead of barbs. By examining
dataMenus.txt (button 3998), depictInfo.manual (3998 uses design file 27109), and
dataInfo.manual, you'll find that the design file for this product is profPerspPlotDesign.txt. You
can put a copy of this file in your localizationDataSets/<LLL> directory, then modify it and see
the results. A caveat is that the design file is read only when the display first needs it. Thus, you
have five chances to see the effect of changes (by swapping in side panes). Once you've used up
all the IGC processes, you'll need to restart D2D, or you can kill one or more IGC_Processes to
get a fresh canvas. (New IGC(s) should start automatically, but you can use Options->Restart
Dead Panes... if necessary.)

4) Lookup Table Files

As mentioned before, lookup table files are a means by which a user can perform arbitrary data
converions. Lookup table files are plain ASCII files, with blank lines and those that begin with
`//' ignored, just as with design files. There are five types of lookup table files. The first line of
any lookup table file is a three character string that designates its type. All of the default lookup

table files exist in nationalData/ and have file names that look like *_*.txt. Just like design files,
they are subject to copy override from realization, site-specific, and customization files. Since
space-delimited parsing is used in these files, one needs to use a tilde (~) to designate the
existence of a space in an input string. An escaped tilde (\~) can be used to designate a tilde.

A new feature is that one can create a lookup table object based on text directly in a design file.
See the description of the `inline_table' keyword in Appendix 1.1, global keywords.

See Appendix 6 for a listing of standard lookup table files.

4.1) String to string lookup table

The first line of a string to string lookup table is "s2s". A string to string lookup table is used to
convert some arbitrary string to some other string. Most entries are a line with a lookup string
followed by a result string to which to translate it. Sometimes, there is a need to have
characters in the result string that are unprintable in ASCII. In that case, the result string can be
expressed with a colon followed by a list of integers designating the character codes (all space
delimited). It is also possible to make an entry with only a lookup string, which means that the
result of translating that string will be an empty string.

There are four special keywords that are recognized in a string to string table. Once a line has
been encountered that does not have one of these keywords on it, further occurences of these
keywords will be treated as a regular lookup string. Normally, if an attempt is made to translate
an input string that does not exist in the table as a lookup string, the output will be some
constant default string. The keyword `pass,' if present, indicates that if the input string is not
available as a lookup string, then the resulting translation should be the input string. The usual
default string is an empty string, but using the keyword `default' allows one to supply a
different default string. There is a special type of translation available for the string to string
table that will attempt to translate all possible substrings in the input string, as well as the
entire string. The keywords `left' and `right' allow one to perform an edit operation on the input
string before it is translated in this case. The arguments after the `left' or `right' keyword are a
lookup and result string expressed exactly as in a regular entry. For `left,' the first occurence of
the corresponding lookup string is located, and all text up to that occurence is replaced with the
corresponding result text. `right' works analogously with the last occurence and the end of the
string to translate.

4.2) String to number lookup table

The first line of a string to number lookup table is "s2n". Such a lookup table is used to convert
some arbitrary string to some numeric value. Most entries are a line with a lookup string
followed by a numeric value to which to translate it. Internally, numeric values in a string to
number table are held as doubles.

There are three special keywords that are recognized in a string to number table. Once a line
has been encountered that does not have one of these keywords on it, further occurences of
these keywords will be treated as a regular lookup string. If an attempt is made to translate an
input string that does not exist in the table as a lookup string, the output will be some constant
default value. Normally, this default value is 9e99, universally recognized by the PlotDesign
class as a null double value. Using the keyword `default' allows one to supply a different default
numeric value. There is a special type of translation available for the string to number table that
will attempt to scan all possible substrings for a possible lookup string, as well as the entire
string. The keywords `left' and `right' allow one to perform an edit operation on the input string
before it is translated in this case. The arguments after the `left' or `right' keyword are a lookup
string and a translation string. For `left,' the first occurence of the corresponding lookup string
is located, and all text up to that occurence is replaced with the corresponding translation
string. `right' works analogously with the last occurence and the end of the string to translate.

4.3) Number to string lookup table

The first line of a number to string lookup table is "n2s". An n2s lookup table is used to convert
some arbitrary numeric value to a string. Most commonly, entries are a single number or a pair
of numbers (representing a range), space delimited, followed by a result string. If there are
overlapping ranges, order is important because the first range that matches will be used.
Sometimes, there is a need to have characters in the result string that are unprintable in ASCII.
In that case, the result string can be expressed with a colon followed by a list of integers
designating the character codes (all space delimited). It is also possible to make an entry with
only one or a pair of numbers, which means that the result of that lookup will be an empty
string. Internally, numeric values in a number to string table are held as doubles.

There is one special keyword that is recognized in a number to string table. Normally, if an
attempt is made to look up a number that does not exist in the table or is outside all specified
ranges, the output will be an empty string. Using the keyword `default' allows one to supply a
different string to be output in the case of a failed lookup.

4.4) Number to number lookup table

The first line of a number to number lookup table is "n2n". This type of table is used to convert
some arbitrary numeric value to another numeric value. Most commonly, entries are a list of
two, three, or four numbers, space delimited. Two numbers means translate the first number
to the second. Three numbers means that if the input number falls between the first two
numbers, the result is the third number. Four numbers means that if the input number falls
between the first two numbers, do an interpolation to the range represented by the last two
numbers. If the first number is less than the second, this interpolation will be linear, otherwise
the interpolation will be logarithmic. For the logarithmic case, the first and second number
must be non-zero and the same sign.

There are two special keywords that are recognized in a number to number table. Normally, if
an attempt is made to look up a number that does not exist in the table or is outside all
specified ranges, the output will be 9e99, universally recognized by the PlotDesign class as a
null double value. Using the keyword `default' allows one to supply a different number to be
output in the case of a failed lookup. If keyword `pass' is present, then a failed lookup results in
the number input to the lookup being passed through.

4.5) Number to byte lookup table

Note: This table type currently is not used within the framework of the adaptive plan view
plotting -- it is used by the GribImgDecoder process to convert floating point values from GRIB
files to byte values for storage as images and for processing the radar DPR product. It's
documented here only because this is where all the other lookup table types are documented.

The first line of a number to byte lookup table is "n2b". This type of table is used to convert
some arbitrary numeric value to a byte value.

Entries are one or two floating point numbers followed by one or two integer (byte) values
from 0 to 255, all space delimited. When only one byte value is present, either the single
floating point value or the range of floating point values gets converted to the byte value
specified. If there are two byte values, there must be two floating point values, in which case an
interpolation is done from the range of first pair to the range of the second. If the first number
is less than the second, this interpolation will be linear, otherwise the interpolation will be
logarithmic. For the logarithmic case, the first and second number must be non-zero and the
same sign.

There are two special keywords that are recognized in a number to byte table. Normally, if an
attempt is made to look up a number that does not exist in the table or is outside all specified
ranges, the output will be 0, universally recognized by the image display software in AWIPS as a
null image value. Using the keyword `default' allows one to supply a different byte value to be
output in the case of a failed lookup. For efficiency, internally within this class, a single lookup
array is created covering the entire range of floating point values supplied. The floating point
resolution of this table is the value following the special keyword `resolution'. This will default
to 1.0 if this keyword is not supplied. It is very important that the internal resolution of the
table be well chosen. Too coarse, and lookups will not be accurate; too fine, and the table will
take up more memory than necessary.

Appendix 1) Keywords

By convention, keywords are all lower case with underscores. This discussion will divide
keywords into five categories: global, item, raw data, function, and display. Unless otherwise

mentioned, the reader should assume that each keyword takes one and only one argument.
The reader should also note that all time periods in design files are in seconds.

All global keywords must appear in the design file before any keywords from other categories.
Global keywords refer to the file as a whole; all other keyword are specific to their
corresponding item.

A1.1) Global keywords

Keyword Argument

size The assumed size in pixels of each station model plot. This is used for
progressive disclosure calculations.

shared_data

If the argument to this keyword is true, then all depictables that use this
design file, access data from the same directory, and have the same frame
time, will share the raw data they read off the disk. This can help the speed of
loading when several overlays are all loading the same large, common, data
set.

time_step

The number of seconds separating the valid times of each displayable frame.
For example, 3600 would be one hour; thus a graphic would be created with
valid times on the hours. By default, this could potentially contain
observations ranging in time from 30 minutes before to 30 minutes after the
hour.
time_step should be greater than or equal to filePeriod divided by
nInventoryBins, as defined in the CDL. Alternatively, a value of one means
displays will be created for individual record times (should be used with
caution).
Zero is a special case that means that the display inventory will be assumed to
be exactly the same as the file time stamps. This optimization is currently used
only for the DMD display.
A negative value is a flag always to use the simplest inventory algorithm
possible. This should be done only if it is OK for the inventory not to take into
account the availablility of data sets not in the primary time bin that
nonetheless are included in creating the final display.
An optional second argument is the number of seconds to offset each frame
time from an even multiple of the time step; this will normally be from minus
one half to plus one half the time step. This is not the same as `data_offset,'
which modifies the data gathering window, not the frame time.

default_period

<default> The display will accept data from a time bin the same size as the
value of `time_step.'

<number> The size of the time bin over which data will be allowed to appear
in the graphic.

The bin is always centered at the valid time assigned to the display unless a

non-zero value of data_offset is given.

inline_table

Typically, a lookup table refers to a separate file. If this keyword is present,
then the argument is the name of an in-line lookup table, which must be
unique within the design file. All text that immediately follows, up to the next
legitimate keyword, is considered to be the definition of the lookup table
known by that name. A table defined in this manner can be accessed only
within this design file, and it can override a lookup table file of the same name.

data_offset

<default> Data will be gathered primarily for a time period centered on the
valid time for which the frame is created.

<number> If given, center of primary data gathering period is offset from
frame valid time by this much.

This keyword is similar to the item keyword time_offset, except that it will
never feed back to inventories. It is different from the second argument to
`time_step,' which modifies the frame time, not the data gathering window.

by_record

<default> Normally, only one record among several with the same station ID
will be selected for display.

true

All records in the selected default time bin will be made available
for display regardless of whether they have unique station IDs.
When this is in effect, the use of the item keywords `time_offset,'
`accum_period,' or `valid_period' is no longer legal.

predefined_only
<default>

Any station for which no static progressive disclosure entry is
available will plot if its latitude and longitude can be found in the
netCDF file. In this case, these stations will never display at a zoom
level lower than nearby neighbors that do have static progressive
disclosure entries.

true Only stations appearing in the static progressive disclosure file
provided will plot.

dyn_prog_disc

This keyword is used to control whether and how progressive disclosure is
calculated on the fly based on which data is available. One can divide stations
to plot into two categories, those with static progressive disclosure and those
without.

<default>

Those stations with static progressive disclosure will retain it. Those
without will have their progressive disclosure dynamically
computed if there are not too many stations, otherwise they will all
be assigned some small constant value that guarantees they will
show up only at very high zooms or densities.

none Stations missing progressive disclosure will always be assigned the
small constant value.

missing Stations missing progressive disclosure will always have progressive
disclosure dynamically computed.

all
All stations, including those for which static progressive disclosure
information was available, will have their progressive disclosure
dynamically computed based on which stations actually have data.

by_density

If the argument to `by_density' is false, the progressive disclosure of stations
will not respond to the density control, but will still respond to magnification
and zooming. In conjuncton with the item keyword `min_density,' this can be
used to create a plot where the density is primarily used to control how many
data items are plotted for each station, rather than how many stations plot.

stations_path
A fragment of a file name to which the list of stations rendered will be written
each time a frame is drawn. It is written into the localizationDataSets/<LLL>/
directory and has an extension with the process ID encoded.

hard_accums

<default>
when performing an accumulation in order to convert data from
record to station indexing, as long as at least one non-undefined
value is available, a value will be created for the accumulation

record there must have been a record available for each valid period that
made up the accumulation

true there must have been a non-undefined value available for each
valid period that made up the accumulation

sample_format

Normally, when sample text is output, whatever text is in the item designated
as being the sample item is just written to the screen as is. `sample_format'
can take one or more arguments, each being a separate line of formatting
information. The standard ~ is used as a place holder for a space. As the text
to be formatted is scanned, each %c results in the next character being used in
the output, and each %s results in the next space-delimited word being used
in the output. If the last format specification is %s, then that format
specification will be replaced with whatever text is left regardless of spaces. If
in the course of formatting, the text to be formatted is exhausted, the rest of
the format specifications will be replaced with empty strings. Finally, one can
cause a string with spaces to be treated as a single item if it is enclosed in a
pair of double quotes ("). If one wants a double quote to be output, one can
escape it with a backslash (\).

diag_dump

A numerical argument, causing diagnostics to be written to stderr as the
design file is parsed and used to obtain data.
>=10 minimal diagnostics
>=20 detailed diagnostics

>=30 diagnostics that include information about individual records and
stations processed

A ones place of 9 will result in outputting the contents of all the data items.

A1.2) Item keywords

Keyword Argument

item_id

The presence of this keyword triggers the existence of an item. The entries that
define an item span from its `item_id' to the entry immediately before the next
`item_id.' This keyword is always the first entry of an item definition, but within
an item definition other individual entries may appear in any order.

sample

This keyword must be applied to an item that has a scalar string type and is
station indexed. When present with an argument of true, it will cause the text
from this item to be used for sampling. When the value is a positive integer,
this will also invoke sampling based on this variable, where the number is the
maximum number of stations for which output can be presented at the same
time. This feature allows the user to see sample text from more than just the
one station nearest the cursor in the case where multiple stations might be
very close together and hard to distinguish graphically. This keyword should be
used on only one item. A second optional argument controls how sampling
responds to progressive disclosure or the elimination of stations for plotting
using the remove_by keyword; normally all stations are samplable regardless
of these considerations. A value of now means sample only stations currently
visible, ever means sample only stations that one could eventually see by
zooming.

remove_by

This keyword must be applied to an item that has scalar dimensionality. All
basic data types, string, float, int and short, have a well defined null value.
When present with an argument of true, it will cause all records/stations for
which this item has a null value to be removed from consideration for plotting.
This keyword should be used on only one item that is station indexed, and only
on one item among a group of record indexed items with the same time_offset
.

indexing_table

This keyword must be applied to an item that has scalar dimensionality and is
record indexed. This allows the value of the data item to be taken into account
when selecting which of multiple records applying to the same station should
be selected for display. The argument must be the filename of a lookup table
with numeric output and input appropriate to the item. This table is used to
convert values in this item into arbitrary rankings; lower ranking numbers are
most preferred for display. This keyword should be used on only one item.

goodness_table

This keyword must be applied to an item that has scalar dimensionality and is
station indexed. This allows the value of this data item to be taken into account
when calculating progressive disclosure. The argument must be the filename of
a lookup table with numeric output and input appropriate to the item. This
table is used to convert values in this item into goodness values; higher
goodness values are most preferred for display. The reader is directed to
va_driver.doc.html for more information on goodness values.

accum_period This keyword must be applied to an item that is station indexed. Furthermore,
it should be applied only to an item that is also raw data or is the result of a call

to the `rec_to_sta' function. The value associated with the `valid_period'
keyword for this item directly affects the result of using this keyword. When a
non-zero value for the accum_period keyword is present (0 is the default), then
an alternate method is used to map record indexed data to station indexed
data for the associated item. An attempt is made to add up values over a
period in time equal to the accum_period, assuming each individual value
represents the state over a period in time equal to the valid_period. The
number of record indexed values used in the summation is essentially the
accum_period divided by the valid_period. If that number is greater than one,
then this results in values being added up over some period of time. If there is
only one valid_period within the accum_period, then this routine can be used
to find a non-undefined value amongst several record indexed values
irrespective of what the default record to station mapping may be. The user
should note that while normally data is gathered from a time window centered
on the time_offset value for the item, accumulations are done over a period
ending at the time_offset value.
Use of this keyword is not allowed if the `by_record' feature is used.

average_period

This keyword must be applied to an item that is station indexed. Furthermore,
it should be applied only to an item that is also raw data or is the result of a call
to the `rec_to_sta' function. The value associated with the `valid_period'
keyword for this item directly affects the result of using this keyword. When a
non-zero value for the average_period keyword is present (0 is the default),
then an alternate method is used to map record indexed data to station
indexed data for the associated item. An attempt is made to average the values
over a period in time equal to the accum_period, assuming each individual
value represents the state over a period in time equal to the valid_period. The
number of record indexed values used in the average is essentially the
average_period divided by the valid_period. The user should note that while
normally data is gathered from a time window centered on the time_offset
value for the item, time averaging is done over a period ending at the
time_offset value.
Use of this keyword is not allowed if the `by_record' feature is used.

valid_period

Defaults to the value of the `default_period' keyword, which defaults to the
value of the `time_step.' It is meaningful to specify a value for the valid_period
keyword only when a value has also been supplied for the `accum_period' or
`average_period' keyword for the purpose performing an accumulation or time
average. For individual records closer in time than this, only one will be
considered for accumulation or averaging.

constant

A "constant" item contains only one additional entry beside its item_id, with a
keyword of `constant.'
= <number> the constant will be numeric
<otherwise> A string constant. Spaces are allowed in string constants, using

the standard tilde as place holder.

A1.3) Raw data keywords

Keyword Argument

netcdf_id

An item is identified as containing raw data primarily by the presence of this
keyword. The keyword is followed by the name of the netCDF variable from which
it reads data.
There are two special values for this keyword: _times_ which represents an int
scalar variable corresponding to the primary UNIX time of each record, and _ids_
which represents a string scalar variable corresponding to the full, perhaps
multivariable, station ID for each record.

record

true the item will contain values corresponding to records in the netCDF
file

<otherwise> the item will contain data for each station
There are two main reasons to specify that a data value is record indexed. First,
keywords `remove_by' and `indexing_table' perform functions that require a
record indexed item. Second, a user may want to perform some calculations on a
variable before doing the record to station conversion for display.

type

Used to specify the base data type of a raw data variable, possible arguments are
string, float, int, and short. The reason the user supplies this information rather
than it being obtained from the netCDF file is so that the validity of function
relationships can be determined when the design file is parsed.

dimension

scalar
there is one value for each record, meaning that variable should be
dimensioned in the netCDF file as (recnum), or (recnum,strlen) in the case
of a string

list
there are multiple values for each record, meaning that variables should be
dimemsioned (recnum,listlen), or (recnum,listlen,strlen) in the case of a
string.

Here recnum must refer to the UNLIMITED dimension, listlen and strlen to any valid
dimension appropriate for the variable.

subset

Raw data read from a netCDF file must have the UNLIMITED dimension as its first
dimension. Normally beyond that, there can be only one more dimension on the
variable (two if string). `subset' allows one to read data with more dimensions by
fixing some dimensions and letting others float. For any item, the subset keyword
must have an argument for each dimension beyond the UNLIMITED dimension. An
argument of -1 allows a dimension to float, and an argument zero or greater fixes
the dimension at that index. Considering numeric variables, if all dimensions are
fixed by a `subset' keyword, then the item becomes scalar, and if all but one
dimension is fixed it becomes list. For string data, one floating dimension means
scalar, two means list.

time_offset

Normally, records for an item come from a time period centered at the time of the
graphic being created. Using this keyword, it is possible to specify an arbitrary
offset for the center of that time period for any item. For example, a time_offset
argument of -86400 would allow one to read data one day previous to the time of
the graphic.
Use of this keyword is not allowed if the `by_record' feature is used.

min_valid
For numeric types, any value read that is less than the argument will automatically
be converted to the null value appropriate for the base type. This keyword has no
meaning for strings.

max_valid
For numeric types, any value read that is greater than the argument will
automatically be converted to the null value appropriate for the base type. This
keyword has no meaning for strings.

A1.4) Function keywords

Keyword Argument

function
An item is identified as containing a function output primarily by the presence of
this keyword. The argument is a function name. (See Appendix 2 for a complete
list of functions.)

inputs

Every item that has a `function' keyword must also have an `inputs' keyword.
The argument to this keyword is a list of item IDs that represent the data input
to the function. Depending on the function being used, order is usually very
important.

recompute

Normally, once data are read into a depictable, all the functions are computed
and that is that. If the argument to this keyword is true, then the result of this
function will be recomputed every time one zooms or pans. It makes sense to
set recompute true for any use of the `visible' function, as well as anything
computed from that item.

function_table
Some functions may need a lookup table to do their work and others may
optionally be able to apply one. For any such functions, the argument to this
keyword is the name of that table.

parameters

One or more strings, the interpretation of which is dependent on which function
is being used. A function is set up to take parameters when there is a desire to
change the behavior of a function in a way that is not suitable to do with
arguments, but does not result in a behavior that is fundementally different
enough to warrant an entirely different function. Parameters are only rarely
required to make a function work; the code will nearly always provide
meaningful defaults.

A1.5) Display keywords

Keyword Argument(s)

placement

An item is identified as having a display method primarily by the presence of this
keyword. For some methods, the placement is predetermined by the method,
and at other times the user may decide to supply specific coordinates. In these
cases, the argument is free. Otherwise it is one of nine predefined placement
positions: upper_left, top, upper_right, left, center, right, lower_left, bottom, and
lower_right.

method

The argument determines the manner in which the data in the item are to be
displayed. Most methods require only one input; some require multiple inputs, in
which case special function `gather' is used (see Section A2.1). A complete list of
display methods is found in Appendix 3.

location

A pair of coordinates that are in units of numbers of characters offset from the
center of the station model, right and up being positive. These coordinates need
not be integers. The value of the `placement' keyword must be free for these
coordinates to be used.

format

Some display methods require a C format specification, supplied here. When
formating string values, the core of the format must be a %s type. When
formating numeric values, the core of the format can be %d, %f, or %g type. The
default format is dependent on the data type, %s for string, %g for float, and %d
otherwise.

complex_fmt

This means of formatting text will allow text strings in the input data to be
treated as space delimited arguments instead of a single data item. This means of
formatting kicks in after the `format' keyword argument is used to produce a
string, regardless of the data type. The argument to a `complex_fmt' item is
similar to the one for `sample_format' except that it must be a single argument
and cannot produce multiple lines of output. The standard ~ is used as a place
holder for a space. As the text to be formatted is scanned, each %c results in the
next character being used in the output, and each %s results in the next space-
delimited word being used in the output. If the last format specification is %s,
then that format specification will be replaced with whatever text is left,
regardless of spaces. If in the course of formatting, the text to be formatted is
exhausted, the rest of the format specifications will be replaced with empty
strings. Finally, one can cause a string with spaces to be treated as a single item if
it is enclosed in a pair of double quotes ("). If one wants a double quote to be
output, one can escape it with a backslash (\).

trim_count The number of characters to strip off the front of a formatted string before
displaying it. It defaults to zero - trim no characters.

multiplier

`multiplier' works hand in hand with `offset' to allow units conversions to be
performed on numeric values before displaying them. Numeric values are
multiplied by the `multiplier' argument and then the `offset' argument is added
before formatting for display. The default value is one.

offset `offset' works hand in hand with `multiplier' to allow units conversions to be
performed on numeric values before displaying them. Numeric values are

multiplied by the `multiplier' argument and then the `offset' argument is added
before formatting for display. The default value is zero. This keyword is not
applicable for units conversion with vector display.

min_trans A lower bound for a final sanity check on a value to display after it has gone
through the units conversion check. This is not applicable for vector display.

max_trans
An upper bound for a final sanity check on a value to display after it has gone
through the units conversion check. For vector display, this is applied to the
magnitude.

table_file the name of the file containing the data for a method-required lookup table

undef_string
By default, when a display method is given a null value to display or the value
fails the final sanity check, nothing will be displayed. Here the user can supply a
string that should be displayed in that case.

magnification A magnification factor for whatever is being plotted. The default is one and non-
integral values are meaningful.

min_density

Normally, individual items in a station model will always plot as long as the data
are there and the station plots. The single float argument to `min_density' allows
one to set a minimum density threshold for plotting an individual item. In
conjuncton with the global keyword `by_density,' this can be used to create a
plot where the density is primarily used to control how many data items are
plotted for each station, rather than how many stations plot.

alt_char_set
Allowable arguments are ascii, large_ascii, weather, special, and large_special,
specifying the character set to use to display text; the default is ascii. These
character sets are described and illustrated in characterSets.html.

attributes An arbitrary integer meant to control how certain items are drawn. Currently
meaningful only to the circle and polyline methods.

Appendix 2) Functions

The data type of a function item is determined by the specific function used and the inputs.
With some execptions, most functions will take any base data type as input. There are some
broadly applicable rules about compatibility among inputs when there are multiple inputs to a
function. One can never mix record indexed and station indexed items, nor can one mix record
indexed items that have different values for the `time_offset.' With rare exceptions, one cannot
mix list inputs that have different list sizes. However, one is usually free to mix scalar, list, and
constant items as inputs, with the exception that it is usually not meaningful to have all inputs
be constant. When mixing input items of different dimensionality, the result has the largest
dimensionality. Inputs to functions can be raw data or other function results.

Here we will divide functions into six broad categories; special, conversion, mathematical,
meteorological, logical, and list handling.

A2.1) Special functions

Function
Name Description

gather

This function exists solely for presenting a list of items to a display method. The
most common use is to present multiple items to a method that needs more than
one item, such as displaying vectors. Another use is to pass a single item to an
additional display method when the item as defined already has a display method.
`gather' cannot take constant or record indexed inputs, and only rarely takes list
inputs. The specifics of what is allowed is dependent on the particular display
method used (see Appendix 3).

rec_to_sta

This is normally used to convert one record indexed item to a station indexed item.
It is the only function that can generate a result with an indexing type different
from its inputs. If `accum_period' or `average_period' is not present, it will use
whatever default record to station mapping has been established for the
time_offset of the item. If `accum_period' or `average_period' is present, then an
accumulation or time average will be performed, depending on the argument
values for those keywords and `valid_period.' If an optional second input item is
provided, then the selection of which records in the first item are used to compute
the output station indexed data is controlled by which records in the second item
have non-null values. If there are two input items and a parameter value of `max'
(or 'min') present, then the record in the first item copied into the station item will
be the one corresponding to the record containing the maximum (minimum) data
value in the second item.

sta_id

`sta_id' takes no arguments. The output is a scalar station indexed item of string
base type, which contains the ID of each station as obtained from static metadata.
The fact that this function exists does not prevent one from reading the station ID
from a netCDF variable.

visible
`visible' takes no arguments. The output is a scalar station-indexed item of int base
type, which will contain 1 if the station is visible in the current zoom state and null
if not.

to_const

The purpose of this function is to convert any single non-constant item to a
constant. By default, it returns a constant of the same major type containing the
first non-null item in the data. One can optionally provide one or two additional
numeric constant arguments. One constant means process only that record/station
index to determine the ouput, two means process that range of record/station
indices. One optional parameter can be provided, interpreted as follows. last
means return the last non-null item found instead of the first. catenate should be
used only with strings, and results in catenating all the strings in the input item into
a single string. total and number mean return a numeric constant that is a count of
how many non-null items are found; if a problem is encountered (all nulls input,
missing input, optional index out of range) total will return a 0, number will return
a null. begin and end mean return a numeric constant that is the station/record
index of the first/last non-null item found.

count

This routine normally takes two or more inputs of mixed types and dimensionality,
the result being an int containing a count of the number of non-null items
provided. If there is just one list input, then the result is a scalar containing how
many non-nulls were in the list. If there is one scalar input, then the count of non-
nulls is done in record/station space and copied to each item in the output.

from_file

`from_file' takes no arguments, but does take two parameters. The result is a
constant. The first input is either string or numeric, determining the type of the
constant, and the second parameter is the name of the file from which to read the
value of the constant. The file is found through the InfoFileServer. An optional third
parameter is a tag with which the line in the file from which to read the constant
must begin. An optional fourth parameter is the default value to use if the file
and/or tag cannot be found. If one wants a default but no tag supply a single space
(using a tilde) for the tag parameter.

state_check

This is a very specialized function, with three or more inputs. The first one or more
inputs are items to check against a bit mask (a numeric constant) which is the last
input. The next to last input is a string constant that is a list of characters
corresponding to each possible state. The number of possible states is two to the
number-of-check-items power. For example, if there were five total inputs, there
would be three inputs besides the last two constant inputs, and there would be
eight possible states (two to the third power), and thus eight characters in the
string constant. For each check input in turn, whether it has any of the bits on in
the mask is determined, and this yes/no answer is converted to a digit in a binary
number, starting with the least significant bit. The resulting number is then used to
index into the string constant to get a single character, which is the function result.

A2.2) Conversion functions

Conversion functions take one non-constant input and convert it to an item with a specified
base data type, but with the same indexing and dimensions. By default, the conversion will be
done by casting among numeric types, and through standard C format conversion between
string and numeric types. The conversion can also be done with a lookup table, assuming
compatibility between the input major type, requested output major type, and the flavor of the
lookup table. If a value is null in the input, it will become null in the output unless a lookup
table has been designed to provide a non-null translation for a null input.

Function
Name Description

string

Converts any arbitrary input to a string item. This conversion function can take
parameters. The first parameter is the length of the strings in the output item and the
second is the format to use for data conversion. Along with these two parameters,
one may optionally supply a string to use for null input data (an empty string is
default), a multiplier, and an offset. Alternatively, if the first parameter is green, Z, or
legend, a string representing a time will be output, assuming the input is a numeric

1/1/70 based UNIX time. This is most easily obtained from an item with a `netcdf_id'
of _times_. A numeric value of 0 will result in the current time being formatted, and a
null will result in an empty string. Finally, if a single parameter recursive is provided
along with a string to string lookup table, that table will be used in a way that
attempts to translate all substrings in the input string instead of just the whole string.
If parameter values are not provided, meaningful defaults will be used. Other than the
case of the recursive parameter, parameters are meaningless if a usable lookup table
is provided for the item.

float

Converts any arbitrary input to a float item. This conversion function can optionally
take one parameter, encode. This is applicable only when the input argument is of
type string. In this case, it will treat up to the first three characters in the string as a
base 256 integer, then that number will be converted to a base 10 floating point
value. This allows small text strings to be sent to the volume browser in floating point
values.

int

Converts any arbitrary input to an int item. This conversion function can optionally
take one parameter, either order or count. For both of these, the result is just the
position in the output arrays, starting at zero. For a non-list item it is the
station/record index, and for a list item it is list position. count is sensitive to whether
items are null, whereas order is not.

short Converts any arbitrary input to a short item.

A2.3) Mathematical functions

Mathematical functions will operate on any numeric type as input, but not on strings. When
base data types are mixed, the output type will be whichever of the input types has the
greatest range of values. With the exception of `accum' and `mean,' if any of the inputs for a
given station/record and list index (if applicable) is null, then the result will be null.

Function
Name Description

diff Two inputs; result is the first input minus the second.
div Two inputs; result is the first input divided by the second.
rem Two inputs; result is the remainder from dividing the first input by the second.

add

Normally two or more inputs; result is the sum of all inputs. If there is just one list
input, then the result is a scalar and each item in the list is summed to get the scalar
result. If there is one scalar input, then the sum is done in record/station space and
copied to each item in the output.

accum

Normally two or more inputs; result is the sum of all non-null inputs. If there is just
one list input, then the result is a scalar and each item in the list is summed to get the
scalar result. If there is one scalar input, then the sum is done in record/station space
and copied to each item in the output. This differs from `add,' where the presence of
any null input will result in a null output. However, if all inputs are null, the result will

still be null.

mult

Normally two or more inputs; result is the product of all inputs. If there is just one list
input, then the result is a scalar and each item in the list is multiplied to get the scalar
result. If there is one scalar input, then the multiplication is done in record/station
space and copied to each item in the output.

avg

Normally two or more inputs; result is the average of all inputs. If there is just one list
input, then the result is a scalar and each item in the list is summed to get the scalar
result. If there is one scalar input, then the averaging is done in record/station space
and copied to each item in the output.

mean

Normally two or more inputs; result is the average of all non-null inputs. If there is just
one list input, then the result is a scalar and each item in the list is summed to get the
scalar result. If there is one scalar input, then the averaging is done in record/station
space and copied to each item in the output. This differs from `avg,' where the
presence of any null input will result in a null output. However, if all inputs are null,
the result will still be null.

lintrans

Two or more inputs. If I1, I2, etc., are the inputs and R is the result, then R = I1*I2 +
I3*I4... Using standard mathematical precedence, all the multiplications take place
before the additions. If there is an odd number of inputs, the last is simply added to
the result without being multiplied by anything.

A2.4) Meteorological functions

Meteorological functions operate only on float or numeric constant item types; any null inputs
will result in a null output.

Function
Name Description

ucomp Two inputs, a magnitude and a direction; result is the u component of that vector.
vcomp Two inputs, a magnitude and a direction; result is the v component of that vector.

dir Two inputs, a u component and a v component; result is the compass direction
from of that vector.

mag Two inputs, a u component and a v component; result is the magnitude of that
vector.

heat_index Two inputs, temperature and dewpoint in kelvins; result is the Heat Index in
kelvins.

wind_chill Two inputs, temperature in kelvins and wind speed in meters per second; result is
the Wind Chill temperature in kelvins.

dewpoint
Two inputs, temperature in kelvins and relative humidity in percent. Alternatively,
three inputs, pressure in millibars, temperature in kelvins, and specific humidity in
g/kg. Result is the dewpoint in kelvins.

temperature Two inputs, potential temperature in kelvins and pressure in millibars; result is the

temperature in kelvins.

theta Two inputs, temperature in kelvins and pressure in millibars; result is the potential
temperature in kelvins.

spechum
Two inputs, pressure in millibars and dewpoint in kelvins. Alternatively, three
inputs, pressure in millibars, temperature in kelvins, and relative humidity in
percent. Result is the specific humidity in g/kg.

thetae Three inputs, pressure in millibars, temperature in kelvins and dewpoint in kelvins;
result is the equivalent potential temperature in kelvins.

alt2press Two inputs, altimeter setting in millibars and elevation in meters; result is the
surface station pressure in millibars.

height_of

One input, a numeric constant which is a pressure in millibars; result is a scalar
station indexed item of float base type, which contains the corresponding height
of that pressure surface for each station, interpolated from gridded data. The user
may supply via a `parameters' keyword a list of gridded data source names to try;
otherwise a default list will be used. If gridded data access fails, the result will be
based on a standard atmosphere.

ztopsa Returns a pressure in millibars based on a height in meters using a standard
atmosphere.

ptozsa Returns a height in meters based on a pressure in millibars using a standard
atmosphere.

elev

No arguments; result is a scalar station indexed item of float base type, which
contains the elevation of each station as obtained from static metadata. (The
existence of this function does not prevent one from reading the elevation from a
netCDF variable if such a variable exists in the data set.)

A2.5) Logical functions

Logical functions have the same output base type as the first argument, but the maximum
dimensionality of all the arguments. With a few exceptions, they will take any mix of base types
as input. In general, logical functions test the truth of some relationship among the inputs. If
true, the first non-null value among the inputs is placed in the output; if false, the output is a
null value. Where the first non-null value is string and the output is numeric, the value 0 will be
placed in the output. Where the first non-null value is numeric and the output is string, the
string "0" will be placed in the output.

Function
Name Description

or

Two or more inputs; result is the first non-null value among the inputs. `or' is
different from all other functions in that it will work even if some of its inputs are
not definable because of mismatches between assumed and actual netCDF variable
names.

and Two or more inputs; if all inputs are non-null, then the value from the first input
will be placed in the output.

nor Two inputs. If both inputs are null, then a non-null (0 for numeric, "0" for string)
will be placed in the output.

xor Two inputs. If one input is null and one input is non-null, then the value of the non-
null input will be placed in the output.

not One input. If the input is null, then a non-null (0 for numeric, "0" for string) will be
placed in the output.

== Two inputs, which may not mix string and numeric types. If the two inputs test as
equivalent, then the first input is copied to the output.

!= Two inputs, which may not mix string and numeric types. If the two inputs test as
not equivalent, then the first input is copied to the output.

> Two inputs, which may not mix string and numeric types. If the first input tests as
greater than the second input, then the first input is copied to the output.

< Two inputs, which may not mix string and numeric types. If the first input tests as
less than the second input, then the first input is copied to the output.

>=
Two inputs, which may not mix string and numeric types. If the first input tests as
greater than or equal to the second input, then the first input is copied to the
output.

<= Two inputs, which may not mix string and numeric types. If the first input tests as
less than or equal to the second input, then the first input is copied to the output.

min

Normally two or more inputs, which may not mix string and numeric types. If any
values are non-null, then the first non-null value that tests as being less than or
equal to all the others is copied to the output. If there is just one list input, then the
result is a scalar and the minimum non-null of the list gets copied to the output. If a
single scalar, then the minimum non-null of all the records/stations gets copied to
each record of the output.

max

Normally two or more inputs, which may not mix string and numeric types. If any
values are non-null, then the first non-null value that tests as being greater than or
equal to all the others is copied to the output. If there is just one list input, then the
result is a scalar and the maximum non-null of the list gets copied to the output. If
a single scalar, then the maximum non-null of all the records/stations gets copied
to each record of the output.

bit_none
Two inputs, which must have a short or int base type or be a numeric constant. If
there are no bits turned on in both inputs, then a value of zero will be placed in the
output, otherwise a null output will result.

bit_any
Two inputs, which must have a short or int base type or be a numeric constant. If
there are any bits turned on in both inputs, then a value of zero will be placed in
the output, otherwise a null output will result.

bit_all Two inputs, which must have a short or int base type or be a numeric constant. If
every bit that is on in the first input is also on in the second output, then a value of

zero will be placed in the output, otherwise a null output will result.

none_there
Two or more string inputs. If none of the remaining inputs appears in the first input
as a substring, then the first input will be placed in the output, otherwise a null
output will result.

any_there
Two or more string inputs. If any of the remaining inputs appears in the first input
as a substring, then the first input will be placed in the output, otherwise a null
output will result.

all_there
Two or more string inputs. If all of the remaining inputs appear in the first input as
a substring, then the first input will be placed in the output, otherwise a null output
will result.

A2.6) List handling functions

Function
Name Description

down_interp

Performs vertical interpolation in the case where the value of the vertical
coordinate being used increases downward. This function takes three inputs. The
first, a float list, is the vertical coordinate list; the second, also a float list, is the
list of values to interpolate; and the third, a float list, float scalar, or numeric
constant, is the specific vertical coordinate value(s) to which to interpolate. This
is one of only six functions that can take list items of different lengths, though
the first two lists must have the same length. The output is a float whose
dimensionality is determined only by that of the final argument, as opposed to
the usual behavior of using the maximum dimensionality of all arguments. By
default, it is possible to interpolate data from within a vertical gap 2 levels wide
(one missing level). The size of this gap can be specified optionally as an input to
a `parameters' keyword. Furthermore, if two parameters are supplied, the
second parameter is the largest vertical gap in terms of the vertical coordinate
over which interpolation is allowed.

up_interp

Performs vertical interpolation in the case where the value of the vertical
coordinate being used increases upward. This function takes three inputs. The
first, a float list, is the vertical coordinate list; the second, also a float list, is the
list of values to interpolate; and the third, a float list, float scalar, or numeric
constant, is the specific vertical coordinate value(s) to which to interpolate. This
is one of only six functions that can take list items of different lengths, though
the first two lists must have the same length. The output is a float whose
dimensionality is determined only by that of the final argument, as opposed to
the usual behavior of using the maximum dimensionality of all arguments. By
default, it is possible to interpolate data from within a vertical gap 2 levels wide
(one missing level). The size of this gap can be specified optionally as an input to
a `parameters' keyword. Furthermore, if two parameters are supplied, the
second parameter is the largest vertical gap in terms of the vertical coordinate

over which interpolation is allowed.

down_sample

Performs vertical sampling in the case where the value of the vertical coordinate
being used increases downward. Sampling means directly using the value from
the nearest level rather than interpolating. This function takes three inputs. The
first, a float list, is the vertical coordinate list; the second, also a float list, is the
list of values to sample from; and the third, a float list, float scalar, or numeric
constant, is the specific vertical coordinate value(s) to sample for. This is one of
only six functions that can take list items of different lengths, though the first
two lists must have the same length. The output is a float whose dimensionality
is determined only by that of the final argument, as opposed to the usual
behavior of using the maximum dimensionality of all arguments. For sampling,
the default behavior is not to allow sampling from within vertical gaps of missing
data, and not to allow the same item in the input list to be used more than once
(oversampling) in the case of multiple output levels. One can change this
behavior with a parameter. The absolute value of the parameter is the size of a
gap from which to allow sampling (a gap of 2 means allow one missing level), and
if the parameter is positive, the oversampling is allowed. Furthermore, if two
parameters are supplied, the second parameter is the largest vertical gap in
terms of the vertical coordinate from within which sampling is allowed.

up_sample

Performs vertical sampling in the case where the value of the vertical coordinate
being used increases upward. Sampling means directly using the value from the
nearest level rather than interpolating. This function takes three inputs. The first,
a float list, is the vertical coordinate list; the second, also a float list, is the list of
values to sample from; and the third, a float list, float scalar, or numeric
constant, is the specific vertical coordinate value(s) to sample for. This is one of
only six functions that can take list items of different lengths, though the first
two lists must have the same length. The output is a float whose dimensionality
is determined only by that of the final argument, as opposed to the usual
behavior of using the maximum dimensionality of all arguments. For sampling,
the default behavior is not to allow sampling from within vertical gaps of missing
data, and not to allow the same item in the input list to be used more than once
(oversampling) in the case of multiple output levels. One can change this
behavior with a parameter. The absolute value of the parameter is the size of a
gap from which to allow sampling (a gap of 2 means allow one missing level), and
if the parameter is positive, the oversampling is allowed. Furthermore, if two
parameters are supplied, the second parameter is the largest vertical gap in
terms of the vertical coordinate from within which sampling is allowed.

find_first One input, which can be any kind of list. The result is a scalar int item, which
contains the list index of the first non-null item in the list.

find_last One input, which can be any kind of list. The result is a scalar int item, which
contains the list index of the last non-null item in the list.

find_max One input, which can be any kind of list. The result is a scalar int item, which
contains the list index of the first non-null item in the list that tests greater than

or equal to all the others.

find_min
One input, which can be any kind of list. The result is a scalar int item, which
contains the list index of the first non-null item in the list that tests less than or
equal to all the others.

index

Two inputs, the first of which is any kind of list. The second must be either a
numeric constant or a scalar int, most often from one of the functions
`find_first,' `find_last,' `find_max,' or `find_min.' The value in the first input
whose list index corresponds to the second input is placed in the output item,
which is a scalar of the same base type as the input.

select

One input, any kind of list. A lookup table must be supplied using
`function_table.' The table used must have numeric output, and its input must be
compatible with the major type of the list. The table is used to arbitrarily rank
each item in the list. Whichever item has the lowest rank number is selected and
placed in the output item, which is a scalar of the same base type as the input.

catenate

One or more string inputs of any dimensionality. This is one of only six functions
that can take list items of different lengths. Each individual string, whether it is
part of a list or scalar, is catenated to the eventual result string. The output item
is a scalar string type. The default delimiter between each string is an empty
string. One can optionally supply a different delimiter as a single argument to the
`parameters' keyword. If one supplies two arguments to the `parameters'
keyword, these are treated as a leading and trailing string. Finally three
arguments are treated as a leading, delimiting, and trailing string.

group

Two or more inputs that all have the same base type but any dimensionality. This
is one of only six functions that can take list items of different lengths. Each
individual input value, whether it is part of a list or scalar, it added to the
eventual resulting output list. The output item is a list of the same base type as
the inputs. Optionally, if one supplies the parameter like, an output list object
will be created with the same base type and record/station type as the first
input, but having a number of items equal to the number of additional
parameters after like. These additional parameters will be used to provide values
for the items in each list, creating essentially a `list constant'.

sort_up

This function takes as input one or two list arguments. The basic purpose of this
function is to sort a list increasing upward. If one argument, sorts items in the list
increasing upward, nulls last. If two arguments, then the first list is sorted
according to the values in the second list.

sort_dn

This function takes as input one or two list arguments. The basic purpose of this
function is to sort a list increasing downward. If one argument, sorts items in the
list increasing downward, nulls last. If two arguments, then the first list is sorted
according to the values in the second list.

list_filter
This function takes as input one or two list arguments. The basic purpose of this
function is to extract nulls from a list. This function optionally takes one
parameter, which limits the physical size of the output list, which is otherwise

the same size as the input lists. If one argument, packs all non-null items to the
front of the list. If two arguments, then each time a non-null is encountered in
the second list, the corresponding item in the first is copied to the next position
in the output. In either case if there are not enough non-nulls to fill the output
list, it is padded to the end with nulls.

list_limit

This function takes as input one list argument followed by up to 3 optional scalar
numeric arguments. This function optionally takes one parameter, which limits
the physical size of the output list, which is otherwise the same size as the input
list. The basic purpose of this function is to create a list that is a subset of the
input list. The first optional argument is the number of items to copy to the
output list, which defaults to its physical size. The second is the index of the
input list from which to start copying, which defaults to zero. The third is the last
item in the input list to copy from, and this defaults to just enough to allow
consecutive copying. If the range of items to copy from is larger than the number
of items to copy to the output list, the first and last items requested will still be
copied, but items will be skipped within the input range to cover it. If there are
not enough copyable items to fill the output list, it is padded to the end with
nulls.

make_layer

This function takes from two to five float items or numeric constants. Any of the
first three may be list items. This function is used to construct a `layer' item,
which is a specialized implementation of a float list item. A `layer' always has an
item count of a multiple of three. Each triplet consists of a minimum value for
the layer, a representative value for the layer, and a maximum value for the
layer. If list arguments are supplied, then one ends up with a list containing three
times the number of items in the list, representing multiple layers in a single
item. If two arguments are supplied, these are the min and max layer values. If
three arguments are supplied, these are the min, representative, and max layer
values. The fourth and fifth arguments are an optional multiplier and offset,
which allows one to do a units conversion when constructing the layer. It is
meaningful to supply nulls for some of the three arguments.

layer_overlap

This function takes one or two float list arguments that represent layers, and
outputs a layer argument. If there is one list argument that contains that
contains one layer, then any nulls that can possibly be assigned values based on
other non-nulls in the layer will be defined. One argument that contains multiple
layers will result in computing the overlap (intersection) among all layers in the
list. Two arguments will result in computing the overlap between the two
arguments.

layer_union

This function takes one or two float list arguments that represent layers, and
outputs a layer argument. If there is one list argument that contains one layer,
then any nulls that can possibly be assigned values based on other non-nulls in
the layer will be defined. One argument that contains multiple layers will result
in computing the union among all layers in the list. Two arguments will result in
computing the union between the two arguments.

layer_min

This function takes one float list input that is a layer and one optional second int
scalar or numeric constant. The second input is meaningful only when the first
input contains multiple layers (the number of items is 6, 9, etc.), and allows one
to refer to a specific layer (0th, 1st, etc.). The output of this function is a float
scalar containing the minimum value of the selected layer, which defaults to the
0th if no second argument is present.

layer_rep

This function takes one float list input that is a layer and one optional second int
scalar or numeric constant. The second input is meaningful only when the first
input contains multiple layers (the number of items is 6, 9, etc.), and allows one
to refer to a specific layer (0th, 1st, etc.). The output of this function is a float
scalar containing the representative value of the selected layer, which defaults to
the 0th if no second argument is present.

layer_max

This function takes one float list input that is a layer and one optional second int
scalar or numeric constant. The second input is meaningful only when the first
input contains multiple layers (the number of items is 6, 9, etc.), and allows one
to refer to a specific layer (0th, 1st, etc.). The output of this function is a float
scalar containing the maximum value of the selected layer, which defaults to the
0th if no second argument is present.

Appendix 3) Display Methods

Method Description

formatted

Normally one scalar input of any base type. This method plots a data value using a C
format specifier provided in the `format' keyword. The argument to the `format'
keyword can also be the item_id of a string constant from which to obtain the
format, and this is indicated by the leading double dollar sign ($$). After a string has
been produced with the specified format, this can also be passed through complex
formatting if an argument was supplied to the `complex_fmt' keyword. The
positioning of the plotted element responds to the nine standard position options
available as an argument to the `placement' keyword, or to the coordinates supplied
as arguments to `location' if the placement is free. If numeric, the value undergoes a
units conversion based on the arguments to `multiplier' and `offset,' and will be
plottable only if the converted value is within the bounds set by the arguments to
`min_trans' and `max_trans.' If the value is null or otherwise deemed unplottable,
the string supplied as an argument to `undef_string' can be plotted instead of
nothing. A character set other than ASCII can be used to plot the resulting string
based on the argument to `alt_char_set.' It is possible to strip a specified number of
characters off of the front of the formatted string before plotting by supplying an
argument to the keyword `trim_count.' The size of the item plotted can be made
different from the default size by supplying an argument to the keyword
`magnification.' If the item being displayed is numeric, the format can be
determined by the output of a string to number lookup table provided the file name
of the table is supplied as an argument to the `table_file' keyword.

There is a new feature that allows one to plot text at an arbitrary location on the
frame using this method, and this is triggered by having more than one input, or by
having a constant input. The plain language positional arguments to `placement'
work the same, except relative to the whole display frame. If free is used, the
arguments to `location' must be a frame position, (0,0) being lower left and (1,1)
being upper right. If a constant argument is given, then that one data item is
formatted and placed at the indicated position in the frame. If multiple inputs are
given, then the second and/or third inputs are assumed to be numeric constants
that refer to a station/record index or a range of these indices. In this case, each
datum in the range of indices is formatted and catenated to produce a single string
that is written to the indicated position in the frame. If an argument was given to
the `complex_fmt' keyword, this will be applied once after this catenation
operation.

lookup

One scalar input of any base type. This display method plots the result of a simple
lookup table translation. The lookup table, the file for which is supplied as an
argument to the `table_file' keyword, needs to have string output and input
compatible with the major type of the item being plotted. The positioning of the
plotted element responds to the nine standard position options available as an
argument to the `placement' keyword, or to the coordinates supplied as arguments
to `location' if the placement is free. An alternate character set can be selected
using `alt_char_set,' and the plotted size of the item can be modified by supplying a
`magnification.'

translation

One scalar string input. The output string is generated by performing a recursive
translation using a string to string lookup table, supplied as an argument to the
`table_file' keyword. Any text that is successfully translated will be displayed by
whatever character set is specified as an argument to `alt_char_set.' Untranslated
text will be shown in plain ASCII. The positioning of the plotted element responds to
the nine standard position options available as an argument to the `placement'
keyword, or to the coordinates supplied as arguments to `location' if the placement
is free. The plotted size of the item can be modified by supplying a `magnification'.

trend

This is a specialized method used to display the standard coding for the three hour
pressure tendency. Inputs are the change amount (float scalar) and the pressure
change character (short scalar). Any desired units conversion for the change amount
must be supplied as an argument to `multiplier,' but `offset' is ignored. The
formatting of the change amount can also be set via `format.' The positioning of the
plotted element responds to the nine standard position options available as an
argument to the `placement' keyword, or to the coordinates supplied as arguments
to `location' if the placement is free. The plotted size of the item can be modified by
supplying a `magnification.'

barb

This method displays vector data as wind barbs. It takes two to four inputs, which
must all be scalar floats. These are wind speed and direction, and optionally gust
speed and direction. If gust speed is supplied without direction, the direction will be
taken to be the same as input two. When gust information is available, it is plotted

as an additional arrow with the gust speed labeled in ASCII. The position is
predetermined by the method, so free `placement' is required. `max_trans' can be
used to specify a maximum valid wind speed. Speeds are assumed in knots;
`multiplier' can be used for units conversion. `min_trans' specifies the smallest gust
speed that will be plotted as such, and `offset' states the minimum vector difference
that must exist between the wind and the gust before a gust will be plotted. The
argument to `magnification' is overloaded: its magnitude is the size relative to the
default of the barb to be plotted, while if it is negative, "calm" circles will not be
plotted. If the barb as a whole is deemed unplottable, normally nothing will be
plotted, but `undef_string' can be used to specify some ASCII string to plot in that
case.

arrow

This method displays vector data as arrows. The two scalar float inputs represent
wind speed and direction. The length of the arrow is fixed, and the speed is plotted
in ASCII at the end of the arrow. The position is predetermined by the method, so
one must specify free `placement.' If supplied, `max_trans' specifies the maximum
wind speed considered valid. Speed units conversion is accomplished through
`multiplier,' but `offset' is not used. Relative arrow size is specified using
`magnification.' If the arrow as a whole is deemed unplottable, normally nothing will
be plotted; `undef_string' can be used to specify an ASCII string to plot in that case.

barbuv

Like `barb,' this method displays vector data as wind barbs. The inputs differ
however. Two to four float inputs are accepted. If there are only two inputs they are
scalars representing u and v components of the wind, and a single barb is plotted.
For three or four inputs, all are lists, representing u component, v component,
height, and QC parameters, respectively. If there are three inputs, then a stack of
wind barbs is plotted. If four, the wind barbs in the stack are colored according to
the speed and the QC information. free `placement' is required, since the position is
predetermined by the method. `max_trans' can be used to specify a maximum
plottable wind speed. Speeds are assumed in knots; `multiplier' can be used for
units conversion, but no `offset' is applied. The argument to `magnification' is
overloaded: its magnitude is the relative size of the plotted barb, while if it is
negative, "calm" circles will not be plotted. If the barb as a whole is deemed
unplottable, normally nothing will be plotted, but `undef_string' can be used to
specify an ASCII string to plot in that case.

arrowuv

Like `arrow,' this method displays vector data as arrows. Two to four float inputs are
accepted. If there are only two inputs they are scalars representing u and v
components of the wind, and a single arrow is plotted. For three or four inputs, all
are lists, representing u component, v component, height, and QC parameters,
respectively. If there are three inputs, then a stack of arrows is plotted. If four, the
arrows in the stack are colored according to the speed and the QC information. free
`placement' is required, since the position is predetermined by the method.
`max_trans' can be used to specify a maximum plottable wind speed. Speed unit
conversion is accomplished through `multiplier,' but no `offset' is applied. The
argument to `magnification' is overloaded: its magnitude is the relative size of the

plotted arrow, while if it is negative, "calm" circles will not be plotted. If the arrow
as a whole is deemed unplottable, normally nothing will be plotted; `undef_string'
can be used to specify an ASCII string to plot in that case.

circle

This method allows one to draw a circle of arbitrary size with various visual
characteristics. It takes at a minimum one numeric scalar input, which is the radius
of the circle. This is multiplied by the value of `multiplier' to get an intermediate
radius value, but no `offset' value is applied. If the intermediate radius value is less
than zero the final pixel radius value is the absolute value, otherwise the
intermediate value is assumed to be in kilometers, and is converted to get the
proper final radius in pixels dependent on the current scale and zoom. If the final
pixel radius is outside the range provided by arguments to `min_trans' and
`max_trans,' it will not be plotted. After this check, radii supplied in pixels will be
subject to the screen magnification factor, but radii supplied in kilometers will not. If
the resulting radius is smaller that the value of the `offset' keyword, then that offset
value will become the radius used. If an optional second non-list numeric argument
is supplied, that will be used for the thickness of the circle, which will otherwise
default to the argument to the keyword `magnification,' which defaults to one. If an
optional third non-list numeric argument is supplied, that will be used for the circle
attributes, which will otherwise default to the argument to the keyword `attributes,'
which defaults to zero. The circle attributes are a bit mask, with the 1 bit on
meaning a broken circle is drawn, the 2 bit on meaning a densely spiked circle is
drawn, and the 4 bit on meaning a sparsely spiked circle is drawn.

polyline

This method allows one to draw an arbitrary polyline. At a minimum, the polyline
takes two float list arguments. If the placement is free, then these are assumed to
be latitude and longitude, otherwise these are assumed to be x and y pixel
displacements from the location of the data, which are subject to magnification. An
optional third non-list string argument is a character to plot at the vertices, which
will be modified by the `alt_char_set' keyword argument. The argument to the
`attributes' keyword can be used to modify how the data location is treated in
drawing the polyline. An `attributes' value of zero (default) will do nothing with the
data location. Less than zero means attach the data location to the beginning of the
polyline, greater than zero means attach it to the end. If the absolute value of the
`attributes' argument is greater than one, then the vertex string will be be plotted at
the data location as well.

Appendix 4) Constants with predefined meanings

id_to_use:

This string constant allows one to temporarily define a single station whose data to access in a
plan view design file. This can either be the ID of the station or *** followed by a file name
where the station ID can be found.

FRAME_TIMES:

This string constant, if set to TRUE, designates that the inventory for this product should be the
set of existing frame times if loaded as an overlay.

REFRESH:

This string constant, if set to TRUE, designates that all data items in the design file should be
reread each time there is a zoom or pan, whether any items have the 'recompute' keyword
defined or not.

smoothing_distance:

This numeric constant applies if one is using the design file to gather data for an on-the-fly
analysis. The is the scale distance of the smoothing in kilometers.

DENSITY:

This numeric constant, if present, acquires the current value of the screen density. Usually
useful only if REFRESH is TRUE or some function items are designated with recompute true.

MAGNIFICATION:

This numeric constant, if present, acquires the current value of the screen magnification.
Usually useful only if REFRESH is TRUE or some function items are designated with recompute
true.

PROG_DISC_PAR:

This numeric constant, if present, acquires the current value of the progressive disclosure
threshold, which is in units of pixels per kilometer. Usually useful only if REFRESH is TRUE or
some function items are designated with recompute true.

EXTRA_LEGEND:

This string constant, if present, is a string to pass out as additional information to add to the
product legend. This string can be created using functions that result in a string constant
output. The format of the string is sss|iii, where sss is a search string of any length, and iii is the
string to insert into the legend, again of any length, and the vertical bar is literal. If no vertical
bar is present, the whole string is inserted at the front of the legend string, and if the search
string is zero length, what follows the vertical bar is appended to end of the legend string.
Otherwise, what follows the vertical bar is inserted at the first occurence of the search string.
Multiple vertical bars in succession result in searching for additional occurences of the search
string. For example, if the argument defining the value of this string constant were ~||FOO~,

this would result in the string FOO followed by a space being inserted at the second space in
the legend, because as the reader will recall the default parsing of design files means that ~ is
interpreted as a space.

Appendix 5) Enhancements to the netCDF files

Before one attempts to manipulate the display characteristics of point data sets, it is helpful to
understand the enhancements that have been made to the netCDF files to support this. Here,
in CDL format, are the variables and attributes that have been added:

dimensions:
maxStaticIds = int;
totalIdLen = int;
nInventoryBins = int;

variables:

int
nStaticIds;
nStaticIds:_FillValue = 0;

char
staticIds(maxStaticIds, totalIdLen);
staticIds:_FillValue = '\0';

int
lastRecord(maxStaticIds);
lastRecord:_FillValue = -1;

long
invTime(record);
invTime:_FillValue = 0;

int
prevRecord(record);
prevRecord:_FillValue = -1;

long
inventory(maxStaticIds);
inventory:_FillValue = 0;

long
globalInventory;
globalInventory:_FillValue = 0;

int
firstOverflow;
firstOverflow:_FillValue = -1;

int
isOverflow(record);
isOverflow:_FillValue = 0;

int

firstInBin(nInventoryBins);
firstInBin:_FillValue = -1;

int
lastInBin(nInventoryBins);
lastInBin:_FillValue = -1;

// global attributes:

:cdlDate = "ascii_date";
:idVariables = "netcdf_varname1,netcdf_varname2...";
:timeVariables = "netcdf_varname1,netcdf_varname2...";
:filePeriod = int;
:fileEndOffset = int;

// optional global attributes
// :latLonVars = "latitude_var,longitude_var";
// :log_rewrites = "true";
// :have_forecasts = "true";
// :forecast_list = "fcst_time1,fcst_time2,...";
// :max_open = int;
// :cache_metadata = "false";

The main reason to be familiar with these enhancements is so that in the event that one needs
to add an additional variable or attribute to an existing netCDF file, one can avoid using these
reserved variables and attributes. We refer to these enhancements as `record management'
variables and attributes. The primary reason these record management variables and attributes
exist is to optimize performance for inventory and for sequential access of data for a single
station. An implementor also needs to understand that the record management variables are
not displayable.

Of all the new global attributes, the :cdlDate attribute is the most important. If one ever
changes the structure of the data files in a directory (add, delete, or move a variable) the value
of the :cdlDate attribute needs to be changed. This allows the software to recognize that it has
to treat the new files differently.

At times it may be important to recognize that the data set has a forecast component. If this is
the case, then the optional global attribute :have_forecasts must be present. If its value is
simply `true', then individual records are identified with both a valid and forecast time and files
will be time stamped with the reference (initial) time of the data. If its value is the name of a
dimension, then that dimension is assumed to represent individual forecast times, and it is
assumed that all client variables will have that dimension in them. The specific forecast times
along that dimension must be enumerated in the forecast_list global attribute, and individual
records are identified with the reference time of the data.

Also, certain data sets are identified by latitude and longitude instead of an ASCII station ID. If
this is the case, then the :idVariables attribute will list the latitude and longitude variables.

If one is trying to create a new data set, it is probably best to start with one of the existing
default .cdl files that is closest to the new data set and modify it to accommodate your client
variables, rather than trying to replicate this list of record management variables.

Appendix 6) Standard lookup tables

Several lookup tables are included with the AWIPS software. They are listed here by type,
followed by an example of each for reference.

Type Files

s2s

cloud_chars.txt
cloud_chars_nom.txt
qc_check_bad.txt
qc_check_fmt.txt
qc_check_good.txt
wx_symbol_trans.txt

s2n cloud_select.txt
rank_report_type.txt

n2s

fractions_lookup.txt
ldad_prcp_formats.txt
maritime_cloud_chars.txt
prcp_formats.txt
raob_dd_char.txt

n2n prcp_goodness.txt

wx_symbol_trans.txt

s2s
right VC
-SHRA : 45 54
+SHRA : 180 54
SHRA : 79 54
-SHSN : 46 54
+SHSN : 179 54
SHSN : 89 54
-TSRA : 45 41
+TSRA : 79 88
TSRA : 180 41
-TSSN : 46 41
+TSSN : 179 88
TSSN : 89 41
FZRASN : 71 89
BCBR : 35
MIBR : 36
BR : 34
FZFG : 173

BCFG : 63
MIFG : 64
FG : 53
TS : 41
+TS : 88
FC : 43
+FC : 137
PO : 32
DRSN : 59
+DRSN : 60
BLSN : 61
+BLSN : 62
FU : 28
HZ : 29
-SH : 54
SH : 78
DU : 30
SA : 31
SS : 55
DS : 55
+SS : 58
+DS : 58
-FZRA : 70
-FZDZ : 68
FZRA : 71
FZDZ : 69
GR : 80
IC : 76
PE : 77
PL : 77
GS : 75
DZRA : 73
RADZ : 73
RASN : 47
SNRA : 47
-RA : 45
+RA : 180
RA : 79
-DZ : 44
+DZ : 181
DZ : 67
-SN : 46
+SN : 179
SN : 89
-UP : 174
+UP : 176
UP : 175
IP : 77
SG : 75
VA : 177
PRFG : 178
SQ : 42
BLDU : 31

(The output weather string represents one or more weather symbols.)

rank_report_type.txt

s2n
METAR 1
SPECI 2

(The standard MTR plots prefer a METAR over a SPECI if both are available in a given hour.)

prcp_formats.txt

n2s
-0.005 0.005 ~T
0.005 0.015 ~.o1
0.015 0.025 ~.o2
0.025 0.035 ~.o3
0.035 0.045 ~.o4
0.045 0.055 ~.o5
0.055 0.065 ~.o6
0.065 0.075 ~.o7
0.075 0.085 ~.o8
0.085 0.095 ~.o9
0.095 0.495 %4.2f
0.495 9.995 %5.2f
9.995 100 %6.2f

(The "o" is used instead of "0" arbitrarily to distinguish low-precip reports. C-style formats are
used for higher amounts, with a break at .50" to emphasize heavier precip.)

prcp_goodness.txt

n2n
0 1 0 100000

(This allows higher precipitation amounts to be favored automatically by the progressive
disclosure (declutter) mechanism.)

Author: Jim Ramer
Last update: 8 Oct 07

AWIPS character sets
There are currently five different AWIPS character sets. Each character set can conceivably have 255 printable
characters in it, although currently none of them have that many implemented. When displaying character data
in AWIPS, the implementor must select one of these character sets to use, and then all text display calls will use
that character set until it is changed. AWIPS character fonts are stroked fonts rather than bitmapped fonts -- this
is handy because they can be scaled arbitrarily rather than only by integral magnifications. The individual
strokes are integer coordinates on a specific size matrix for each character set. Here is a list of these character
sets and the alt_char_set identifiers used in design files:

Dataset Design file tag
7x9 ASCII (default) ascii

9x11 ASCII large_ascii
weather symbols (11x11) weather
special symbols (11x11) special

large special symbols (16x20) large_special

In practice, the overwhelming majority of display items use the default standard ASCII character set. Weather
and special symbols (the latter for clouds) are used in several plots, and radar graphics use several of the special
symbols (both sizes). The file $FXA_HOME/data/metar_wx_symbols.dat controls the translation of METAR
weather strings by listing character sequences and the character code(s) in this character set to use. The volume
browser displays that are fields of icons can in theory use any of these character sets, though currently none of
these types of displays uses anything but standard ASCII or weather symbols.

Here are displays that show the individual fonts available in each character set. These are shown with a stretch
factor of 2, but without the line width increase typical of AWIPS character magnification, so that the individuals
strokes can more easily be seen.

Standard ASCII

Large ASCII

Weather Symbols

Special Symbols

Large Special Symbols

Developers needing to design additional character displays can do so using the program `strokfont,' which is
built in the fontData directory. In that same directory are the files that contain the stroke data for each character
set. The files are:

set 0 standard ASCII standard.bin
set 1 large ASCII afosascii.bin
set 2 weather symbols afosfonts.bin
set 3 special symbols font2syms.bin
set 4 large special symbols largefont.bin

Author: Jim Ramer
Last update: 3 Aug 01

Transition from pre-localization environment to the post-localization environment

After one has completely built the WFO advanced software tree, it is
still not possible to run a workstation or an ingest system, because
one must run a localization to create all of the site specific metadata.
At one time, a complete software build in effect created a Denver
localization, but this is no longer the case.

In order to use the localization feature, you first need to define the
following environment variables (you might as well put these
definitions in your login file):

 setenv FXA_NATL_CONFIG_DATA ${FXA_HOME}/data/localization
 setenv FXA_LOCALIZATION_ROOT ${FXA_HOME}/data/localizationDataSets
 setenv FXA_LOCAL_SITE FSL
 setenv FXA_INGEST_SITE FSL
 setenv FXA_LOCALIZATION_SCRIPTS ${FXA_HOME}/data/localization/scripts

At a minimum, these are the utility programs that one needs to have
built in order to create localizations...doing a full build including
a buildexe in $FXA_HOME/src will assure that these are all built:

cd $FXA_HOME/src/dataMgmt
make fileMover keyMunge pasteUtil
cd $FXA_HOME/src/dm/grid
make makeGridKeyTables processStyleInfo testGridKeyServer initCdlTemplate
cd $FXA_HOME/src/dm/point
make reformatTest testPlotDesign
cd $FXA_HOME/src/dm/shapefile
make shp2bcd
cd $FXA_HOME/src/util
make textBufferTest
cd $FXA_HOME/src/geoLib
make bcdProc maksuparg test_grhi_remap maksubgrid rangeAzimuth
cd $FXA_HOME/src/geoTables
make GELTtest image_mask newGELTmaker
cd $FXA_HOME/src/mapping
make makthermo makxsect testDepictorTable
cd $FXA_HOME/src/staticPlotData
make va_driver masterToGoodness

In order to be able to also run all of the non-default tasks, one needs to
build these as well

cd $FXA_HOME/src/tstorm/localize
make create_radarLoc sitefinder
$FXA_HOME/src/ffmp/localize
make localizeForFFMP

Once you have your tree built and have set the proper environment
variables, you can create the default FSL localization by running the
following commands:

 cd ${FXA_HOME}/data/localization/scripts

 mainScript.csh

The localization process will take 5-20 minutes depending on the type
of machine you are running on and how busy it is...you will get some
diagnostics along the way. When finished, just start your D2D as you
normally do and it will be running an FSL localization, which is
essentially a BOU localization with small modifications.

The output diagnostics from the localization process have been
improved to the point where if you see something that looks like an
error, it probably is. Because the localization stuff is mostly
script driven, it is pretty quick to resynchronize yourself. Any time
a problem does arise in creating a localization and you are sure you
have all of your utility programs built, first run the following
commands:

 cd ${FXA_HOME}/src/localization
 dv-sync -R .
 make data

and then try to recreate the localization before assuming there is a
bug somewhere. Remember that at some point before running a localization
you must have done a `make data' for the whole software tree...it is not
enough to just build the utility programs and to do a `make data' in
${FXA_HOME}/src/localization.

The reason this creates an FSL localization is that the FXA_LOCAL_SITE
and FXA_INGEST_SITE environment variables are both pointing to FSL.
Whatever FXA_LOCAL_SITE points to, that is the localization your
workstation will use.

It is just as easy to create additional localizations. If, for example,
one issued the command:

 mainScript.csh OUN

a Norman localization will be created on the assumption that the
ingest machine you are looking at is running an FSL localization.
This is because FXA_INGEST_SITE still points to FSL. If you want to
create a fully Norman localization, run the command:

 mainScript.csh OUN OUN

To then run a workstation using this Norman localization, set the
environment variable FXA_LOCAL_SITE to OUN and start your D2D as
you normally do and it will be running a Norman localization.

To get a list of available localizations, run the command:

${FXA_HOME}/data/localization/scripts/cwaIds.csh -a

Author: Jim Ramer
Last update: 29 Nov 04

Directives
For any WFO, it is possible to run a default localization to produce an operational configuration
that is at least minimally usable. However, most sites will need at least some modifications to the
default localization to produce the optimum operational configuration. The files installed in order
to accomplish this are called site-specific control files.

Assume one is working with some arbitrary localization with the ID LLL. All of the site-specific
control files for the LLL localization can be found in the directory
$FXA_HOME/data/localization/LLL, and have file names that start with LLL-. (In a source tree,
they can be found in $FXA_HOME/src/localization/localData.) In the site-specific control files
called LLL-mainConfig.txt and LLL-wwaConfig.txt are software switches that can control many
different aspects of how localization data sets are created. These switches are referred to as
directives. LLL-wwaConfig.txt is a separate place for those switches that affect how warnGen
behaves, and LLL-mainConfig.txt contains the rest.

Each directive is one line in the file, and looks like this:

 @@@tag <the value of the directive>

The at signs are literal, the tag can be any string of alphanumeric characters with no white space,
and the value of the directive can be any arbitrary text. By convention, tags are all caps. Most
directives will acquire a default value if not present. If a directive occurs twice in a file, the last
entry is used.

Additionally, it is possible to affect the value of directives by supplying customization files.
These files reside in a directory pointed to by the environment variable
$FXA_CUSTOM_FILES, or in $FXA_CUSTOM_FILES/$FXA_CUSTOM_VERSION. The
customization main directive file can be named either LLL-mainConfig.txt or mainConfig.txt,
and the customization warnGen directive file can be named either LLL-wwaConfig.txt or
wwaConfig.txt. The ones with LLL- will affect only that localization, while the others will affect
all localizations. By default, FXA_CUSTOM_FILES points to $FXA_DATA/customFiles. Since
this is a cross-mounted disk, a change made here will affect future localizations run on any
machine. See section 9 in localization for more details.

When one or more customization directive files are present, all like directive files are catenated
in this order:

 $FXA_HOME/data/localization/LLL/LLL-*
 $FXA_CUSTOM_FILES/*
 $FXA_CUSTOM_FILES/LLL-*
 $FXA_CUSTOM_FILES/$FXA_CUSTOM_VERSION/*
 $FXA_CUSTOM_FILES/$FXA_CUSTOM_VERSION/LLL-*

Because the last occurence of a directive is used, entries in a directive file from a given directory
in this list will override entries in files from a directory earlier in the list. This means, for

example, that customization directives override those from site-specific control files (found in
localization/LLL).

In the case where a directive is being implemented as part of a centrally supplied software load,
it needs to be implemented in a site-specific control file, whereas someone implementing a
directive on site should use a customization file. This allows directives implemented on site to
survive a new software load.

It is important to note that changes to directive files cannot directly affect the operation of the
workstation or ingest software; they can only change the way a localization is built.

Here is a summary of all of the directives that will be recognized in the LLL-mainConfig.txt file.

Tag Possible
Values Effect

WFO ID of any
CWA

Specifies which county warning area is the basis for
defining the geographic characteristics of the localization.
Defaults to the localization ID.

CLONE
ID of any
other viable
localization.

Specifies that this localization shall be exactly like the one
specified, except for whatever additional site-specific
control files are added.

REALIZATION RFC or NC

If RFC, then will build a localization suitable for a River
Forecast Center. If NC, then a National Centers
localization will be built. If no realization is defined, will
build the default WFO realization.

SKEWT_TMIN a Celsius
temperature

Allows one to override the default temperature (-36.6) of
the lower left corner of skew-T diagrams. The temperature
of the lower right corner will change by the same amount,
leaving the range of temperatures unchanged.

MAPDENS a density
value

Allows one to override the default minimum density
setting (1) at which the inset map on skew-Ts, var vs.
height displays, cross sections, etc. is visible. If global
density is set lower than this value, the inset map is
suppressed.

SATEW EAST or
WEST Allows one to override the default satellite to ingest.

CCC any AFOS
CCC

Allows one to override the default AFOS CCC used by
the text database.

CCC2 any AFOS
CCC

In the case where the set of CCCs used to issue warnGen
products is not uniform, this allows one to set a second
CCC to possibly use. By default this is undefined...its
proper utilization depends on having the correct entries in
afosMasterPIL.txt file.

WMO any WMO ID Allows one to override the default WMO ID placed in the

header of text products by the text editor. Defaults to
KCCC.

XXX one AFOS
XXX

Establishes that AFOS XXX that is usually assigned to
products generated at this site. Defaults to the localization
ID.

XXX2 any AFOS
XXX

In the case where the set of XXXs used to issue warnGen
products is not uniform, this allows one to set a second
XXX to possibly use. By default this is undefined...its
proper utilization depends on having the correct entries in
afosMasterPIL.txt file.

XXXL list of AFOS
XXXs

Establishes those AFOS XXXs associated with text
products important to the local area. Implicitly includes
that one established in the XXX directive. Can and should
be a mix of 3 character XXXs and state IDs. Currently is
primary means of determining which text products are
used to make the Flash Flood Guidance graphic.

XXXR list of AFOS
XXXs

Establishes those AFOS XXXs associated with text
products important to the regional area. Implicitly
includes those in XXXL. Can and should be a mix of 3
character XXXs and state IDs. Currently is primary means
of determining which text products are used to make the
Local Warnings graphic.

NEW_FOG TRUE or
anything else

If TRUE, use Release 4.0/4.1 scaling for the `Fog'
product. Otherwise use the Release 3.1 scaling. Defaults
to 3.1 scaling.

HOME_SCALES list of scale
indices

If present, then this list of scales is set up to allow
geographic radar selection through the `Home' menu.

ALL_HOME TRUE or
anything else

If TRUE, then all SBN radars will automatically be added
to ingest and become available for geographic radar
selection through the `Home' menu. This directive will
have an effect only at an RFC or National Center.

RANGE_CUTOFF
a number
from 200 to
500

Radial radar data will not be displayed further than this
distance in kilometers from the radar. This helps some
with the speed of display of radar data. Defaults to 460.

PUP_TABLES TRUE or
anything else

If TRUE, use PUP (OSF) color tables for radar products
(defaults to FALSE).

RADAR_Z color table
index

Color table to use for 4 bit (16 color) radar reflectivity
products. Default is determined by value of
PUP_TABLES directive; see
$FXA_HOME/data/colorMaps.mark for usable default
color table indices. It is also allowable to use the index for
a user-defined color table, and to use a comma-delimited
combination of color table index and percent brightness.

RADAR_3 color table Color table to use for 3 bit (8 color) radar reflectivity

index products. Default is determined by value of
PUP_TABLES directive; see
$FXA_HOME/data/colorMaps.mark for usable default
color table indices. It is also allowable to use the index for
a user-defined color table, and to use a comma-delimited
combination of color table index and percent brightness.

RADAR_V color table
index

Color table to use for 4 bit (16 color) radar velocity
products. Default is determined by value of
PUP_TABLES directive; see
$FXA_HOME/data/colorMaps.mark for usable default
color table indices. It is also allowable to use the index for
a user-defined color table, and to use a comma-delimited
combination of color table index and percent brightness.

RADAR_V3 color table
index

Color table to use for 3 bit (8 color) radar velocity
products. Default is determined by value of
PUP_TABLES directive; see
$FXA_HOME/data/colorMaps.mark for usable default
color table indices. It is also allowable to use the index for
a user-defined color table, and to use a comma-delimited
combination of color table index and percent brightness.

RADAR_P color table
index

Color table to use for radar precipitation accumulation
products. Default is determined by value of
PUP_TABLES directive; see
$FXA_HOME/data/colorMaps.mark for usable default
color table indices. It is also allowable to use the index for
a user-defined color table, and to use a comma-delimited
combination of color table index and percent brightness.

RADAR_R color table
index

Color table to use for storm total precipitation products.
Both FSL and OSF versions of this one are ramped by
default to take advantage of the eight bit digital storm total
precip. Default is determined by value of PUP_TABLES
directive; see $FXA_HOME/data/colorMaps.mark for
usable default color table indices. It is also allowable to
use the index for a user-defined color table, and to use a
comma-delimited combination of color table index and
percent brightness.

RADAR_W color table
index

Color table to use for radar spectrum width products.
Default is determined by value of PUP_TABLES
directive; see $FXA_HOME/data/colorMaps.mark for
usable default color table indices. It is also allowable to
use the index for a user-defined color table, and to use a
comma-delimited combination of color table index and
percent brightness.

RADAR_S color table
index

Color table to use for radar radial shear products. Default
is determined by value of PUP_TABLES directive; see

$FXA_HOME/data/colorMaps.mark for usable default
color table indices. It is also allowable to use the index for
a user-defined color table, and to use a comma-delimited
combination of color table index and percent brightness.

RADAR_8 color table
index

Color table to use for radar reflectivity products in
general, meant to cover range of reflectivities from bottom
of clear air mode to top of storm mode. See
$FXA_HOME/data/colorMaps.mark for usable default
color table indices. It is also allowable to use the index for
a user-defined color table, and to use a comma-delimited
combination of color table index and percent brightness.

RADAR_H color table
index

Color table appropriate for entire dynamic range of 8 bit
(256 color) reflectivity radar products. OSF and FSL
versions of this table are maintained, though the default
system no longer uses this table. See
$FXA_HOME/data/colorMaps.mark for usable default
color table indices. It is also allowable to use the index for
a user-defined color table, and to use a comma-delimited
combination of color table index and percent brightness.

RADAR_VH color table
index

Color table to use for velocity radar products in general.
Both OSF and FSL versions of this table cover entire
possible dynamic range of 8 bit (256 level) velocities, but
in the typical range of 4 bit velocities retain that color
scheme. See $FXA_HOME/data/colorMaps.mark for
usable default color table indices. It is also allowable to
use the index for a user-defined color table, and to use a
comma-delimited combination of color table index and
percent brightness.

RADAR_D color table
index

Color table to use for digital vertically integrated liquid.
Both OSF and FSL versions of this table are inverse log,
so that the color scheme approximates that of the old 4 bit
VIL. See $FXA_HOME/data/colorMaps.mark for usable
default color table indices. It is also allowable to use the
index for a user-defined color table, and to use a comma-
delimited combination of color table index and percent
brightness.

WFOMAX a distance in
km

Allows one to override the default maximum size (600) of
the WFO scale.

STATESIZE a distance in
km

Allows one to override the default size (900) of the State
scale.

STATEWEST a distance in
km

Allows one to override the default westward bias (100) of
the State scale.

STATENORTH a distance in
km

Allows one to override the default northward bias (0) of
the State scale.

REGSIZE a distance in
km

Allows one to override the default size (2000) of the
Regional scale. One should be cautious about making it
larger, because larger regional satellite sectors will be
stored, with possible disk utilization problems.

REGWEST a distance in
km

Allows one to override the default westward bias (200) of
the Regional scale.

REGNORTH a distance in
km

Allows one to override the default northward bias (0) of
the Regional scale.

CO_PD a distance in
km

Progressive disclosure parameter to use for county names.
Defaults to 45.

ZN_PD a distance in
km

Progressive disclosure parameter to use for zone numbers.
Defaults to 35.

TOPO_SCALES scale indices Space-delimited list of scales for which to actually
generate topo. Defaults to `0 2 4'.

CITY_SCALE a scale index Scale index for which to generate city Map background.
Defaults to 3, normally the Regional scale.

AREA_SCALE a scale index
Scale that determines clip area for certain data sets,
including some hi-res grids and some map backgrounds.
Defaults to 3, normally the Regional scale.

NATCNTYSUP a sup file
name

Determines the area covered by the national
counties/marine zones table, which is mainly used to
support the display of watches using the WOU text
product. Defaults to conusScale.sup if that is in the
scaleInfo.txt file; otherwise defaults to the sup file for the
scale with index 2.

MARINE_SCALE a scale index

Scale that determines area over which to build a table for
creating the marine site and marine zone location lists. A
`t' means use the same area for which the warnGen tables
are built. Defaults to 3, normally the Regional scale.

BUFR_SCALE a scale index

Scale that determines area over which to process model
soundings. For National Centers or FSL on a Linux
system, the default will be to ingest all model BUFR
soundings. Otherwise, this defaults to 5, normally the
WFO scale.

GOES_BUFR_SCALE a scale index

Scale that determines area over which to process GOES
derived soundings. For National Centers or FSL on a
Linux system, the default will be to ingest all soundings.
Otherwise, this defaults to 3, normally the Regional scale.

POES_BUFR_SCALE a scale index

Scale that determines area over which to process POES
derived soundings. For National Centers or FSL on a
Linux system, the default will be to ingest all soundings.
Otherwise, this defaults to 3, normally the Regional scale.

BOTTOM 1000, 925, or Sets the lower bound for some layer products in model

850 families (defaults to 1000 mb.)

LLL-wwaConfig.txt includes globally defined defaults for some of its possible directives
established in localization/nationalData/wwaDefaults.txt. Most WWA directives result in direct
text substitution in the processed warnGen product template files; only the immediately
following have a functional impact on the way the localization works:

Tag Possible
Values Effect

TDIM

A number of
grid points or a
grid spacing in
km.

Value for the grid_size global keyword in the warnGen
GELT script files, which establishes the resolution of the
warnGen geographic tables; this defaults to 600. GELT
script files usually live in in nationalData/ and have _gsf.txt
on the end. See section 4.1 of newGELTmaker.doc.html for
more information.

ORABOUT TRUE or
anything else

If TRUE, invokes a feature whereby warnGen will describe
the location of weather events in relation to major cities, in
addition to the nearest city in the warned area.

SBID
list of potential
service backup
localization IDs

A list of service backup localization IDs, each individually
in double quotes, comma delimited, to which warnGen can
be switched to run for on the fly. This is what is also called
`full service backup.' Note that just adding the ID here is not
sufficient to enable full service backup; one must run that
localization as well. Use the special -WWA task identifier if
all you wish to do with the localization is support warnGen
backup.

CFROMZ TRUE or
anything else

If TRUE, invokes a feature whereby the warnGen county
table will be generated from forecast zone data.

AREA_SCALE a scale index

Scale that determines area over which to build a table for
creating the zone number and county name location lists. A
`t' means use the same area for which the warnGen tables are
built. If this same directive appears in mainConfig, will use
that, otherwise defaults to 3, normally the Regional scale.

MARINE_SCALE a scale index

Scale that determines area over which to build a table for
creating the marine site and marine zone location lists. A `t'
means use the same area for which the warnGen tables are
built. If this same directive appears in mainConfig, will use
that, otherwise defaults to 3, normally the Regional scale.

The unprocessed warnGen product definition templates live in localization/nationalData, and
have .preWWA extensions. Localization uses these to create .wwaProd files, which are the final
processed warnGen product template files, in the localization data set. The rest of these
directives just result in a direct text substitution in the warnGen product definition files. The
location of these substitutions is denoted by an `@@@tag' string that looks just like the first word

of the directive in the LLL-wwaConfig.txt file. Most of these directives just default to an empty
string if not present; any differences will be noted.

Tag Purpose
OFFH Name of the office to be used in the product header.
OFFT Name of the office to be used in the text of a product.

AREAS A term used to generically describe what a list of geographic entities is. Defaults to
`AREAS'.

COPE
How and whether to describe portions of areas for counties. Must be one or more of the
following strings: `|portions', `|extreme', or `|central'. See TextTemplate.html for more
details.

ZOPE
How and whether to describe portions of areas for zones. Must be one or more of the
following strings: `|portions', `|extreme', or `|central'. See TextTemplate.html for more
details.

CIPE
How and whether to describe portions of areas for cities being listed as locations within
the warned area. Must be one or more of the following strings: `|portions', `|extreme', or
`|central'. See TextTemplate.html for more details.

PTPE
How and whether to describe portions of areas for cities used as a reference to describe
the location of a storm. Must be one or more of the following strings: `|portions',
`|extreme', or `|central'. See TextTemplate.html for more details.

COFA

Establishes thresholds for automatically excluding small fragments of counties in the
warnGen box. Must be one or more of the following strings: `|min_area=aaa',
`|min_fraction=fff', or `|test_both', where aaa is an area in square km and fff is a fraction
of a county. See TextTemplate.html for more details.

ZOFA

Establishes thresholds for automatically excluding small fragments of zones in the
warnGen box. Must be one or more of the following strings: `|min_area=aaa',
`|min_fraction=fff', or `|test_both', where aaa is an area in square km and fff is a fraction
of a zone. See TextTemplate.html for more details.

CIFA

Establishes thresholds for automatically excluding small fragments of cities in the
warnGen box. Must be one or more of the following strings: `|min_area=aaa',
`|min_fraction=fff', or `|test_both', where aaa is an area in square km and fff is a fraction
of a city. See TextTemplate.html for more details.

Author: Jim Ramer
Last update: 15 Feb 08

Model Families
Model families are lists of gridded data displays that can be called up using a single button click
from the main menu. Typically a model family consists of a list of eight overlays from a single
model. The number eight is partly for historical reasons and partly because eight represents one
graphic and one image in each panel of a 4-panel display. There are also some families that
overlay the same field from several different models.

Model families are implemented as multi-loads. They are similar to, but not the same as,
bundles. Anytime a user can load more than one overlay (excluding associated map
backgrounds) with a single button click off of the main menu, this is a multi-load. Other
examples are radar Z/V combos and satellite four panels. The main file that controls multi-loads
is $FXA_HOME/data/multiLoadInfo.txt. This also has several #include statements that bring in
radar, locally defined, non-FSL developed, and gridded data multi-loads. In order to make a
multi-load displayable, one has to make entries for it in the depict keys, product buttons, and data
menus as well.

In early versions of AWIPS, familes were created by making manual entries in
multiLoadInfo.txt, as well as in depictInfo.manual, productButtonInfo.txt, and dataMenus.txt (all
in nationalData/). As the number of gridded data sources has grown, this has become an
increasingly tedious exercise, and so it has been automated. It is now possible to make entries in
the virtual field table (nationalData/virtualFieldTable.txt) and have them define a family for any
new gridded data source that comes along. This document will just describe those elements of
the virtual field table that have a direct bearing on model family generation; see gridTables for a
complete description.

Model families are implemented in the virtual field table by a function called, appropriately,
`MultiLoad'. Here are some examples of MultiLoad function entries; the first block is an
example of part of the default family entry from 5.2.1 and previous, the second block is the
whole default family entry from 5.2.2.:

ModFam| |N|Family| |OTHER | | \
 *MultiLoad,Layer|1.|GH,500MB|1.|AV,500MB \
 |0.|msl-P,Surface|0.|dZ,1000MB-500MB \
 |0.|GH,700MB|0.|RH,Layer \
 |0.|PVV,700MB|0.|TP,Surface |0.|1.|2.|3.| \
 *MultiLoad,Layer|1.|GH,500MB|1.|AV,500MB \
 |0.|msl-P,Surface|0.|dZ,1000MB-500MB \
 |0.|GH,700MB|0.|RH,@@@BOTTOMMB-500MB \
 |0.|PVV,700MB|0.|TP,Surface |0.|1.|2.|3.| \

ModFam| |N|Family| |OTHER | | \
 *MultiLoad,Layer|1.|GH,500MB|1.|AV,500MB|geoVort,500MB \
 |0.|msl-P,Surface|msl-P2,Surface|0.|dZ,1000MB-500MB \
 |0.1|GH,700MB|0.1|RH,Layer|RH,@@@BOTTOMMB-500MB \
 |0.1|PVV,700MB|wSp,250MB|P,Trop \
 |0.1|TP3hr,Surface|TP6hr,Surface|TP,Surface \
 |0.|1.|2.|3.

The most important thing to note is that in order to be treated as a family, and be posted to the
main menu, the last word in the legend must be `Family'. If this is not the case, one can still
make this multi-load displayable in the volume browser by placing an entry for the variable ID
(`ModFam' in this case) in $FXA_HOME/data/vb/browserFieldMenu.txt. Also note that after the
function designation (`*MultiLoad') there is a grid level name. With families, one generally
wants to assign it to one and only one level. Since the result of a multi-load can be a mix of
several different display types, using the `OTHER' display type is most appropriate.

Each MultiLoad function entry consists of a list of overlays followed by an optional list of valid
scale indices. Each overlay consists of two input variables; the variable to display preceded by a
constant that describes how to display that variable. The display method constant is converted to
the nearest integer before being interpreted as follows: A non-zero value in the ones place means
this overlay should be toggled on by default. The tens digit is the display type to use: 0=contour,
1=icons, 2=image, 3=barbs, 4=streamlines, 5=arrows, 6=dualarrows, 7=other. A non-zero value
in the hundreds digit means start a new pane. The thousands place is number of frames to load; 0
means the same as the number of forecast times and 99 means whatever the display is currently
set for.

There are two important different differences for 5.2.2. First, a non-integral entry in the constants
for each overlay means that this component can be missing and still allow that particular
MultiLoad function entry to be used. The other important differernce is that one can place any
number of field/level entries after each overlay constant. The first one that can be resolved for
the source will be used. Note that the net result of this is a far more compact entry for the default
model family.

Note that there are two MultiLoad function entries in the first block of these examples and that
the last line ends in a continuation, meaning that there are more to come. For any gridded data
source, an attempt will be made to create the multi-load with the first entry. To be successful, all
of the variables must be available for display and the source must be available for display on one
of the scales listed (scale considerations are ignored if no list is provided). If that fails it will try
the next, and so on, until a usable function entry is found or it runs out of entries. If no entry is
usable, then that multi-load will not be made for that source.

Entries in the virtual field table can only create model families that are for one gridded data
source. There is another file that controls the creation of comparison families. The default
version of that file is localization/nationalData/comparisonFields.txt. Each line in the file that is
not blank or comments represents one field that a comparison family can be made out of. Each
line is from two to five vertical bar delimited fields. At a minimum, a level ID and virtual field
ID must be supplied. Optionally, one may supply a title in the third field, a comma delimited list
of scales indices in the fourth, and a comma delimited list of time resolutions in the fifth. For
each entry in comparisonFields.txt a multi-load can potentially be generated for each scale. If a
list of scales is provided, then only those scales will have a multi-load generated. Each multi-
load can potentially have a overlay from each gridded data source that has the variable in
question. In order to be included, its default list of scales in the grid source table must include the
scale in question. Also, if a list of time resolutions is provided, then the time resolution for the

source (15th field in gridSourceTable) must match one of the listed time resolutions. The
overlays are sorted in decreasing order of length of forecast of the model.

In being posted into the main menu, families are categorized primarily by type, of which there
are currently default, 4-panel, Surface, and comparison. Within each type, individual menu
entries are made for each model, corresponding to all sources with the same legend title. For
comparison familes, individual entries are made for each field. The default type is automatically
posted on the top level volume menu immediately below the product maker entry. The remaining
types are posted on the top level menu if they have fewer than five entries, otherwise the entries
for the type are all placed in a pull right.

Author: Jim Ramer
Last update: 11 Jan 02

File Dependencies
This document describes to the user what parts of the localization need to be rerun in response to
changes in any given file in the source data for localizations.

All aspects of the localization process are described in more detail in the file localization. Here
we will summarize just enough about the workings of localizaton to support this discussion.

For the purpose of this discussion, `LLL' will always refer to the current localization ID, and
`RRR' will always refer to the current realization ID, if applicable.

The phrase `source data for localizations' refers to four types of files: national data set files, site
specific control files, realization files, and customization files. The following table shows
pathnames to these various file types:

Type Path(s)
------------- --
national data $FXA_HOME/data/*
 $FXA_HOME/data/localization/nationalData/*

site specific $FXA_HOME/data/localization/LLL/LLL-*

realization $FXA_HOME/data/localization/realizations/RRR--*

customization $FXA_CUSTOM_FILES/*
 $FXA_CUSTOM_FILES/LLL-*
 $FXA_CUSTOM_FILES/$FXA_CUSTOM_VERSION/*
 $FXA_CUSTOM_FILES/$FXA_CUSTOM_VERSION/LLL-*

The user should note that FXA_CUSTOM_FILES currently points to $FXA_DATA/customFiles
by default.

The discussion that follows covers all of the files in these categories that might be changed to
effect the workings of a localization. Any file name mentioned is a possible replacement for a *
in the list above. Any file not in the national data set (site specific, realization, or customization)
will be referred to generically as an `override file'.

An additional set of files important to this discussion is the localization data set files. These files
are in $FXA_HOME/data/localizationDataSets/LLL. These are all of the site-unique files that
are actually read by the workstation or ingest at run time to affect the way they behave. It is the
function of the localization process to use the contents of the national data set and any applicable
override files to correctly create the localization data set for the site.

It is important to note that only national data set files and localization data set files can change
the way the AWIPS software functions. Override files can only affect the way a localization
runs.

When one is doing a search for a specific file name in this document, remember that some files
are listed with wild cards. For example, the file `raobMenus.txt' might be found under `raob*.txt'
or `*Menus.txt', so occasionally you might need to be creative with your search strings.

The rest of this document is broken up into four sections. The first section discusses localization
config files. The second section discusses overriding the functionality of localization scripts. The
third section discusses all other override files besides localization config files. The final section
discusses the files in the national data set.

1) Localization config files

The files mainConfig.txt and wwaConfig.txt are a special case for this discussion (see directives
for more information). Most override files affect one or two specific aspects of the localization.
The file mainConfig.txt can affect any part of the localization. The file wwaConfig.txt is the
same type of file as mainConfig.txt, but directives changed there can affect only the `wwa' task
(rarely also the `station' task) of the localization. Thus, changes to wwaConfig.txt will result in
having to run localizations only on workstation machines. Currently the only directives in
wwaConfig.txt that can affect the `station' task are `AREA_SCALE' and `MARINE_SCALE'.

Here is a table of all of the currently recognized directives in mainConfig.txt and the localization
tasks that one must run to implement that directive. Task names may be followed with some
characters in parentheses. A `W' means that task need only be rerun on workstation machines,
and a `d' means that one may choose to defer that task as not running it will not cause anything to
fail, some things may just work slightly differently.

Directive Task(s)
--------- ---
WFO all tasks
CLONE all tasks
REALIZATION all tasks
SATEW scales, clipSups, tables, maps(dW), station(dW), grids(dW)
SKEWT_TMIN scales(W), dataSups(W),
CCC text, wwa(W)
CCC2 wwa(W)
WMO text
XXX text, wwa(W)
XXX2 wwa(W)
XXXL text
XXXR text
HOME_SCALES radar(W)
PUP_TABLES radar(W)
RADAR_Z radar(W)
RADAR_3 radar(W)
RADAR_V radar(W)
RADAR_V3 radar(W)
RADAR_W radar(W)
RADAR_S radar(W)
RADAR_8 radar(W)
RADAR_H radar(W)
RADAR_VH radar(W)
RADAR_D radar(W)

RADAR_P radar(W)
RADAR_R radar(W)
WFOMAX scales(W), clipSups(W)
STATESIZE scales(W), clipSups(W), topo(dW), station(dW)
STATEWEST scales(W), clipSups(W), topo(dW), station(dW)
STATENORTH scales(W), clipSups(W), topo(dW), station(dW)
REGSIZE scales, clipSups, tables, maps(dW), station(dW), grids(dW)
REGWEST scales, clipSups, tables, maps(dW), station(dW), grids(dW)
REGNORTH scales, clipSups, tables, maps(dW), station(dW), grids(dW)
BUFR_SCALE clipSups
GOES_BUFR_SCALE clipSups
POES_BUFR_SCALE clipSups
CO_PD station(W)
ZN_PD station(W)
TOPO_SCALES topo(W)
CITY_SCALE station(W)
AREA_SCALE maps(W), station(W), wwa(W), grids(W)
MARINE_SCALE station(W), wwa(W)
BOTTOM grids

2) Script functionality override

The way the localization works, nearly all of the scripts that drive the localization live in
$FXA_HOME/data/localization/scripts/. The script mainScript.csh is an executive that delegates
the individual tasks involved in creating a localization data set to individual subordinate scripts.
Each of the subordinate scripts can have its functionality either completely replaced or merely
augumented by an override file. One can replace the entire functionality of a subordinate script
only via a realization file, but augumenting a script's functionality is possible based on any kind
of override file. For example, one of the subordinate scripts is called makeGridSourceTable.csh.
The presence of a realization file called makeGridSourceTable.csh will cause the functionality of
that script to be totally replaced. Any override file called makeGridSourceTable.patch will be
sourced by the default makeGridSourceTable.csh in order to augment the functionality of that
script. The manner in which .patch files are used has been made much more flexible in OB5; for
more information on this, please see scriptOverride.

Here is a list of all of the subordinate scripts that are subject to this type of override, along with
that task that runs the script. One should note that the subordinate script makeScales.csh actually
does have some functionality replaced rather than augmented by makeScales.patch.

Script Task
-------------------------------- -----------------------------------
makeGridSourceTable.csh grids
makeDataSups.csh dataSups
makeScales.csh scales,clipSups
makeClipSups.csh clipSups
assembleTables.csh tables
makeTextKeys.csh text
makeTopoFiles.csh topo
updateGridFiles.csh grids
updateRadarFiles.ksh radar
makeMapFiles.csh maps
makeWWAtables.csh wwa

makeStationFiles.csh station
makeDirectories.csh dirs
createAuxFiles.csh auxFiles
makePurgeTables.csh purge

The following subordinate scripts can have their functionality replaced, but will not source a
.patch file.

Script Task
-------------------------------- -----------------------------------
genRadarDataMenus.ksh radar
genRadarDataKeys.ksh radar
genRadarDepictKeys.ksh radar
makeRadarSups.csh radar
genRadarProdButtonInfo.ksh radar
genRadarMultiLoadKeys.ksh radar
genRadarExtensionInfo.ksh radar
doMosaicProcessing.ksh radar
staUtil.csh station
wwaUtil.csh wwa
fixGridGeo.csh fixGeo
fxatextTriggerConfig.sh trigger

3) Other override files

This section describes which localization tasks need to be rerun when an override file other than
mainConfig.txt or wwaConfig.txt is added or changed. This information is presented as a large
table. For each override file, the national file column is that file in the national data set whose
function this file is overriding or augmenting, if applicable. One should assume files in the
national data sets are from localization/nationalData unless their name is preceded with a `data/',
in which case they will be found in $FXA_HOME/data. A leading plus sign on a file means that
it does not actually exist in the national data set but is generated during the localization by
default. A leading minus sign means that the file does not actually exist in the national data set
but there is something in the localization scripts or the national data set up to respond to that
particular file. Where wildcards are used to indicate groups of files that are all handled alike, a
list of all of the currently existing national files follows.

At times, neither the override file nor the national data set file whose functionality is being
overridden will reflect the name of the file that is finally created or altered in the localization
data set. When this occurs, the localization data set file name will be preceded by a `>'. This type
of behavior will be noted only when the localization data set file created contains essentially the
same information that was in the override file.

The tasks column is the list of localization tasks that need to be run to implement the change.
The notations in parentheses are as before; a `W' means that task need be rerun only on
workstation machines, and a `d' means that one may choose to defer that task. In addition, an `I'
means that task need be rerun only on ingest machines, and an `A' means that task need be rerun
only on the application servers. The task `others' will refer to any localization task normally run
for a machine not already specifically mentioned. Whenever the `others' task is listed, it is

assumed that the national file column will contain only the name of the files most directly
affected by the given override file; in reality many other files will potentially be affected.

The last three columns show the type of file override for this file. One should read section 5.0 of
localization for more information on file override. `R' refers to realization files, `S' to site specfic
control files, and `C' to customization files. An empty column means that this file will not do
anything for this category of localization source data. An `f' means it is subject to functional
override, an `x' means it is subject to copy or replacement override, and an `a' means it is subject
to append override. An `i' means that the override occurs through a `#include' in another file.
This ends up working much like append override, with some slight differences that will be
discussed. When include override is in effect, the `>' symbol is sometimes used to refer to the
name of the file that is including the file in question. One should note that most localizations are
not subject to a realization and as such the `R' column is not applicable. Also, be aware that
sometimes the exact kind of override is somewhat ill defined or maybe some sort of hybrid. In
that case the type of override that most closely applies is used.

With many override files that are plain ASCII, there is an opportunity to change the default type
of override. If one adds a single line to the beginning of a file that says either `#replace' or
`#append', one can generally force the localization to bring that file into the localization with
either replacement or append override, as the case may be. There are some exceptions. It is
usually not possible to change a file that is subject to functional override (the `f' in the RCS
column) to append override, and it not possible to change a file that is subject to include override
(the `i' in the RCS column) to replace the contents of the file that is including it.

Another thing to keep in mind about file override is the way that most of the keyed files in
AWIPS work. Keyed files are the files that have one entry per line, the lines being broken up into
several vertical bar delimited fields, the first field being the key. These keys can be either
numeric or text. Examples are depictInfo.manual and appInfo.txt. When the code that parses
keyed files encounters entries with the same key, it will not cause an error. Rather, the last
occurence of an entry with that key will be the one that is used. If one is supplying an appended
override file for a keyed file, it can still cause the replacement of the entries for individual keys
that come before it in the final file.

override file national file tasks
RSC
---------------------- --------------------- -------------- -
--
gridSourceTable.template gridSourceTable.template grids,dirs(I)
xx.
 >gridSourceTable.txt
tdlSourceTable.template tdlSourceTable.template grids,dirs(I)
xx.
 >gridSourceTable.txt
localGridSourceTable.txt gridSourceTable.template grids,dirs(I)
.aa
 >gridSourceTable.txt
*.wc ecmf.wc grids
fff
 avn.wc

 ukmet.wc
 >gridSourceTable.txt
activeGridSources.txt activeGridSources.txt grids,dirs(I)
xaa
inactiveGridSources.txt -inactiveGridSources.txt grids,dirs(I)
xaa
*.sup +null.sup dataSups
xxx
 +VAD.sup
 +VWP.sup
 +NUSM.sup
 +conusC.sup
 +nhSat.sup
 +eastConus.sup
 +westConus.sup
 +libir.sup
 +libvis.sup
 +alaskaSat.sup
 +akBigSat.sup
 +hawaiiSat.sup
 +hiBigSat.sup
 +puertoRicoSat.sup
 +prBigSat.sup
 +conusA.sup
 +llNorth.sup
 +perspective.sup
 +profTH.sup
 +national.sup
 +b03.sup
 +b01.sup
 +b02.sup
grid*.sup +grid201.sup dataSups,
xxx
 +grid201.sup grids
 +grid202.sup
 +grid211.sup
 +grid212.sup
 +grid213.sup
 +grid215.sup
 +rucClip.sup
 +gridmaps.sup
 +maps40.sup
 +grid203.sup
 +grid207.sup
 +grid204.sup
 +grid205.sup
 +grid214.sup
 +msas.sup
 +grid1.sup
 +grid2.sup
 +grid3.sup
 +grid4.sup

override file national file tasks
RSC
---------------------- --------------------- ----------- -
--

cwa.bcd,cwa.asc usa_cwa.shx scales,
.f.
 usa_cwa.shp.Z wwa(W),others(d)
 usa_cwa.dbf
usa_cwa.* usa_cwa.shx scales,maps(W)
ff.
 usa_cwa.shp.Z wwa(W),others(d)
 usa_cwa.dbf
scaleInfo.txt scaleInfo.txt scales,grids(W)
xx.
 grids(W)
baselines.static -baselines.static scales(W)
..x
points.static -points.static scales(W)
..x
depictInfo.manual depictInfo.manual tables
x..
dataInfo.manual dataInfo.manual tables,dirs(I)
x..
tdlDepictKeys.txt tdlDepictKeys.txt tables
i..
 >depictInfo.manual
tdlDataKeys.txt tdlDataKeys.txt tables,dirs(I)
i..
 >dataInfo.manual
localDepictKeys.txt >depictInfo.manual tables
.ia
localDataKeys.txt >dataInfo.manual tables,dirs(I)
.ia
redbook*s.txt redbookDataKeys.txt tables,dirs(I)
ixx
 >dataInfo.manual
 redbookDepictKeys.txt
 >depictInfo.manual
 redbookProductButtons.txt
 >productButtonInfo.txt
raob*s.txt raobDataKeys.txt tables,dirs(I)
.xx
 raobDepictKeys.txt
 raobProductButtons.txt
msas*.txt msas_sysdef.txt msas(A)
.xx
 >data/msas.cdl
 >msasFieldConfig.txt
 +msas.sup
 msasDepictKeys.txt tables
.ii
 >depictInfo.manual
 msasProductButtons.txt tables
.ii
 >productButtonInfo.txt
 msasFieldConfig.txt tables
.xx
 >msasDepictKeys.txt
 >msasProductButtons.txt
*.config ipc.config tables
xaa

 scales.config
 tdl.config
 ws.config
*.abrev areas.abrev tables(W)
xaa
 county_type.abrev
 state.abrev
satDataKeys.txt -satDataKeys.txt tables,dirs(I)
xxa
satDepictKeys.txt -satDepictKeys.txt tables
xxa
*SatDataInfo.template westSatDataInfo.template tables,dirs(I)
xx.
 eastSatDataInfo.template
 >satDataKeys.txt
*SatDepictInfo.template westSatDepictInfo.template tables
xx.
 eastSatDepictInfo.template
 >satDepictKeys.txt
imageStyle.txt imageStyle.txt tables(W)
x..
tdlImageStyle.txt tdlImageStyle.txt tables(W)
x..
localImageStyle.txt imageStyle.txt tables(W)
.aa
productButtonInfo.txt productButtonInfo.txt tables(W)
x..
tdlProductButtons.txt tdlProductButtons.txt tables(W)
x..
satProductButtons.txt satProductButtons.txt tables(W)
xxa
localProductButtons.txt productButtonInfo.txt tables(W)
.aa
dataMenus.txt dataMenus.txt tables(W)
xxa
*Menus.txt backgroundMenus.txt tables(W)
iia
 commonLdadMenus.txt
 redbookSurfaceMenus.txt
 redbookUpperAirMenus.txt
 raobMenus.txt
 satDataMenus.txt
 tdlAnalysisMenus.txt
 tdlSurfaceMenus.txt
 tdlToolMenus.txt
 +raobLocalMenus.txt
 -ldadMenus.txt
 -otherAnalysisMenus.txt
 -otherBackgroundMenus.txt
 -otherHydroAppMenus.txt
 -otherHydroProdMenus.txt
 -otherSatMenus.txt
 -otherSurfaceMenus.txt
 -otherToolMenus.txt
 -otherUaMenus.txt
 -otherVolumeMenus.txt
 -tdlBackgroundMenus.txt

 -tdlRadarMenus.txt
 -tdlUaMenus.txt
 -tdlVolumeMenus.txt
 >dataMenus.txt
radarMenuHeader.txt radarMenuHeader.txt tables(W)
xxa
radarMenuFooter.txt radarMenuFooter.txt tables(W)
xxa
tdlMultiLoadInfo.txt tdlMultiLoadInfo.txt tables
i..
 >data/multiLoadInfo.txt
localMultiLoadInfo.txt data/multiLoadInfo.txt tables
.ia
 >data/multiLoadInfo.txt
localAppInfo.txt data/appInfo.txt tables(W)
.ia
localExtensionInfo.txt data/extensionInfo.txt tables(W)
.ia
*Design.txt ldadMeso15Design.txt tables
xxx
 ldadMeso30Design.txt
 ldadMesoHiWcDesign.txt
 ldadPrcp15Design.txt
 ldadPrcp1Design.txt
 ldadPrcp30Design.txt
 ldadPrcp3Design.txt
 ldadQCallDesign.txt
 ldadQCfailDesign.txt
 maritimeMovingDesign.txt
 maritimeStaticDesign.txt
 maritimeStdDesign.txt
 metar15Design.txt
 metar24ChgDesign.txt
 metarCvDesign.txt
 metarHiWcDesign.txt
 metarPrcp1Design.txt
 metarPrcp24Design.txt
 metarPrcp3Design.txt
 metarPrcp6Design.txt
 metarStdDesign.txt
 msasAltFailDesign.txt
 msasAltObsDesign.txt
 msasDewdFailDesign.txt
 msasDewdObsDesign.txt
 msasDewpFailDesign.txt
 msasDewpObsDesign.txt
 msasPchgFailDesign.txt
 msasPchgObsDesign.txt
 msasPmsasFailDesign.txt
 msasPmsasObsDesign.txt
 msasPnwsFailDesign.txt
 msasPnwsObsDesign.txt
 msasThetaFailDesign.txt
 msasThetaObsDesign.txt
 msasWindFailDesign.txt
 msasWindObsDesign.txt
 profAglPlotDesign.txt

 profPerspPlotDesign.txt
 profPresPlotDesign.txt
 profSfcPlotDesign.txt
 profTHdataDesign.txt
 profVBdataDesign.txt
 raobLowerDesign.txt
 raobSkewtDesign.txt
 raobUpperDesign.txt
_.txt cloud_chars.txt tables(W)
xxx
 cloud_chars_nom.txt
 cloud_select.txt
 fractions_lookup.txt
 hydro_acq_patterns.txt
 maritime_cloud_chars.txt
 prcp_formats.txt
 prcp_goodness.txt
 qc_check_bad.txt
 qc_check_fmt.txt
 qc_check_good.txt
 rank_report_type.txt
 raob_dd_char.txt
 wx_symbol_trans.txt
colorMaps.mark data/colorMaps.mark tables(W)
xx.
 >data/colorMaps.nc
localColorMaps.mark data/colorMaps.mark tables(W)
xxx
 >localColorMaps.nc

override file national file tasks
RSC
---------------------- --------------------- ----------- -
--
afosMasterPIL.txt afosMasterPIL.txt text
ff.
 >afosMasterPIL.CCC
ispan_table.template ispan_table.template text
ff.
 >ispan_table.dat
national_category_table.template text
ff.
 national_category_table.template
 >national_category_table.dat
versions_lookup_table.template text
ff.
 versions_lookup_table.template
 >versions_lookup_table.dat
versions_lookup_table.dat text
.aa
 versions_lookup_table.dat
textDataKeys.template textDataKeys.template text,dirs(i)
ff.
 >textDataKeys.txt
textDepictKeys.template textDepictKeys.template text
ff.
 >textDepictKeys.txt

stateMatch.dat stateMatch.dat text
ff.
textConfig.template textConfig.template text
ff.
 >text.config
text*Products.txt textOfficeMenuProducts.txt text
xxa
 textAlarmAlertProducts.txt
*.topo data/ETA.topo topo,grids
xxx
 data/RUC.topo
 data/grid202.topo
 data/NGM.topo
 data/MAPS.topo
 data/grid201.topo
 data/grid213.topo
 data/MAPS40.topo
 data/AVN211.topo
*.cdl data/aiv211.cdl grids,
ff.
 data/avn201.cdl dirs(I)
 data/avn202.cdl
 data/avn203.cdl
 data/avn211.cdl
 data/avn213.cdl
 data/eta207.cdl
 data/eta211.cdl
 data/eta212.cdl
 data/ecmfNH.cdl
 data/laps.cdl
 data/maps.cdl
 data/maps40.cdl
 data/mesoEta212.cdl
 data/mesoEta215.cdl
 data/mm5.cdl
 data/mrf201.cdl
 data/mrf202.cdl
 data/mrf203.cdl
 data/mrf204.cdl
 data/mrf205.cdl
 data/mrf213.cdl
 data/msas.cdl
 data/ngm202.cdl
 data/ngm207.cdl
 data/ngm211.cdl
 data/ngm213.cdl
 data/roc_rams.cdl
 data/ruc211.cdl
 data/sfm.cdl
 data/turb212.cdl
 >*.cdlTemplate

override file national file tasks
RSC
---------------------- --------------------- ----------- -
--

arrowStyle.rules arrowStyle.rules grids(W)
xaa
 >arrowStyle.txt
tdlArrowStyle.rules arrowStyle.rules grids(W)
a..
 >arrowStyle.txt
contourStyle.rules contourStyle.rules grids(W)
xaa
 >contourStyle.txt
tdlContourStyle.rules tdlContourStyle.rules grids(W)
a..
 >contourStyle.txt
graphStyle.rules graphStyle.rules grids(W)
xaa
 >graphStyle.txt
tdlGraphStyle.rules graphStyle.rules grids(W)
a..
 >graphStyle.txt
gridImageStyle.rules gridImageStyle.rules grids(W)
xaa
 >gridImageStyle.txt
tdlGridImageStyle.rules tdlGridImageStyle.rules grids(W)
a..
 >gridImageStyle.txt
iconStyle.rules iconStyle.rules grids(W)
xaa
 >iconStyle.txt
tdlIconStyle.rules iconStyle.rules grids(W)
a..
 >iconStyle.txt
virtualFieldTable.txt virtualFieldTable.txt grids
xaa
tdlVirtualFieldTable.txt tdlVirtualFieldTable.txt grids
a..
 >virtualFieldTable.txt
dataFieldTable.txt dataFieldTable.txt grids
xaa
tdlDataFieldTable.txt tdlDataFieldTable.txt grids
a..
 >dataFieldTable.txt
gridPlaneTable.txt gridPlaneTable.txt grids
xaa
tdlGridPlaneTable.txt tdlGridPlaneTable.txt grids
a..
 >gridPlaneTable.txt
dataLevelTypeTable.txt dataLevelTypeTable.txt grids
xaa
tdlDataLevelTypeTable.txt grids
a..
 >dataLevelTypeTable.txt
comparisonFields.txt comparisonFields.txt grids
fff
browser*.txt data/vb/browserFieldMenu.txt grids
xaa
 data/vb/browserPlanViewMenu.txt
 data/vb/browserSoundingFieldMenu.txt
 data/vb/browserSoundingMenu.txt

 data/vb/browserSpacePlanViewMenu.txt
 data/vb/browserSpaceXSectionMenu.txt
 data/vb/browserTimeHeightFieldMenu.txt
 data/vb/browserTimeHeightMenu.txt
 data/vb/browserXsectFieldMenu.txt
 >vb/browser*.txt

override file national file tasks
RSC
---------------------- --------------------- ----------- -
--
radarsInUse.txt +radarsInUse.txt radar
xxx
radarsOnMenu.txt +radarsOnMenu.txt radar
xxx
pupId.txt +pupId.txt radar(I)
xxx
dialPorts.txt data/dialPorts.txt radar(I)
xxx
portInfo.txt +portInfo.txt radar(I)
xxx
dialRadars.txt +dialRadars.txt radar(I)
xxx
mosaicScales.txt +mosaicScales.txt radar
xxx
radarDataKeys.template radarDataKeys.template radar,dirs(I)
faa
 >radarDataKeys.txt
radar*.template radarDepictKeys.template radar
faa
 radarMultiLoadInfo.template
 >radar*.txt
radar*.template -radarExtensionInfo.template radar(W)
faa
 radarProductButtonInfo.template
 >radar*.txt
radar*.template radarDataMenus.template radar(W)
ffa
 >radarDataMenus.auto
 >radarDialMenus.auto
 >homeDataMenus.auto
radar*StyleInfo.template radarImageStyleInfo.template radar(W)
aaa
 >radarImageStyleInfo.txt
mosaic*.template mosaicDepictKeys.template radar
faa
 >mosaic*.txt
mosaic*.template mosaicProductButtons.template radar(W)
faa
 >mosaic*.txt
mosaic*.template mosaicDataMenus.template radar(W)
faa
 >mosaicDataMenus.auto
mosaicInfo.txt +mosaicInfo.txt radar
fff
radarTextProds.template radarTextProds.template radar
ff.

 >afosMasterPIL.CCC
tdlRadarDataKeys.template radar,dirs(I)
ff.
 tdlRadarDataKeys.template
 >radarDataKeys.txt
tdlRadar*.template tdlRadarDepictKeys.template radar
ff.
 tdlRadarMultiLoadInfo.template
 >radar*.txt
tdlRadar*.template tdlRadarExtensionInfo.template radar(W)
ff.
 tdlRadarDataMenus.template
 tdlRadarProductButtonInfo.template
 -tdlRadarImageStyleInfo.template
 >radar*.txt
radarInfoMaster.txt +radarInfoMaster.txt radar
ff.
radarInfoMaster.patch +radarInfoMaster.txt radar
aaa
c11-zone.* c11-zone.shp.Z maps(W),
ff.
 c11-zone.dbf wwa(W)
 c11-zone.shx
uscounty.* uscounty.shp.Z maps(W),
ff.
 uscounty.dbf wwa(W)
 uscounty.shx
basins.* basins.shp.Z maps(W)
ff.
 basins.dbf
 basins.shx
usa_lake.* usa_lake.shp.Z maps(W)
ff.
 usa_lake.dbf
 usa_lake.shx
usa_rfc.* usa_rfc.shp.Z maps(W)
ff.
 usa_rfc.dbf
 usa_rfc.shx
us_inter.* us_inter.shp.Z maps(W)
ff.
 us_inter.dbf
 us_inter.shx
*.bcd data/artcchi.bcd maps(W)
xxx
 data/conandsta.bcd
 data/countyPlus.bcd
 data/latlon10.bcd
 data/twebRoutes.bcd
 +data/usa_cwa.bcd
 +data/c11-zone.bcd
 +reg_zones.bcd
 +data/uscounty.bcd
 +reg_county.bcd
 +data/thin_county.bcd
 +data/basins.bcd
 +reg_lake.bcd

 +data/usa_rfc.bcd
*.bcx us_inter.bcx maps(W)
xxx

override file national file tasks
RSC
---------------------- --------------------- ----------- -
--
usa_wsfo.* usa_wsfo.shp.Z wwa(W)
ff.
 usa_wsfo.dbf
 usa_wsfo.shx
wsfo.bcd,wsfo.asc usa_wsfo.dbf wwa(W)
.f.
 usa_wsfo.dbx
 usa_wsfo.shp.Z
usa_cwa_total.* usa_cwa_total.shp.Z wwa(W)
ff.
 usa_cwa_total.dbf
 usa_cwa_total.shx
cwaTotal.bcd, usa_cwa_total.dbf wwa(W)
.f.
cwaTotal.asc usa_cwa_total.dbx
 usa_cwa_total.shp.Z
urban_bounds.* urban_bounds.shp.Z wwa(W)
ff.
 urban_bounds.dbf
 urban_bounds.shx
wwa_counties_spec.txt uscounty.{shp.Z,dbf,shx} wwa(W)
fff
 >wwa_counties.{gelt,id,entity,table,NS,EW}
wwa_warn_city_spec.txt urban_bounds.{shp.Z,dbf,shx} wwa(W)
fff
 >wwa_warn_city.{gelt,id,entity,table,NS,EW}
marine_zones.* marine_zones.dbf wwa(W)
ff.
 marine_zones.dbx
 marine_zones.shp.Z
marineArea.bcd marine_zones.shp wwa(W)
.f.
marine_total.* marine_total.shp.Z wwa(W)
ff.
 marine_total.dbf
 marine_total.shx
timezones.* timezones.dbf wwa(W)
ff.
 timezones.dbx
 timezones.shp
CitiesInfo.txt data/CitiesInfo.txt wwa(W),
ff.
 station(W)
LocalCitiesInfo.txt data/CitiesInfo.txt wwa(W),
.aa
 station(W)
wwa_warn_city.bcd wwa(W)
.f.

MarineInfo.txt MarineInfo.txt wwa(W),
xx.
 station(W)
wwa*.preTemplate wwa_zones_ugc.preTemplate wwa(W)
f..
 wwa_zones_ugc.preTemplate
 wwa_wsfo_zone_ugc.preTemplate
 wwa_county_ugc.preTemplate
 wwa_wsfo_cnty_ugc.preTemplate
 wwa_marine_ugc.preTemplate
 >wwa*.template
wwa_*_block.preTemplate wwa_county_block.preTemplate wwa(W)
f..
 wwa_zones_block.preTemplate
 wwa_marine_block.preTemplate
 >wwa_*_list.template
sls_county_all.preTemplate wwa(W)
f..
 >wwa_county_list.template
sls_county_block.preTemplate wwa(W)
f..
 >wwa_county_list.template
wwa_*.preWWA wwa_blizzard_wrn.preWWA wwa(W)
fff
 wwa_blodust_adv.preWWA
 wwa_blosnow_adv.preWWA
 wwa_dam_break.preWWA
 wwa_ffw.preWWA
 wwa_flflood_sta.preWWA
 wwa_flflood_wat.preWWA
 wwa_flood_wat.preWWA
 wwa_flood_wrn.preWWA
 wwa_fog_adv.preWWA
 wwa_freez_wrn.preWWA
 wwa_frost_adv.preWWA
 wwa_frzdrzl_adv.preWWA
 wwa_frzrain_adv.preWWA
 wwa_heat_warn.preWWA
 wwa_hiwind_wat.preWWA
 wwa_hiwind_wrn.preWWA
 wwa_hvysnow_wrn.preWWA
 wwa_shortterm_fcst.preWWA
 wwa_snoblsno_adv.preWWA
 wwa_snow_adv.preWWA
 wwa_specmarine.preWWA
 wwa_svr.preWWA
 wwa_svrhiwind_wrn.preWWA
 wwa_svrwx_sta.preWWA
 wwa_sws.preWWA
 wwa_sws_county.preWWA
 wwa_tor.preWWA
 wwa_urbssflood_adv.preWWA
 wwa_wintstrm_wat.preWWA
 wwa_wintstrm_wrn.preWWA
 wwa_wndchil_adv.preWWA
 >wwa_*.wwaProd

wwaConfig.template wwaConfig.template wwa(W)
ff.
 >wwa.config
wwa.config wwaConfig.template wwa(W)
.xx
 >wwa.config
*_gsf.txt CWA_USA_gsf.txt wwa(W)
fff
 backupCWA_gsf.txt
 backupMarine_gsf.txt
 cwaTotalBcd_gsf.txt
 cwaTotal_gsf.txt
 marineTotal_gsf.txt
 marine_zones_gsf.txt
 reg_counties_gsf.txt
 reg_marine_gsf.txt
 reg_zones_gsf.txt
 wsfoTableBcd_gsf.txt
 wsfoTable_gsf.txt
 wwa_countiesZ_gsf.txt
 wwa_counties_gsf.txt
 wwa_marine_sites_gsf.txt
 wwa_marine_sites_id_gsf.txt
 wwa_timezone_gsf.txt
 wwa_warn_city_gsf.txt
 wwa_warn_city_id_gsf.txt
 wwa_zones_gsf.txt
 >*.{gelt,id,entity,table,NS,EW}

override file national file tasks
RSC
---------------------- --------------------- ----------- -
--
raob.goodness raob.goodness dataSups(W),
ffa
 station(W)
*.goodness BUOY.goodness station(W)
ffa
 profiler.goodness
 twebRoutes.goodness
 twebStations.goodness
 data/MTR.goodness
 +88D.goodness
 +cities.goodness
 +marine_sites.goodness
 +warn_cities.goodness
 +ldad15prcp.goodness
 +ldad15.goodness
 >*.{spi,lpi}
*.spi +BUOY.spi station(W)
ffa
 +profiler.spi
 +raob.spi
 +MTR.spi
 +ldad15prcp.spi
 +ldad15.spi

*.lpi latlon10.lpi station(W)
ffa
 +88D.lpi
 +cities.lpi
 +twebRoutes.lpi
 +twebStations.lpi
 +warn_cities.lpi
 +counties.lpi
 +zone_nums.lpi
 +marine_nums.lpi
 +marine_sites.lpi
 +cwa_usa.lpi
*.primary profiler.primary station(W)
aaa
 data/MTR.primary
 raob.primary
 -BUOY.primary
 -twebRoutes.primary
 -twebStations.primary
 -88D.primary
 -cities.primary
 -warn_cities.primary
 -ldad15prcp.primary
 -ldad15.primary
*.cdl LDADhydro.cdl dirs(I)
fff
 LDADmanual.cdl
 LDADmesonet.cdl
 ldad_qcobs.cdl
 maritime.cdl
 metar.cdl
 msas_qcobs.cdl
 profiler.cdl
 raob.cdl
*.cdl spotters.cdl station(W)
fff
 >*.nc
*.dat spotters.dat station(W)
fff
 >*.nc
*.dat +*Seed.dat station(W)
f..
 >*.nc
progDiscStnTables.txt +progDiscStnTables.txt station(W)
faa
*GoodnessDesign.txt maritimeGoodnessDesign.txt station(W)
fff
*MenuItems.txt removeMenuItems.txt tables,radar(W)
xaa
 -preserveMenuItems.txt
acq_patterns.template acq_patterns.template auxFiles(I)
.x.
 >acq_patterns.txt
KXXX.* data/KXXX.clear-air auxFiles(I)
xx.
 data/KXXX.storm

ldadSiteConfig.txt ldadTrigger.template trigger(I)
.x.
hydroSiteConfig.txt hydroTrigger.template trigger(I)
.x.

override file national file tasks
RSC
---------------------- --------------------- ----------- -
--
purgeInfo.txt purgeInfo.txt purge(I)
xa.
radarPurgeInfo.txt, radarPurgeInfo.txt purge(I)
ia.
 gridPurgeInfo.txt, gridPurgeInfo.txt
 satPurgeInfo.txt satPurgeInfo.txt
 >purgeInfo.txt
localPurgeInfo.txt localPurgeInfo.txt purge(I)
.ia
 >purgeInfo.txt
radarPurgeInfo.template, radarPurgeInfo.txt purge(I)
faa
 dialPurgeInfo.template

4) National data set files

This section contains a large table that says which localization tasks need to be rerun as a result
of changing any file in the national data set. Normally, one would assume that a change to the
national data set would occur only as the result of a software upgrade or per the instructions of
the NCF or OOS. Much of the information in this table will be in some ways redundant to what
was presented in the previous section.

As in the previous section, files in the national data sets are assumed to be from
localization/nationalData unless their name is preceded with a `data/', in which case they will be
found in $FXA_HOME/data. Also as in the previous section, the notations in parentheses
contain `W', which means that task need be rerun only on workstation machines, `I', which
means that task need be rerun only on ingest machines, `A', which means that task need be rerun
only on the application servers, and `d', which means that one may choose to defer that task. An
x in the 'x' column means that one need run a localization only if there is already a file by the
same name in the localization data set. There are even some files in the national data set that can
be replaced and do not require one to run a localization; they always take effect with just a
process restart.

file(s) x task(s)
-- - -------------------------
gridSourceTable.template grids,dirs(I)
tdlSourceTable.template grids,dirs(I)
activeGridSources.txt grids,dirs(I)
tdlActiveGridSources.txt grids,dirs(I)
usa_cwa.* scales, clipSups, tables,
 maps(dW), station(dW),
 grids(dW)
scaleInfo.txt x scales

depictInfo.manual x tables
dataInfo.manual x tables,dirs(I)
tdlDepictKeys.txt x tables
tdlDataKeys.txt x tables,dirs(I)
tdlExtensionInfo.txt x
*.config x tables
*.abrev x tables
*SatDataInfo.template tables,dirs(I)
*SatDepictInfo.template tables
imageStyle.txt x tables(W)
tdlImageStyle.txt x tables(W)
productButtonInfo.txt x tables(W)
tdlProductButtons.txt x tables(W)
satProductButtons.txt x tables(W)
*Menus.txt x tables(W)
*MenuFooter.txt x tables(W)
*MenuHeader.txt x tables(W)
data/multiLoadInfo.txt x tables
tdlMultiLoadInfo.txt x tables(W)
data/colorMaps.mark tables(W)
afosMasterPIL.txt text
*_table.template text
textD*Keys.template text
cccLatLon*.txt text
stateMatch.dat text
textConfig.template text
text*Products.txt x text
*Topo.dat.gz topo(W),topo(d),grids(d)
data/*.topo topo,grids
data/*.cdl grids,dirs(I)
*.rules grids(W)
*FieldTable.txt grids
*PlaneTable.txt grids
*LevelTypeTable.txt grids
data/vb/browser*Menu.txt x grids(W)
fsl-w88d.* radar
data/dialPorts.txt x
radarDataKeys.template radar,dirs(I)
radarDepictKeys.template radar
radarMultiLoadInfo.template radar
radarTextProds.template radar
radarDataMenus.template radar(W)
radarProductButtonInfo.template radar(W)
tdlRadarDataKeys.template radar,dirs(I)
tdlRadarDepictKeys.template radar
tdlRadarMultiLoadInfo.template radar
tdlRadarExtensionInfo.template radar(W)
tdlRadarDataMenus.template radar(W)
tdlRadarProductButtonInfo.template radar(W)
mosaicDepictKeys.template radar
mosaicDataMenus.template radar(W)
mosaicProductButtons.template radar(W)
c11-zone.* maps(W),wwa(W)
uscounty.* maps(W),wwa(W)
basins.* maps(W)
usa_lake.* maps(W)
usa_rfc.* maps(W)

us_inter.* maps(W)
*.bcd x maps(W)
usa_wsfo.* wwa(W)
usa_cwa_total.* wwa(W)
marine_zones.* wwa(W)
timezones.* wwa(W)
urban_bounds.* wwa(W)
marine_total.* wwa(W)
data/CitiesInfo.txt wwa(W),station(W)
MarineInfo.txt wwa(W),station(W)
wwaDefaults.txt wwa(W)
wwa*.preTemplate wwa(W)
sls*.preTemplate wwa(W)
wwa_*.preWWA wwa(W)
*_gsf.txt wwa(W)
wwaConfig.template wwa(W)
*.goodness station(W)
*.primary station(W)
*.lpi x station(W)
data/metarStationInfo.txt station(W)
data/KXXX.* auxFiles(I)
*Trigger.template trigger(I)
data/{a,selsA}nchors.txt x
redbook*.txt x tables
raobD*Keys.txt x
raobProductButtons.txt x
*.{cdl,dat} station(W)
urgeInfo purge(I)

Author: Jim Ramer
Last update: 17 Sep 04

Grid Tables
This file contains documentation for five files that are used to manage gridded data and the
volume browser: gridSourceTable.txt, dataLevelTypeTable.txt, gridPlaneTable.txt,
dataFieldTable.txt, and virtualFieldTable.txt. These files reside in the directory
localization/nationalData, which can be found in $FXA_HOME/src in an environment with a
source tree or in $FXA_HOME/data otherwise. Once one has completed changes in these tables
to one's satisfaction, they are implemented by running the `-grids' localization task.

The software that builds the data key and depictable key tables for gridded data interrogates the
gridded data files to determine which combinations of sources, planes, and fields actually have
data available in netCDF files. The relationships established in these five tables then determine
which additional combinations can be made available by making various calculations, and puts
into the data key table information on exactly how these calculations should be performed. Also
part of the localization's management of gridded data sets is the auto-generation of model
families. For more information on this, see the description of the MultiLoad function in this
document, or the document families.

There are seven additional tables – arrowStyle.rules, gridImageStyle.rules, contourStyle.rules,
streamlineStyle.rules, graphStyle.rules, barbStyle.rules, and iconStyle.rules – which control how
to display gridded fields once they have been retrieved and/or calculated. See styleRules.

As one reads this documentation, it is useful to refer to the files which are being described - it
will make much more sense that way.

The Source Table

The file gridSourceTable.txt is where gridded data sources are made known to the system. The
copy of gridSourceTable.txt that is eventually used is generated by the localization scripts by
processing gridSourceTable.template, tdlSourceTable.template, and one or more
localGridSourceTable.txt files with sed commands.

An examination of gridSourceTable.template will reveal that there are 51 grid sources listed,
followed by a line reading simply 100, then numerous additional sources. The reason for this is
that grid sources are identified numerically in parts of the system, and ordering is therefore
important. The '100' is an index mark, specifying that subsequent sources' index numbers start at
100.

The file tdlSourceTable.template is where non-core developers put their gridded data sources.
The '51' on the first line causes the source indexing to start at 51.

The localization will also try to add locally-supplied file(s) [LLL-]localGridSourceTable.txt to
the final grid source table. These can reside either in /awips/fxa/data/localization/LLL or in
$FXA_CUSTOM_FILES. If only one of these exists, it should fix its indexing at 60, allowing
room for nine sources in tdlSourceTable (only two are currently used). If both are used, the

CUSTOM_FILES version must start its indexing high enough to avoid conflict with the other. In
any case, local indexing must be cognizant of gridSourceTable.template's use of 100 - though it's
unlikely that more than 40 sources will be needed locally.

A field user should not need to modify gridSourceTable.template or tdlSourceTable.template.
However, in no case should the order of sources be changed in these files, nor should sources be
added except at the end of the file. This same admonition holds for local grid sources, as well,
because the index numbers are used in bundles, and any reordering may break procedures that
include those sources.

Each line in the file contains the information for one source, and has 15 primary text fields
separated by vertical bars. Here is a description of what each text field means. (There is also
similar documentation in the gridSourceTable.template file.)

1. Alias. This allows the user to specify that, to the outside world, displays resulting from
this gridded data source look like they are from some other gridded data source. Entries
here must be the unique name (text field 10) of some other source. If an aliased source is
inactive, it can still be used to direct the ingest of grids to the active source to which it is
aliased.

2. Any non-blank character in this text field other than a number will cause keys not to be
built for this data source. A number will designate which version of the GridAccessor is
being used. The sed commands run on gridSourceTable.template to create
gridSourceTable.txt will often operate on this field.

3. Directory path to netCDF files containing the gridded data for this source. This is the path
minus the leading $FXA_DATA/. Multiple sources that have the same directory path will
automatically be aliased to the first active source with that directory path.

4. CDL name. The CDL file which describes how to build the netCDF file has this name,
plus a .cdl extension. A source cannot be activated if this field is blank. For point data
sets presented by the volume browser, this is the name of the file that contains the master
station list for geographic selection.

5. Geographic information file that describes the area covered by this grid. Must be one of
the files matching the specification $FXA_DATA/*.sup. If a second comma-delimited
geographic information file is included, the first describes the area covered by the data
that are stored, and the second describes the area covered by the data that are received.
No remapping is done to accomplish this; it is all by clipping or partial filling. The sed
commands run on gridSourceTable.template to create gridSourceTable.txt will often
operate on this field. For point data sets presented by the volume browser, this is the
name of the design file used to gather the data.

6. X dimension of the grids that are stored. If negative, it is assumed that the dimensions are
of the data that are received; this is applicable only if there is a second depictor file listed
in the previous field. If the dimensions are of the data that are stored and they do not
match those of the CDL, they will be adjusted.

7. Y dimension of the grids that are stored.
8. Title. This is how this source is referred to in the volume browser and for legends. This

can be adapted based on entries in the activeGridSources.txt file. A title with an
underscore will cause the source to be treated as a test source. This means it will appear

at the end of the source selection menus in the volume browser and any families from the
source will always be in a pull right off of the main Volume menu.

9. List of scale indices, separated by commas, for which this source is valid. This is used in
conjunction with a similar text field for cross section planes in the file gridPlaneTable.txt
so that, for example, depict keys for WFO scale cross section planes are not generated for
the hemispheric GFS grids. This also controls which sources appear in the volume
browser menus for which scales. This can be adapted based on entries in the
activeGridSources.txt file.

10. Unique name of this source. Aliases in the first field and names of sources to activate in
activeGridSources.txt must refer to this entry.

11. Topography file. Must be one of the files matching the specification
$FXA_DATA/*.topo. Topography grids are just flat ASCII files with a list of numbers,
one per line. If an entry exists here and a corresponding *.topo file does not exist, the
localization will generate one.

12. GRIB grid identifier. As grids arrive, they are associated with an originating center
according to an item in the GRIB header. The file $FXA_HOME/data/gribTableInfo.txt
is a table of all currently known centers. The first file (column 2) for a center lists known
grid IDs for the center. This entry must be one of these ASCII grid IDs for the
appropriate center. To store a grid in the source, it must be for this grid and one of the
process IDs listed in the next field.

13. GRIB process identifier(s). The second file (column 3) in gribTableInfo.txt for the
originating center lists known model (process) IDs for the center. This entry must be one
or more of these ASCII process IDs for the appropriate center, comma delimited. To store
a grid in the source, it must be for one of these listed process IDs and the grid identified
in the previous source.

14. Optional GRIB parameter identifier. The third file (column 4) in gribTableInfo.txt for the
originating center lists known parameter IDs for the center. If non-blank, this entry must
be one or more of these ASCII parameter IDs for the appropriate center, comma
delimited, and only those parameters can be stored for the source. If blank, assumes any
variable can be stored.

15. This is the intrinsic frequency of this data source. If less than 300, it is assumed to be in
hours, otherwise in seconds. It should ideally be the minimum separation of valid times,
not initial times.

In order to have a netCDF file available to display data for a new gridded data source, one needs
to create a new .cdl file. To make a new gridded data source displayable, one needs to add it to
activeGridSources.txt. In activeGridSources.txt, a list of comma-delimited integers immediately
after a source name will be interpreted as a scale list, and will replace the scale list in the grid
source table. A string with a leading `>' immediately after a source name will be interpreted as a
new title for the source. Both adaptations can be present for a given source.

There are some cases where the grids we want to store for a data source actually arrive on the
SBN in several smaller pieces. This is handled by having just one active source that is meant to
present the data to the volume browser, and several additional inactive source used by the ingest
to stitch in each piece. These additional inactive sources are generated automatically by the
localization.

When an asterisk followed by a file name occurs in a source entry, that file is read to
automatically create a source for each line in the file. The first line represents the source that
remains in the table where it was originally entered. The remaining lines represent sources that
are appended to the end of the table, and are left inactive. As each source is composed from the
entry with the asterisks, the file name is replaced by the first space-delimited field in the line
from the wild card file. Similarly, *2 is replaced by the second field, *3 the third, up to six fields.
A field with just a period is interpreted as an empty string.

The Level Type Table

The file dataLevelTypeTable.txt is where level types are made known to the system. Each line
contains the information about one level type. Each line has three text fields separated by vertical
bars. Here is a description of these fields:

1. The level type name, which is a unique identifier for this level type that is referred to in
other tables.

2. Now obsolete.
3. The mode identifier for this level type. 0 means that the level type is non-parametric, like

tropopause. A positive number means a parametric level type that increases upward, like
height, and a negative number means a parametric level type that decreases upward, like
pressure. If blank, then this level type is used to refer to non-plan view planes, like cross
sections.

The user should note that the software internally generates five additional level types, which
have the names XC_LAT, XC_LON, XC_SPEC, PLACE_HOLDER, and NULL_TYPE.

The Plane Table

The file gridPlaneTable.txt is where planes (levels) are made known to the system. Each line in
the file contains the information about one plane. Each line has from 3 to 6 text fields separated
by vertical bars. When new planes are added, they should always be added to the end of the file,
or the plane indexing will be changed which can break things.

Field users should place just their new planes in a version of gridPlaneTable.txt that sits in their
site-specific directory (localization/LLL/LLL-gridPlaneTable.txt) or their customization
directory ($FXA_CUSTOM_FILES/gridPlaneTable.txt). In order to fix the indexing, such a file
should begin with a line containing just a number; 600 is a good choice.

Any vertical coordinate type used in the file must appear in the level type table described in the
previous section. We refer to a vertical coordinate type and value as a level definition. Those
vertical coordinate types which are non-parametric can constitute a level definition without a
value.

There are two major categories of planes – plan-view planes and non plan-view planes. The two
are different enough that they will be treated separately. Here is a description of each item in a
plan-view plane entry:

1. Name of the plane. If blank, a name will be provided by default. For standard planes, the
default name will be a concatenation of the text provided for the level value and the level
type. For composite or binary planes, the default name will be a concatenation of the text
provided for each level value and level type, the two separated by a hyphen. There is a
special plane name called `spatial'. Any plane with this name is assumed to represent a
situation where loops are constructed by stepping though a series of planes instead of a
series of times.

2. Type of plane. For plan view planes, this should be either `standard', `composite', or
`binary'. Standard planes are just that: the normal concept of a level identified by a single
vertical coordinate type and value. Composite and binary planes are identified by two
level definitions, a lower and upper one, like 1000mb-500mb. For composite planes, it is
assumed that data for the plane are not found in the netCDF files, but are calculated from
other variables on the upper and lower levels that make up the plane. Binary planes are
identified by two level definitions, but data for them can actually be found in the netCDF
files.

3. For standard planes, the level definition; for composite or binary planes, the first level
definition. The level definition is a value followed by a level type name, comma
delimited. For a non-parametric level, only the level type name is entered.

4. For composite or binary planes, this is the second level definition. For standard planes, an
optional plane visibility parameter. The visibility parameter is either a dash that says that
data from this plane may be used for calculations, but will not be selectable from the
volume browser, or the name of some other plane, which means all data from this plane
will automatically be treated as if they were from some other plane.

5. Optional plane visibility parameter for composite or binary planes. For standard planes,
an optional grouping index, which defaults to zero. When planes are sorted, planes with
the same plane type and level type are sorted together, primarily by grouping index and
secondarily by level value.

6. Optional grouping index for composite or binary planes.

For non plan-view planes, a level definition does not have the same meaning as it does for plan-
view planes. For non plan-view planes, planes with the same level definition are logically
grouped together, differing only by their geographic information file. This is basically an
efficiency hack, and it also allows one to set style info for all planes so grouped by just setting
the style info for the first plane of the group. Here is a description of each item in a non plan-
view plane entry:

1. Name of the plane. For latitude and longitude cross sections, this will be overridden and
automatically generated. There is a special plane name called `spatial'. Any plane with
this name is assumed to represent a situation where loops are constructed by stepping
though a series of different baselines instead of a series of times.

2. Type of plane. For non plan-view planes this should be either `xsect', `tsect', `vrtgph', or
`diagram'. These refer to spatial cross sections, time-height cross sections, variable vs
height graphs, and thermodynamic diagrams (gridded soundings), respectively. All planes
of type `xsect' will have their volume browser menu entries generated automatically.

3. Level definition. As mentioned, this is used only to logically group planes together that
have identical characteristics except for their geographic information file. For cross
sections, this information is automatically replaced internally in the table.

4. Vertical coordinate type for the level definition.
5. Depictor file name. This controls the location to which data are interpolated for this

particular non plan-view plane. If the plane type is `xsect' and the depictor name contains
the sub-string `Lat' or `Lon', then this will become a latitude or longitude plane and the
depictor file will be generated automatically. For other spatial cross section planes, the
depictor name should refer to a file from which one can construct an XsectDepictor; this
XsectDepictor describes the baseline of the cross section. For a time-height cross section,
this should refer to an XsectDepictor file with only one lat/lon point. For thermodynamic
diagram (sounding) planes, the depictor name should refer to a file from which one can
construct a ThermoDepictor; this ThermoDepictor carries the latitude and longitude of
the sounding, and also describes the thermodynamic background upon which the gridded
sounding is drawn.

6. List of scale indices, separated by commas, for which this plane is valid. This is used in
conjunction with a similar text field in the file gridSourceTable.txt so that, for example,
depict keys for WFO scale cross section planes are not generated for the hemispheric
GFS grids. For latitude or longitude cross section planes, there should be only one scale
entered. The locations of these planes will then be automatically selected so that for
however many planes there are on that scale, they will be evenly spaced to roughly cover
the area of that scale. For movable points and baselines, one can just leave this field blank
and it will allow these to be used on all scales, and thus for all gridded data sources.

The Data Field Table

The file dataFieldTable.txt is where raw data variables that can be read directly from netCDF
files are made known to the system. Each line in the file contains information about one raw data
variable. Each line contains three or four text fields separated by vertical bars:

1. Variable name, which is a unique identifier for this raw data variable that is referred to in
other tables.

2. netCDF ID, which is the name that this variable is given in netCDF files.
3. Now obsolete.
4. Special handling flag. For most variables this is just left blank. For variables that are

ingested with units of pascals, a 1 is entered here as a signal to the derived field
calculation software to do a pascals to millibars conversion, because all of the calculation
software is set up to use millibars. A 2 is a signal that this is topography, and a 3 is a
signal that this is the Coriolis parameter, neither of which comes from the netCDF files
and so is generated internally by the GridSliceAccessor.

Without making any entries, the software that reads the data field table will generate a constant
data field called _ft, which will return the forecast time in seconds, a constant data field called
_dt, which will return the intrinsic frequency of the data (in seconds) as entered in the grid source
table, and several constant data fields called _dtX, where X is the literal number entered in the

grid source table for the data frequency. These are meant mostly to be used to make decisions
about which functions to invoke.

The Virtual Field Table

The file virtualFieldTable.txt is where gridded data variables are registered for use in the volume
browser. Included in virtualFieldTable.txt are instructions on how to make a variable if it is not a
raw data grid that can be read directly from a netCDF file.

virtualFieldTable.txt makes much use of a feature in the low level module used to read in the
text, namely that a \ at the end of a line is a line continuation. This is because the entry for a
variable must all be on one line, and by the time you add function specifications it is easy for a
line to get longer than manageable. As such it may at times be useful to run the command

textBufferTest virtualFieldTable.txt > tempFile

This will yield a file where continuations are resolved and comments have been eliminated; thus
it can be directly compared to the line numbers that are referred to in diagnostics from
testGridKeyServer. The program textBufferTest builds in $FXA_HOME/src/util and should be
in $FXA_HOME/bin at a field installation.

New virtual fields should always be added to the end of virtualFieldTable.txt; otherwise, the field
indexing will change, which can break things.

Field users should place just their new virtual fields in a version of virtualFieldTable.txt that sits
in their site-specific directory (localization/LLL/LLL-virtualFieldTable.txt) or their
customization directory ($FXA_CUSTOM_FILES/virtualFieldTable.txt). In order to fix the
indexing, such a file should begin with a line containing just a number; 300 is a good choice.

There must be at least seven primary text fields on each line, separated by vertical bars. In
addition, there may be any number of function definitions, each of which has at least two
primary text fields separated by vertical bars. The basic format of an entry for a single variable in
the virtualFieldTable.txt file is as follows:

`varId'| CS | N? |`varName'|`units'|`displayTypes'|`planeList'| \
 *`functionName',`planeList'|`varId',`plane'|`varId',`plane'|const| \
 *`functionName',`planeList',`source'|`varId',`plane',`source'| \
 *`functionName',`planeList',dTime|`varId',`plane'|`offset'|const| \
 `varId',`plane'|`offset'

In this basic format example, the function descriptions are just several examples of function
descriptions that may or may not be present; a variable actually does not have to have any
function descriptions.

Here is a description of the seven primary text fields on the first line of this format example:

1. The variable ID (varId) is the basic identification by which gridded data variables are
known. In the file dataFieldTable.txt (described in the previous section), the first entry on
each line comprises a list of all the variables that one might possibly read directly from
the gridded data files. For a variable in that list, it is meaningful to make an entry with no
functions. It is possible to define a variable with a variable ID not in that list, but it must
have at least one function specification to be meaningful.

2. This text field contains information about how to interpolate this data to a cross section.
If blank, it is assumed that it is inappropriate to interpolate this data to a cross section
(e.g., for MSL pressure). Otherwise, this should contain the number of additional rows of
horizontal grid points on each side needed to accommodate finite differencing for this
field, beyond the minimum four points required for horizontal bilinear interpolation.
Also, an additional optional comma-delimited number may be present, which refers to the
enumeration VectorRotation in the source code file GridMiscTypes.H. This specifies the
type of rotation to apply to vector data before displaying it. A following section lists these
rotation types.

3. If a single N appears in this text field, the plane name will not be attached to the source
and variable names when making a description of a single displayable gridded product of
this variable type. Used most often with things like precipitation.

4. The variable name (`varName') is the name that will appear in browser lists and in
display legends for gridded products of this variable type.

5. The default units (`units') is the units string that will appear in browser lists and in display
legends for gridded products of this variable type. This may later be overridden by style
information entries (see styleRules).

6. The display types list (`displayTypes') is a list of possible ways to display this variable.
The possible display types are CONTOUR, ICON, IMAGE, BARB, STREAMLINE,
ARROW, DUALARROW, and OTHER. Each item in the list should be separated by
commas. CONTOUR, ICON, and IMAGE are the ways in which one can display scalar
variables. BARB, STREAMLINE, and ARROW are the ways in which one can display
vector variables. DUALARROW really makes sense only for deformation vectors.
OTHER is currently used for gridded soundings and time series plots. If a variable has no
display types, then it is not displayable, but can be used as input to further calculations.

7. The plane list (`planeList') is a list of planes for which this variable might be displayed. If
empty, it can potentially be displayed for all known planes. In practice, all variables have
some planes on which they are not available. A variable can still be used in calculations
for planes on which it is not usable for display.

The rules for making a plane list will be described here separately, because they are quite
involved and can apply either to a whole variable or to a function. To see a list of possible plane
names, one really needs to run the program testGridKeyServer with a single `p' as an argument.
This will direct a list of all known planes to standard output. The plane index will be the first
item on each line, and the plane name will be the second item on each line. The simplest plane
list is just a list of plane names separated by commas. One can also use some special syntax with
the greater than symbol for identifying a range of planes. For example, the text 850MB>700MB
refers to all known planes with MB as their vertical coordinate and pressure values ranging from
850 to 700. One might also say 1000MB-500MB > 700MB-500MB, but here what one gets is all
of the composite (two-level) planes with MB as their vertical coordinate whose average vertical

coordinate value ranges from that of the 1000MB-500MB plane to that of the 700MB-500MB
plane. Using optional grouping indices with planes can further affect this ordering. If two planes
referred to in such a manner have either dissimilar plane types (standard or composite) or
dissimilar vertical coordinate types, what you select is not well defined, so this is not
recommended. It is also possible to use a single S, C, B, X, T, or D to specify all standard,
composite, binary, spatial cross section, time-height cross section, or thermodynamic diagram
planes, respectively. Finally, one can specify all levels of a certain vertical coordinate type by
just putting that vertical coordinate type in the list. As an example, the plane list `S,MB,Surface'
would result in selecting all standard planes that also had MB (pressure) as their vertical
coordinate, plus SFC. `800MB>1000MB,BLyr' would select all pressure levels from 800 through
1000 millibars, plus the boundary layer. In addition, it is possible to use the ! symbol as a
negation. For example, `S,MB,!50MB>150MB' would refer to all standard pressure levels except
the ones from 50 to 150 mb, and `!Surface' would refer to all planes except the Surface.

This is a good place to introduce the concept of the volume plane. For every data variable for
which there is sufficient information in three dimensions, and there is a meaningful entry in the
second column (CS), a three dimensional grid will be created. This three dimensional grid is
defined as existing in the volume plane, which has the plane name of `3D'. No data are displayed
directly from the 3D plane; rather, 3D grids are inputs to making spatial cross sections, time-
height cross sections, and gridded soundings.

Functions

Here again are some idealized function descriptions:

 *`functionName',`planeList'|`varId',`plane'|`varId',`plane'|`const'| \
 *`functionName',`planeList',`source'|`varId',`plane',`source'| \
 *`functionName',`planeList',=`dataVar'|`varId',`plane',`source'| \
 *`functionName',`planeList',!=`dataVar'|`varId',`plane',`source'| \
 *`functionName',`planeList',dTime|`varId',`plane'|`timeOffset'|const| \
 `varId',`plane'|`timeOffset'| \
 *`functionName',`planeList',fTime|`varId',`plane'|`fcstOffset'|const| \
 `varId',`plane'|`fcstOffset'

The asterisk is a special signal to the software that parses virtualFieldTable.txt that this is a
function entry. A given function entry starts at the asterisk and ends at the end of the line or at
the next asterisk. The enumeration GridFunction in the source code file
$FXA_HOME/src/dm/grid/gridEnum.h contains a list of all available functions (the leading `f_'
is not considered part of the function name). One can attach additional qualifiers to a function
name, delimited by commas, to modify the behavior of a function entry. By attaching a plane list
to a function name, one can make a particular function valid for only a certain list of planes for
that variable. By attaching a source name to a function name, one can make a particular function
valid only for that source. The literal string "dTime" causes the code to expect each variable ID
to be followed by a time offset in seconds. The literal string "fTime" causes the code to expect
each variable ID to be followed by a forecast time offset in seconds. A qualifier that begins with
an equals sign is the name of a data variable that must be present in the source for the function
entry to be used. A qualifier that begins with the string `!=' is the name of a data variable that
must not be present in the source for the function entry to be used. Data variables listed in this

manner can be wild carded with an asterisk at the beginning or end of the string. These data
variables are tested in the order given. If there are two equals signs (== or !==), additional data
variables will be tested if the test fails, while a single equals sign means additional data variables
will be tested if the test succeeds. The state of the last test performed determines whether testing
against data fields tests OK in total.

A table of available functions follows, along with a short description of how each function is
used. One can also gain a great deal of insight about how to use functions by looking at existing
examples in virtualFieldTable.txt.

Each argument to a function is generally a variable ID, followed by an optional plane, with a few
exceptions. Any text with a period in it is interpreted as a real constant; this notation is also used
for time and forecast offsets. Constants can be used interchangeably with variables; where
required, a single constant will be expanded into a grid of that constant, making it suitable for
input to calculation routines that require a grid as an input. One can also just put in a vertical
coordinate type, such as MB, which means create a constant field containing the vertical
coordinate value of the specified level. If a particular function has a vertical coordinate type as
an argument, then that function becomes usable only for planes with that same vertical
coordinate type. Also, it is not necessary that the inputs to a function be grids that can be read
directly from a netCDF file; they can be the results of other functions.

If no plane is provided, then the default plane is assumed. This just means the same level for
which something is being calculated. If a plane is provided, it needs to be either a simple plane
name (no ranges), the string "lower", or the string "upper". For composite planes, "lower" means
the lower plane that makes up the composite plane, and "upper" means the upper plane that
makes up the composite plane. For standard planes, "lower" means the next plane below that has
data for the source and has the same vertical coordinate type, and "upper" means the next plane
above that has data for the source. "upper" and "lower" have no meaning for planes with a non-
parametric level type.

The order of the functions is important. The first function in the list which meets all the
conditions specified by the qualifiers and for which all of the inputs are available is the one that
is used. It is possible that, for a given variable, one function might be used for one plane or
source, and a different function for another, depending on which of the possible prerequisite
grids were available at each level for that source. Of course, one can force this behavior by
attaching plane lists, source qualifiers, and/or data field qualifiers to the functions. In addition,
there is a particular order in which variables have their functions resolved. First, an attempt will
be made to resolve functions for variables that also appear in the data field table. Next, an
attempt will be made to resolve functions for variables that have only one function entry.
Thereafter, variables with an increasing number of function entries will become available to have
their functions resolved, until an attempt has been made to resolve functions for all variables.

There are several functions that are handled in an exceptional manner. One is the function
"MultiLoad." This function, as the name suggests, is used to build multi-loads, which can be
used to auto-generate families. Variables with "MultiLoad" function always have their functions

resolved last. One should never try to use a variable defined with the "MultiLoad" function as an
input to another variable.

Another exceptional function is the "Or" function. As the name suggests, its job is to return the
first variable available from a list of variables. As such, when building function relationships, an
"Or" function entry is considered usable when ANY of the variables is available, as opposed to
the usual case of requiring ALL of the variables.

Finally, another exception is the function named "Import." This is a special function which
allows one to bring data from one source into another. When using the Import function, an input
variable ID must be qualified with both a plane and a source. If the geographic characteristics of
the grid being imported are different from those of the source to which one is importing, a
horizontal remap will automatically take place. Time interpolation will also be done if the two
data sources have dissimilar data frequencies. Time interpolation can be suppressed if one puts
an optional second constant argument in the variable list. The exception about "Import" is that if
one makes an entry that says a variable is available to bring in from another source and that
source is active, the software that builds the gridded data tables will believe you; it will not
attempt to verify that an import can actually be done. This function should not be used to import
vector components because it does not yet support grid-relative rotation.

Available Functions

After each function name below is a notation that looks like I->O, for which I indicates the
number of input arguments and O the number of output parameters; there may be multiple such
entries. For the input argument count, n means any number one or greater, and for the output
parameter count, n means the total number of input arguments. The total number of input
arguments is not necessarily the same as the number of variables input to the function, because
some of the input variables may return multiple parameters. Thus, the total number of input
arguments is the sum of the number of output parameters from each input variable. Any mention
of vectors refers to a two-dimensional horizontal vector.

Alias: n->n
Associate an arbitrary list of input arguments with a single variable.

Vector: 2->2 or 3->2
Associate arguments with a single variable, creating a vector. If two inputs, assume that
these are just u and v components. If three inputs and the third input is a constant of
magnitude 1 or 2, assume first two inputs are speed and direction. If third argument's
magnitude is 1, assume degrees, otherwise radians. If positive, assume meteorological
direction from, otherwise mathematical direction toward. In other cases with three inputs,
the first two inputs are components that determine the direction, and the third is the speed
to use.

Or: n->1
Return first in list for which any data actually exists.

Union: n->n
Return as many items as exist for the source. If one uses a Union function with only one
input for a composite layer (e.g. 1000MB-500MB), it will compile a list of every

standard level available in that layer with the same level type. To use this feature, the
composite layer needs to be assigned to the function, not the input variable.

Gather: 1->n
Return a list of all items that are the same except for a perturbation.

Either: n->1
When resolving functions, all inputs must be available to use the function. At run time,
however, return first in list for which any data actually exists.

If: n->n-1
Associate an arbitrary list of input arguments with a single variable, except for the first
argument. In other words, if the first variable is present, the rest become available.

Import: 1->1 or 2->1
Copy one parameter from another gridded data source, performing time and spatial
interpolation as required. The optional second argument is always a constant and
suppresses time interpolation if it exists.

Difference: 2->1 or 4->2
Perform scalar or vector subtraction.

Add: n->1 or n->2
Perform scalar or vector addition. All input arguments must be either vector or scalar;
will produce garbage if mixed.

Average: n->1 or n->2
Calculate the arithmetic average of any number of arguments. All input arguments must
be either vector or scalar; will produce garbage if mixed.

Multiply: n->1 or 3->2
Perform multiplication of any number of scalars or of a vector and a scalar.

Divide: 2->1 or 3->2
Divide a scalar by a scalar or a vector by a scalar.

LinTrans: n->1 or n->2
result = arg1*arg2 + arg3*arg4 + arg5...
vecresult = vec1*sca1 + vec2*sca2 + vec3...

Max: n->1
Maximum value of each corresponding grid point. If a single 3D variable is passed in,
will compute without considering the vertical coordinate information.

Min: n->1
Minimum value of each corresponding grid point. If a single 3D variable is passed in,
will compute without considering the vertical coordinate information.

Exp: 1->1
Take the exponential of a scalar field.

Ln: 1->1
Take the natural log of a scalar field.

Power: 2->1
Raise first argument to the power of the second.

Poly: n->1
result = arg1*arg2^arg3 + arg4*arg5^arg6 + arg7*arg8...

StdDev: n->1
Calculate the standard deviation of any number of input arguments.

Derivative: 4->1 or 6->2

Difference of the leading arguments divided by the difference of the last two arguments.
Leading arguments can either be two scalars which yields a scalar result, or two vectors
which yields a vector result.

Magnitude: 2->1
Calculate magnitude of a vector.

Dir: 2->1
Calculate direction from, degrees clockwise from north, of a vector.

Dot: 4->1
Calculate the dot product of two vectors.

Cross: 4->1
Calculate the cross product of two vectors.

Rotate: 3->2 or 6->2
Rotate vector in first two arguments by the number of degrees in the third, or transform
the vector in first two arguments by the rotation matrix in the last four arguments. The
arguments after the vector need to be constants.

CompBy: 4->1, 5->1, or 5->2
Returns the component of the first vector in the direction of the second vector. The
optional last argument is a constant, which defaults to zero. The mod 1000 integer part is
how many degrees to rotate the second vector before dotting it with the first. If the
constant is not exactly an integer, then do not normalize the result by the magnitude of
the second vector. If the thousands place is 1, just output the magnitude of the
component. If the thousands place is 2, output a full vector, and if the thousands place is
3, output a full vector, the x component being the component along the second vector and
the y component being the component along the k cross of the second.

Gradient: 1->2
Calculate the gradient of a scalar field.

NAdgdt: 3->2
Calculate the non-advective local change of the gradient of a conservative field. Inputs
are wind components and the conservative field.

Laplacian: 1->1 or 2->2
Calculate the laplacian of either a scalar or vector.

Vorticity: 2->1 or 3->1
With a u and v component, calculate absolute vorticity. With third argument of a constant
0.0, calculate relative vorticity.

VortAdv: 2->1 or 3->1
With a u and v component, calculate absolute vorticity advection. With third argument of
a constant 0.0, calculate relative vorticity advection.

Divergence: 2->1
Calculate horizontal divergence from u and v component.

Deformation: 2->1
Calculate total horizontal deformation from u and v component.

DefVectors: 2->2
Calculate horizontal deformation vector from u and v component.

Advection: 3->1 or 4->2
From u and v component and another parameter, calculate advection of that parameter.
Parameter may be a vector.

DivParam: 3->1
From u and v component and another parameter, calculate divergence of that parameter.

GeoWind: 1->2
Calculate geostrophic wind vector from height.

PotVortMB: 8->1
Calculate potential vorticity based on data from two adjacent isobaric surfaces.
Arguments are upper theta, lower theta, upper pressure, lower pressure, upper u
component, upper v component, lower u, and lower v.

PotVortK: 8->1
Calculate potential vorticity based on data from two adjacent isentropic surfaces.
Arguments are upper pressure, lower pressure, upper theta, lower theta, upper u
component, upper v component, lower u, and lower v.

Temperature: 2->1 or 3->1
Calculate temperature from pressure and potential temperature or from pressure, virtual
potential temperature, and specific humidity.

Theta: 2->1
Calculate potential temperature from pressure and temperature.

ThetaE: 3->1
Calculate equivalent potential temperature from pressure, temperature, and relative
humidity.

VirT: 3->1
Calculate virtual temperature from pressure, temperature, and relative humidity.

Dewpoint: 2->1
Calculate dew point from temperature and relative humidity.

SpecHum: 2->1 or 3->1
Calculate specific humidity from pressure and vapor pressure or from pressure,
temperature, and relative humidity.

MixRat: 3->1
Calculate mixing ratio from pressure, temperature, and relative humidity.

RelHum: 2->1 or 3->1
Calculate relative humidity from temperature and dew point or from pressure,
temperature, and specific humidity.

CondPres: 3->1
Calculate condensation pressure from pressure, temperature, and relative humidity.

LiftedIndex: 4->1 or 5->1
Calculate lifted index from pressure, temperature, relative humidity, and 500mb
temperature. Optional fifth argument is constant for arbitrary top pressure instead of
usual 500mb.

Sweat: 4->1
Calculate SWEAT index from total totals index, 850mb dewpoint, 850mb wind, and
500mb wind. Last two arguments are vectors.

Heli: n->1
Inputs are a series of at least 3 vectors, the last being a storm motion and the rest being a
stack of low level winds over which storm relative helicity will be calculated.

Cape: 5->1, 6->1, or n->1

Calculate Convective Available Potential Energy. The last four or five arguments are
pressure, potential temperature, and specific humidity of the starting parcel; a constant
flag for whether to use virtual (1) or plain (0) temperatures; and an optional argument
(new in OB9) which is the upper pressure at which the CAPE computation terminates. If
there are five or six input arguments, the first argument is 3D (virtual) temperature.
Otherwise, the leading inputs are a list of pressure values and a list of corresponding
(virtual) temperature values.

Cin: 5->1 or n->1
Same inputs as Cape, but calculate Convective Inhibition.

Dcape: 8->1
Calculate Downdraft Convective Available Potential Energy. The first two arguments are
3D temperature and dewpoint. The next three arguments are pressure, potential
temperature, and specific humidity of the surface parcel. The last three arguments are
constants which control how the calculation is done. The first constant is the maximum
amount of liquid water available to evaporate into the parcel as it descends, in g/g. The
second constant is the desired maximum RH of the descending parcel as it reaches the
surface. The final constant is flag for whether to use virtual (1) or plain (0) temperatures.

WetBulb: 3->1
Calculate wet-bulb temperature from pressure, temperature, and relative humidity.

LapseRate: 4->1
Calculate lapse rate based on data from two adjacent quasi-horizontal surfaces.
Arguments are lower temperature, lower pressure, upper temperature, and upper pressure.

Hgt2Pres: 1->1
Calculate pressure from height based on standard atmosphere.

Mslp2Thk: 2->1
Calculate 1000-500mb thickness from MSLP and 500 height.

Alt2Pres: 2->1
Calculate surface pressure from altimeter setting and elevation.

TiltHgt: n->1
Compute the MSL height of a scan for the current home radar. First argument is a
constant, the tilt angle in degrees of the desired scan. Any optional arguments that follow
are not used in the computation, but only impose a non-static inventory on the result.

Shear: n->1
Compute the cumulative shear of a column of wind vectors. The first argument is always
a constant. If it is null (>1e36), it is assumed that what follows is a stack of triplets: u, v,
and a vertical coordinate value. If the leading constant is not null, then it is assumed that
what follows is a stack of u and v, and the leading constant is the depth of the layer.

Slice: 2->1, 3->1, or 4->1
Define a quasi horizontal 2D surface based on the value of a parameter, and vertically
interpolate data onto that surface. This is how theta-on-the-fly is implemented. Normally,
the first entry is a constant that defines the vertical location of the surface, the second
entry is the parameter that defines the vertical location of the surface (with a 3D plane
qualifier) and the third entry is a 3D parameter to interpolate onto that quasi horizontal
2D surface. The vertical location of the surface is then where in the column the initial
constant equals the value of the second entry. If the third entry is not present, it will
default to pressure.

If the constant that defines the vertical location is 1e35 (or -1e35), then the maximum
(minimum) value in the column of the second entry is chosen to define the vertical
position of the quasi horizontal 2D surface.
If a leading optional constant >1e36 or <-1e36 is present, this allows further control over
how the slice is done. If this constant is >0, then the highest occurrence of the search
value is used rather than the default behavior of using the lowest. If the magnitude of this
constant is <=1e37, then the default vertically interpolated slice is used. If the magnitude
is 2e37, then the value of the nearest gridpoint vertically is copied to the output grid, and
if the magnitude is 3e37, vertical interpolation will be used if possible, but if not then the
nearest gridpoint is copied.

Filter: 3->1
Apply a spatial filter to the first argument. The second argument is a constant which
determines the distance over which to apply the filter, in km if positive, in number of grid
points if negative. The third argument is a constant specifying how many times to apply
the filter.

Test: 5->1 , 9->1 , 13->1 ...
This function takes five arguments at a minimum. There is an initial input argument,
followed by a group of four arguments which can cause the input argument to be
modified. There can be any number of these groups, each of which modifies the result of
the previous argument group. For a single argument group, the basic functionality is that
a constant operation type in the first argument determines how values in the input
argument are tested against those in the second and third arguments; when the test is
passed, values in the input argument are replaced with values in the fourth argument.
When the first argument is positive, then the test is passed when values in the input
argument fall within the range of values of the second and third. If it is negative, the test
is passed if values in the input argument fall outside the range of values of the second and
third. When the magnitude of the first argument is one, then testing and replacing is done
on each individual corresponding grid point. When the magnitude of the first argument is
two, the entire input grid is tested point by point and if ANY test is passed then the entire
grid is replaced. If the magnitude of the first argument is three, then the entire grid is
tested point by point and if EVERY test is passed then the entire grid is replaced. Also,
non-zero digits in the thousands place of the operation type cause the argument to be used
in an operation on the input data rather than just replace it. 1000 means add, 2000 means
subtract, 3000 means multiply, and 4000 means divide. CAUTION: the user needs to be
aware that once a particular value in a grid has been altered by a test, all memory of its
original value is lost for the purposes of future tests. This can mean that two tests that
work fine independently can fail to do what the user intended if strung together without
forethought.

Accum: 2->1 or 3->2
Do an addition over time. First argument is a variable for which to add up the value,
second argument is a floating constant which controls the time period over which values
are accumulated. If the first argument is a vector, the output will be a vector. The time
period argument is converted to the nearest integer before being interpreted; if the input
argument is exactly an integer, then parts of an accumulation can be missing and a
display will be made; otherwise the code will insist that all parts of an accumulation be
present to make a display. If the integerized time period argument is zero, this means

accumulate forever. If it is greater than 99, this is the number of seconds over which to
accumulate. If less than zero, then it is the number of time steps over which to
accumulate. Otherwise, it is the forecast time step since which to accumulate (1 meaning
the first step, usually the analysis).

Mean: 2->1 or 3->2
Same as Accum, but does an average.

MultiLoad: n->1
Create multi-loads, which among other things can be used to auto-generate families. The
inputs to a multi-load function come in pairs, each pair corresponding to a single overlay.
Each pair contains a floating constant followed by the variable to display in the overlay.
The constant is converted to the nearest integer before being interpreted. A non-zero
value in the ones place means this overlay should be toggled on by default. The tens digit
is the display type to use: 0=contour, 1=icons, 2=image, 3=barbs, 4=streamlines,
5=arrows, 6=dualarrows, 7=other. A non-zero value in the hundreds digit means start a
new pane. The thousands place is number of frames to load; 0 means the same as the
number of forecast times and 99 means whatever the display is currently set for. If the
legend ends in the word Family, the localization will attempt to post it to the main menu
as a family. A list of constants after the last variable is the list of scale indices for which
the multi-load is valid; if this is not provided, the multi-load will be generated for
whatever scales are listed as valid for the source. A negative value here will be
interpreted as the default density to use for this multi-load.

The functions `LvlQvec', `LyrQvec', `LvlFgen', `LyrFgen', `FnDiverg', and `FsDiverg', though
fully implemented in the virtual field table, are complex and not described here. The function
`Volume' is meant to be used internally in the code to put together three dimensional grids.

Vector Rotation Modes

Here is the enumeration that refers to the vector rotation modes. For the most part, these are fully
implemented. However, one could conceivably use this information, for example, to create
displays for the components of a smoothed wind field.

enum VectorRotation {VR_NO_ROTATION = 0,
 VR_EARTH_COORDINATES = 1,
 VR_SECTION_COORDINATES = 2,
 VR_COMPONENT_INTO = 3,
 VR_COMPONENT_ALONG = 4,
 VR_GEO_MOMENTUM = 5,
 VR_VERT_CIRC = 6};

Author: Jim Ramer
Last update: 28 Mar 08

Contouring arbitrary LDAD variables in
AWIPS

Introduction

The LDAD system in AWIPS can bring in an extremely varied set of hydrometeorological
variables. In setting up the default AWIPS configuration, it is impossible to anticipate everything
LDAD might bring in and set up display capabilities for it. This was the primary impetus for
creating the adaptive plan view plotting subsystem within AWIPS. This capability allows
infinitely confurable station model based plan view plots of any LDAD variable. It did not,
however, allow the user to contour any of these variables.

The LAPS and MSAS components of AWIPS allow for the ingest and analysis of many
standardized LDAD variables, and these can of course be contoured through the volume
browser. However, LAPS and MSAS were never designed to be locally configurable for the
addition of unique LDAD variables. As such, a configurable capability for analyzing and
contouring an arbitrary point data variable on the fly was deemed necessary.

Algorithm

The analysis package used to support such a capability should be viewed as more of a
visualization tool than an objective analysis. As such, the most important thing is to match the
observations as closely as is possible given the resolution of the grid used. That is, it would
ideally result in contours that look like a person did a hand analysis. Since it runs in real time, it
must also be fast.

The simplest well known and documented analysis scheme is the Barnes analysis. One feature of
the Barnes is that one must pick a single distance scale representative of the data set. In areas
where the distance scale is large compared to the observational density, details get washed out.
In areas where the distance scale is small compared to the observational density, there is a
tendency to create bullseyes. Add to this a tendency to approach the mean in large voids, and the
Barnes is just not suited for matching the observations in a situation where the spatial
characteristics of the data set are hard to predict. More complex schemes such as OI would have
performance problems.

Here is a high level description of the analysis package that was coded up. First, all observations
are resolved to the nearest grid point. A work grid of the same spatial resolution and expanded to
twice the size of the analysis grid is used for this task to more accurately handle observations just
outside the analysis grid. Where more than one observation resolves to the same point, all of
these are averaged. As the values are assigned to the remaining analysis grid points, one always
finds the unassigned grid point furthest from any assigned point. Once a value is assigned for
that grid point, it becomes a virtual observation for subsequent calculations. When assigning a
value for an analysis grid point, the space around the point is divided into eight octants. The
nearest assigned point is found within each octant. If the point is mostly surrounded by data, each

point is weighted by the inverse of its distance to the fourth power. If only points off to one side
are available the weighting is according to the inverse of its distance squared.

This scheme is fast and does an excellent job of adapting to the spatial characteristics of the data,
even if they vary widely over different parts of the same analysis grid. The spectral response is
not pleasing, in that there is a lot of 2-delta noise. However, that is the trade-off for having the
analysis rigorously match the observations, which can vary over that space scale as well.
Certainly, one would never want to hand the output of this analysis scheme to a numerical
model. Nor is there any quality control, so caveat emptor.

Sample Demonstration

There are demonstration versions of this for METARs in 5.2.2 with the menus entries left out.
One can temporarily add entries to the end of the METAR->Other Plots submenu in
nationalData/dataMenus.txt on the Surface menu to activate these. If one has an override file for
dataMenus.txt, one would need to add these to the override file and run the -tables localization
task. Here are what these entries need to look like:

 productButton: 120120 # T
 productButton: 120124 # T img
 productButton: 120121 # Td
 productButton: 120122 # Wind

To see these menu entries one needs to restart D-2D. This capability uses design files to gather
the data and potentially do calculations on the data before it is handed over to the analysis. To
understand more about how design files work, one should see adaptivePlanViewPlotting. Grid
depictables are given keys that point to these design files and to the point data set being used.
When a properly formatted depict key entry is made, a PlotDesignData object is constructed and
is asked for an analysis of the variable of interest. The Grid depictable then displays that data as
it were any other grid.

We will use these demonstration entries to illustrate how one would go about setting up the
contouring of an arbitrary LDAD variable. For any use of this capability, it is up to the user to
choose unused keys for the implementation. For now, picking additional keys in the 120200-
120999 range should be totally safe.

If one wanted to add menu entries for LDAD displays specific to the local site they would go
into /data/fxa/customFiles/LLL-ldadMenus.txt. The product buttons in the demonstration menu
are linked to displayable products using these corresponding entries in the file
nationalData/productButtonInfo.txt.

120120 | 120120 |Temperature |Metar Temp Analysis | 0
120124 | 120124 |Temp Image |Metar Temp Image | 0
120121 | 120121 |Dewpoint |Metar Dewp Analysis | 0
120122 | 120122 |Wind |Metar Wind Analysis | 0
The entries for the local site would go in /data/fxa/customFiles/LLL-localProductButtons.txt.
The header documentation at the top of the the default productButtonInfo.txt files explains how
these entries work. Depict keys and product buttons are the same by convention, not by

necessity; it usually makes it easier to keep track of things. Here are the depict key entries for the
demonstation, from nationalData/depictInfo.manual:
120120 |3 |82,120120,1003| |0|1 |METAR Temp Cont (F) |METAR T |1 |0 |1 |
|p,150,150,Tf |900
120124 |10|82,120120,1003| |0|0 |METAR Temp Img (F) |METAR T |8 |0 |1 |29
|p,150,150,Tf |900
120121 |3 |82,120120,1003| |0|1 |METAR Dewpt Cont (F)|METAR Td |1 |0 |1 |
|p,150,150,Tdf |900
120122 |4 |82,120120,1003| |0|1 |METAR Wind (kts) |METAR Wind |1 |0 |1 |
|p,150,150,uW,vW |900
The entries for the local site would go in /data/fxa/customFiles/LLL-localDepictKeys.txt. These
enties are probably the most difficult to get right and the most specific to the implementation, so
even though header documentation exists in nationalData/depictInfo.manual, we will describe
the individual entries here in detail. It will still be useful to be familiar with this header
documentation. The first field is the depict key associated with the display, and is what goes into
the product button table. The second field is the depictable type, 3 for contour, 10 for an image
depiction, and 4 for wind barbs. In the third field is a list of data keys to be used (there will be
more on data key entries later). 82 is the key for decoded METAR data, 120120 is the key for the
associated design file, and 1003 is the key for the METAR station list. The corresponding keys
for LDAD would be 87, implementation dependent, and 1011. The next two fields will always be
empty and 0 for this type of display, and the next field will be 1 for a graphic and 0 for an image.
The next two fields are legend information for the display and for logging. The field immediately
after the legend information will be 8 for images and 1 for graphics, and the next two fields will
always be 0 and 1. The next field is the color table index and as such needs an entry only for an
image. The second to last field is the so called `extra info' field, which is what signals to the grid
depictable that it should grab point data and contour it. The `p' is the flag that invokes this
feature, the next two numbers are the dimensions of the analysis grid, followed by the item_ids
in the design file for what is to be analyzed, one for a contour or image and two for a wind barb
display. The last entry is a notification delay, which one might want to make smaller, say 300,
for LDAD data.
Here is the data key entry for the demonstration, found in the file nationalData/dataInfo.manual.
 120120 | | | | | | | |metarAnalDesign |.txt |metar contour demo design file
The format is straightforward: this just makes data key 120120 point to the appropriate design
file, and the choice of this key is arbitrary and implementation dependent. The file where the
corresponding entry for a local LDAD display would go is /data/fxa/customFiles/LLL-
localDataKeys.txt. The name of the design file of course must be unique, and for a local
implementation would reside in /data/fxa/customFiles/. Design files need to have names like
*Design.txt. All the default design files are in nationalData/, as is metarAnalDesign.txt.
What follows is enough of the contents of metarAnalDesign.txt to understand how the
temperature data is presented for analysis. As mentioned before, one can learn more about design
files from adaptivePlanViewPlotting.
time_step 3600

item_id KF1
constant = 1.8

item_id KF0
constant = -459.67

item_id TC

type float
dimension scalar
netcdf_id temperature
min_valid 200
max_valid 340

item_id T10
type float
dimension scalar
netcdf_id tempFromTenths
min_valid 200
max_valid 340

item_id T
function or
inputs T10 TC

item_id Tf
function lintrans
inputs T KF1 KF0
placement upper_left
method formatted
format %d

The netcdf_id keyword is always followed by the exact name of some netCDF data variable. For
METARs, one can look these up in nationalData/metar.cdl. For LDAD mesonet data, one can
look in nationalData/LDADmesonet.cdl for the default set of mesonet variables, but of course
the whole point of this is to allow one to see contours of unconventional variables. Thus one
would have to look at the override file for LDADmesonet.cdl in that case. What happens for the
METARs is that two kinds of decoded temperature in kelvins are available, temperature and
tempFromTenths. The `or' function is used to combine these two such that if the more precise
tempFromTenths is available it will be used, otherwise the standard METAR temperature will be
used. Finally, the item_id `Tf' is defined by doing a units conversion on the `T' item such that the
data is in degrees F. Tf is also the string that appears in the depict info that says which item to
contour. A units conversion is needed here because there is no way to associate style info with
one of these displays as there is for gridded data displays from the Volume Browser. The value
3600 after the time_step keyword means that in a loop there will be one display per hour. The
keywords `placement,' `method,' and `format' are significant in two ways. Most importantly, the
existance of the `placement' keyword tells the design file that data from this particular item
should be made available to the outside world, which is necessary for this capability to work.
Second, one could temporarily copy this file to localizationDataSets/LLL/metarStdDesign.txt
and then (after a D-2D restart) use the standard METAR plot to see a plot of the data values that
will be contoured, which can help with troubleshooting. If one were to do the same thing to
troubleshoot an LDAD contour, one could temporarily copy the design file to
localizationDataSets/LLL/ldadMeso15Design.txt to test this with the 15 minute LDAD plot.

Author: Jim Ramer
Last update: 20 Mar 02

mainScript

The usage of mainScript.csh is as follows:

mainScript.csh {h} {n} {f} {t} {v} {+task} {-task} {-task} {loc_id}
{ingest_id}

Note that all of the arguments are optional. However, if run with
no arguments at all, or with a single `h' argument, this usage message
will be printed out.

If run with no task or localization identifier arguments, mainScript.csh
will perform all default localization tasks with the localization
identifier of $FXA_LOCAL_SITE and an ingest localization identifier of
$FXA_INGEST_SITE. The `loc_id' argument allows one to specify the
localization identifier on the command line, and the `ingest_id'
argument allows one to specify the ingest localization identifier on the
command line.

The `v' option will cause it to echo individual commands executed in the
subordinate scripts. The `t' option will cause it only to verify that
the localization ID selected is valid and list the tasks that would
be run.

The `n' option must be used if one is changing the customization
environment for an existing localization. This means when the value
of the environment variables FXA_CUSTOM_FILES or FXA_CUSTOM_VERSION
changes. The `n' flag must also be used if one wants to rerun an
existing localization using a different ingest site.

There is now some logic in localization that allows it to detect when
certain files are up to date and thus avoid recreating those files.
If the `f' option is present, this logic is disabled.

Currently, the complete list of default task options is as follows:

dataSups scales clipSups tables text topo grids radar maps wwa station

The `+task' option means perform that task and any tasks that follow.
The `-task' option means just perform that task. One should use the
+task option only once and it should be the first task option. One
can use as many -task options as needed. Using the option `+dataSups'
would be the same as the default behavior. To just verify whether a
localization is viable, one can use a -task option for a non-existent
task, such as `-x'. There are also seven non-default tasks called
`laps', `msas', `dirs', `auxFiles', 'scan', 'purge', and `trigger`.
The `laps' task is used to create metadata specifically for running
the Local Analysis and Prediction System. Likewise, the `msas' task
creates metadata for running the MAPS Surface Assimilation System
(MSAS). The `dirs' task will assure the creation of all data
directories on $FXA_DATA, as determined by the current state of the
dataInfo.txt file, with all of its include files. The `auxFiles' will
create any other miscelleanous files that need to be moved to the data
device. The 'scan' task creates metadata for running SCAN/FFMP.
`trigger' creates text product triggers. The 'purge' task will build
the purge tables for the new purger. A task option of `-all' will

cause all default and non-default tasks to run. Additionally, the
arguments `-WS', `-DS' (or `-DX'), and `-PX' will result in running
only those tasks absolutely necessary for localizations that reside on
the workstation, data server, and application server, respectively. The
argument -WWA will run just enough localization tasks to support
warnGen full service backup.

Author: Jim Ramer
Last update: 17 Sep 04

Purging in AWIPS
The AWIPS intelligent data purger was phased in starting with OB5. The initial implementation
included METARs, radar, and grids. OB6 added purging of satellite images and redbook
graphics, with the rest of the datasets moved over in OB7.2. The purger attempts to use default
purge parameters if necessary to purge any valid data key that points to a directory not in its
tables.

The purger is a persistent process. Instead of waking up on a schedule and generating a huge
burst of activity every so often, this purger is designed to maintain a very constant CPU load, and
it informs the notificationServer of what it purges, which helps with notificationServer
performance. The purger is smart enough to ignore directories and non-time-stamped files in
normal purge operations, and has a separate mechanism for cleaning up non-time-stamped files.
Files named literally `template' will always be ignored by the non-time-stamped file logic; thus,
no extra steps are required to manage template files. The purger allows for sophisticated purging
schemes beyond simple version purging, among them time purging.

The data structures that control the purger are similar to the key tables that manage other aspects
of AWIPS, and are overridable through localization in similar ways.

The purgeProcess executable

The name of the executable that runs the purging is purgeProcess and it lives in the directory
/awips/fxa/bin/. By default, this process runs on dx1, and it logs to the standard time-stamped
directory in /data/logs/fxa as do all ingest processes. It can be stopped by script
stopPurgeProcess and started by startPurgeProcess on dx1 as fxa.

Note that if you stop the purger, a cron entry will restart it within ten minutes. It's generally not a
good idea to let the system run without a purger; large inventories can cause slow-downs, and
disk space can vanish relatively quickly. Also, do not manually start purgeProcess. Be sure to use
startPurgeProcess when needed; it will prevent multiple purgeProcesses from running at the
same time.

An important support file for purgeProcess is /awips/fxa/data/purgeDataInfo.txt. This file allows
purgeProcess to see all data keys except for volume browser keys, and it should never be
changed or overridden. The complete usage documentation for purgeProcess is found in
Appendix 2.

If EVENT logging is turned on for purgeProcess, performance summaries will be logged for
each pass through the purge and data keys. Also, EVENT logging will result in a 'heartbeat;'
there will be some log file activity every few seconds. VERBOSE logging will additionally log
every time the process sleeps and will log every file that is deleted or would be deleted if the
process was started without the -commit argument. DEBUG logging will add logging for each
key that the process attempts to purge.

Data structures for the purger

http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/purgeTables.html%23A2

The main file that controls the behavior of the purger is nationalData/purgeInfo.txt. It is a
standard AWIPS keyed access file: primary fields separated by vertical bars and sub fields
separated by commas, with the key in the first field. Upon viewing the file, you will see that it
starts with a large amount of user documentation, which is included here in Appendix 1. The rest
of the file contains this:

 60 | | | 2- | 288 // aiv/ncwf/netcdf
 72 | | | 2- | 72 // aiv/convSIGMET/netcdf
 62 | | |14- | ,14- // point/LSR/netCDF
.
.
.
#include "radarPurgeInfo.txt"
#include "satPurgeInfo.txt"
#include "redbookPurgeInfo.txt"
#include "gridPurgeInfo.txt"
#include "localPurgeInfo.txt"

Notice that there are many specific purge entries in the file plus several #include lines. There are
default implementations of all of the include files except for localPurgeInfo.txt. As the name
would suggest, localPurgeInfo.txt is meant to bring in purging info for locally defined data sets.
One can also change (override) the default purging behavior for individual data sets in
localPurgeInfo.txt.

There is a localization task, -purge, whose job it is to manage the purging tables. Running it will
take all purging information in the system, including defaults and local overrides, and move them
into the localizationDataSets/LLL/ directory for the site.

Understanding individual purge table entries

A great deal of understanding of how these entries work can be obtained by reading the header
documentation from purgeInfo.txt, reproduced in Appendix 1. Here we will dissect some
existing entries in the default system as an aid to this understanding. Here is the entry for
METAR purging:

 82 | | | 2- | 34 | 38,,=3: | 42,,=6: | 50,,=24:,+12: // point/metar/netcdf

The key '82' is what means this is for purging METAR files. This is the same data key as exists
for METARs in nationalData/dataInfo.manual. The next field is blank because we are relying on
the data key to specify the directory, and the next key is blank because we want no special
behavior not specified in the main set of purge groups. The next field, which contains '2-', means
remove any files that are not time stamped if they are older than two days. After that, we have
four purge groups. In order for a file to be kept, it must be OK with at least one of the purge
groups. Within a group, it must pass all tests specified. The first group represents a straight
version purge to 34 versions. The second group means keep up to 38 files that are time stamped
exactly at 3 hour intervals; this means 4 additional files (12 hours, in this case) beyond the 34 of
the first rule. The third group means keep up to 42 files time stamped exactly at 6 hour intervals
(four more files, or a day's worth), and the last group means keep up to 50 versions stamped
exactly at 24 hour intervals, at 12Z (eight more days). Because the largest versions parameter is

http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/purgeTables.html%23A1
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/purgeTables.html%23A1

50, the purging will reduce the set of kept files to no more than 50 when a purge operation is
complete.

This "intelligent" purge strategy allows us to provide a much better user experience than would a
straight version purge. In comparison to a 36-version purge, we are keeping only 50% more files,
yet we are going back an extra day and a half with the 3/6 hour frequency, which makes the 24
hour change displays more useful, and we are going back a whole extra week with the files that
contain the 24 hour precipitation.

If the default entry for METARs were as follows, the purging would be esentially the same:

888888 | point/metar/netcdf | | 2- | ,~34:00 | ,~38:00,=3:00 | ,~42:00,=6:00
| ,~50:00,=24:00,+12:00

In this entry, we have just picked an undefined key and entered the directory into the purge info.
This will purge the same but the notificationServer will not learn about what is purged, as that
requires actual data keys. The purge parameters are in hours instead of versions, but since
METAR files are always hourly, this is equivalent.

Some additional examples worth viewing are from the default version of gridPurgeInfo.txt:

1069999999 | 1070000000,1070000255 | | 2- | 2 | ,~24:01
301 | | ,,,i | | 10000 // Grid/SBN/Raw
1070000019 | | ,,1:00 | 2- | 2 // CONUS212/MesoEta

The first entry uses the arbitrary undefined key 1069999999 to carry purge info for actual data
keys in the range from 1070000000 to 1070000255. Starting with OB5 there are specific data
keys that point to the gridded data netCDF files as a whole, as opposed to individual volume
browser displays, and this is the entire range of these keys (see
localizationDataSets/LLL/gridNetcdfKeys.txt). This default entry for all gridded data netCDF
files will keep any files up to two versions or up to a day old. Thus, data created daily would be
kept for 2 versions, hourly files would be kept for 25 versions. The second entry is for purging
the safe store directory (temporary storage for unprocessed SBN grids). The ',,,i' means we
ignore time stamping and just keep the newest 10000 files. The last entry is specifically for the
40km NAM (historically, MesoEta) grids. The text at the end is just a comment; the real control
of which data set is involved is via the key. We keep 2 versions, but the ',,1:00' entry means wait
until the newest file has had nothing written to it for an hour before removing the oldest file. This
gives the newest run a chance to complete before the older run is removed.

File override resulting from running the -purge task

All of the overridable files that control purging have their default version in nationalData/. The
list of currently implemented files is purgeInfo.txt, gridPurgeInfo.txt, radarPurgeInfo.txt,
radarPurgeInfo.template, redbookPurgeInfo.txt, and satPurgeInfo.txt. New for OB9, we are
implementing a default version of dialPurgeInfo.template to purge the FAA radar imagery. The
.txt files are subject to replacement override from realization files and to append override from
site-specific files. The .template files are subject to replacement override from realization files

and to append override from both site-specific and customization files. The file
localPurgeInfo.txt is for override only and is subject to append override from both site-specific
and customization files. It is expected that the vast majority of locally-defined purge entries will
be in customFiles/localPurgeInfo.txt. Purge information entered here for specific data keys will
override that defined by default, plus one can add purging information here for any locally-
defined data sets.

If one does override the default purge information, there are some things to keep in mind. Once
your override files have been edited and the -purge task has been run on dx1, the purge process
needs to be restarted. If the override is wanted long term, the -purge task should also be run on
the backup host for the purgeProcess (currently dx2). If one makes entries where the key
functions not as an actual data key but rather as an arbitrary purge key, one should not use a key
that is already an actual data key, nor should the arbitrary key fall within the range of data keys
provided. It is always OK to make an entry for an existing purge key in an override file, as long
as the intent is to replace the existing default purging information associated with that purge key.
For now, if local users need to make entries for arbitrary purge keys, it is suggested that the
arbitrary purge key used be in the range 4000000000 to 4200000000.

If one makes a purge entry that has problems with one of the purge groups
(ver,period,delta,round) but still has usable information for other purge groups, the purger will
attempt to perform purging operations based on the groups it could successfully parse. A trailing
vertical bar will be interpreted as an empty and therefore problematic group, but will not
necessarily prevent purging operations from occurring. If none of the purge groups can be
interpreted and there is no scour information, then that purge entry will not be used and a
diagnostic like this will appear in the log file:

purgeProcess 15:03:05.339 DM_PurgeInfo.C 1388 PROBLEM: No usable purge info
for purge key: 123456 Num fields: 4

Radar data purging

Here we discuss in more detail how the purge tables that control radar data are managed. The
radarPurgeInfo.txt resulting from localization (found in
dx1:/awips/fxa/data/localizationDataSets/LLL) is a combination of information from
nationalData/radarPurgeInfo.txt (containing catch-all entries), radarPurgeInfo.template (for
associated radars), and dialPurgeInfo.template (for FAA radars), plus any overrides.

If one looks in nationalData/radarPurgeInfo.txt, one sees three entries, to wit:

2200000000 | 1073741824,2147483647 | | 2- | 30 | 36,,~1:00
2200000001 | badRadar | ,,,i | | 60
//2200000002 | radar/raw | ,,,i | | 20000

The first is a default entry for the entire range of possible radar data keys, saying version purge
to 30 versions, and keep an additional 6 files at approximately one hour intervals. (For RFCs,
there is a realization version of this file that is the same except it purges to 60 versions plus an
additional 12 at one hour intervals.) Next is a purge parameter of 60 files for the directory where

undecodable radar files are placed, and finally is a commented out entry for the safe store
directory for radar. We currently do not purge the radar safe store but this is here just in case we
need it.

The file nationalData/radarPurgeInfo.template contains purge entries for associated radars in
terms of generic keys. During localization, these are converted to radar-specific keys and
appended to the items above. The only current entry is a catch-all for all generic radar data keys,
purging to 72 versions, with the last 12 hourly. If in the future we wish to purge certain products
differently (suppose, for example, that we want to keep one-hour precip for 24 hours), that will
be added here. To do the same for OCONUS radars, the likely approach will be to add site-
specific override versions of radarPurgeInfo.template (LLL-radarPurgeInfo.template) to the
release. If a site wanted a specific generic data key for associated radars to be purged differently,
they would do this in the file customFiles/radarPurgeInfo.template.

The localization scripting also processes dialPurgeInfo.template exactly as
radarPurgeInfo.template is processed, producing like purge entries for FAA radars. It is not used
for non-associated radars because we rely on the main all-radars entry in radarPurgeInfo.txt for
purging files from those radars.

Another special feature of the purger that relates to radar data is how it handles subdirectories
named inventory_parameters/. In these subdirectories (for a few products including SRM and
VAD) reside time-stamped text files corresponding to each of the data files in the top-level
directory. These files contain additional information that gets presented with inventories in the
D-2D user interface. The purger automatically purges any subdirectories named
inventory_parameters/ at the time it purges the top-level directory and with exactly the same
purge parameters.

Appendix 1) header documentation from purgeInfo.txt

//
// This file, purgeInfo.txt, is where purging information is entered for
// data keys. This file has #include lines for keys for radar, satellite,
// grids, and local keys. Each line in the file normally supplies the
purging
// information for one data key, but sometimes can refer to ranges of
// keys. Here is how these entries are formatted:
//
// key | dir | r,w,c,i,l | scourPer | ver,period,delta,round | ...
//
// key - A data access key to give purge info for.
// dir - If this is non-blank, then we assume that 'key' is not a real
// data key, but an arbitrary key used to drive the purging of this
// particular directory. If this is two comma delimited keys
// instead of a directory, then this is assumed to be a range
// of keys that this is the default purge info for. Five keys
// are `min,max,div,minRem,maxRem', which means the whole key
// must be between the first two, and the remainder when divided
// by div must be between the last two.
// r - A non blank entry means go through directories recursively.
// w - A non blank entry means purge all prefix/suffix combinations

// found in the directory separately.
// c - Time period to wait after the mod time of the latest file to
// purge normally; this allows the most recent file to be completed
// before the oldest is purged.
// i - Non-blank entry means ignore time stamps, no delta times or round
// times allowed in this case.
// l - A non blank entry means do not actually purge by this entry, only
// log what would have been purged.
// scourPer - Any non time stamped files in the directory will be removed
// if older than this length of time. Defaults to zero, which
// means do not scour (see the time string definition below).
// Any comma delimited entries after the scour period in this
// field are assumed to be the names of files which will be
// neither purged or scoured.
// ver - Number of versions to keep; defaults to 0 which means do
// not version purge.
// period - Max period between the current time and oldest time stamp of
// file to keep; defaults to 0 which means do not time purge.
// A leading tilde (~) on the period means calculate from the
// latest file time stamp instead of the current time.
// delta - File with time stamp separated by less than this from next
// newest file will not be kept; defaults to zero which means
// do not consider time separation. If a leading equals (=),
// only keep files an exact multiple of this delta time, if a
// leading tilde (~) only keep the one file closest to an
// exact multiple of this delta time.
// round - Round times by this before deciding whether to purge; defaults
// to zero which means do not round. The rounding time interacts
// with the delta, but not the period. If a leading plus sign (+),
// add the time instead of rounding by it. If consecutive files
// round to the same time, then if one is kept they will all be
// kept.
//
// To be valid, an entry must have at least four vertical-bar-delimited
// fields. There can be any number of ver,period,delta,round groups. If
// the first possible ver,period,delta,round field begins with an alphabetic
// character, that is assumed to be a command to run to handle purging.
// At a minimum there must be a key and a usable ver,period,delta or scour
// parameter.
//
// Time lengths are encoded as dd-hh:mm:ss, where dd is days, hh is hours,
// mm is minutes and ss is seconds. Could say `2-' for 2 days, `:30' for
// thirty minutes, `:4:30' for four and one half minutes, `4:' for four
// hours, or `1-18' for one and three quarter days (one day, 18 hours).
//
// For each ver,period,delta,round group, a file must pass all
// tests to be considered for retention. If there are multiple groups,
// a file must only pass the tests for one group to be retained.
// Since vb keys (>=0x80000000) never point specifically to a directory,
// it will be assumed that keys in this range will always be used
// for designating the default purging info for ranges of other data
// keys. Key 4294967295 (0xFFFFFFFF) is the largest possible data key and
// is reserved for defining the default purging info applied to any data
// key for which no purging info is found. There are internal defaults for
// this so an entry for this key is not mandatory.
//
// Other predefined ranges of purge keys that do not correspond to

// existing data keys:
//
// 1069000001 - 1069000009 Satellite arbitrary purge keys.
// 1069999999 - 1070000255 Gridded data purging keys.
// 3800000000 - 3999999999 Site-specific arbitrary purge keys.
// 4000000000 - 4200000000 User-defined arbitrary purge keys on site.
//

Appendix 2) Usage documentation for purgeProcess

 purgeProcess {-commit} {-noall} {-logall} {-wait}
 {-one} {-two} {-three} {-four}
 {k key1 key2 ...} {opsPerSec} {+cycleTime}

 -commit - literal, must be present for performing purge/scour
 operations, otherwise will just log files to remove.
 -noall - If a non-VB data key has no purge entry that either
 matches it or includes it in its range of keys, do not
 purge it by default.
 -logall - If a non-VB data key has no purge entry that either
 matches it or includes it in its range of keys, only log
 what would be purged.
 -noinit - Begin purging operations immediately...don't surf all tables
 first to check for redundancies.
 -wait - wait thirty seconds to start execution to allow a
 debugger to be hooked up.
 -one ... - Number of passes to perform before stopping, by default
 will never stop until interrupted.
 k - If literal flag `k' is present, will only test purging
 the listed keys, which can be purge keys or data keys.
 If a data key is given which relates to a purge rule with
 a different key, the purge rule key must come before the
 data key for the data key purge to work.
 opsPerSec - is the number of directories to purge per second, defaults
 to 5.0.
 cycleTime - Desired number of minutes to cycle through all purge keys
 and data keys, defaults to 30.

Author: Jim Ramer
Last update: 25 Apr 08

Radar Localization
Introduction

In the OB3 release the general organizaton of radar tables changed a great deal, mostly in
support of new Volume Coverage Patterns (VCPs) that came on line with many new tilt angles.
The previous user interface, which was based on loading specific tilts, would have been stretched
beyond its limits had we tried to use it for all the different tilts (about 40 in all) that became
available. Thus, we switched to an interface that is based on ranges of tilts.

Furthermore, with the increased emphasis on 8 bit products, we changed the mechanism whereby
data sets that are available in multiple bit depths/data levels are displayed. For base reflectivity,
for example, it will try to load the 8 bit/256 level product first. If that is not available, an attempt
will be made to load the 4 bit/16 level product, and then finally the 3 bit/8 level product. No
matter which product is loaded, the data are always mapped to a common fixed dBZ to color
mapping for display. This functionality required formalizing the way we make entries that
descibe the image value to data value mapping for 8 bit products. Unlike the legacy 4 and 3 bit
products, 8 bit products do not contain this information in the header, so we have to enter it into
tables.

We will begin by discussing the ramifications to localization caused by the VCP-driven table
organizaton. Next we will discuss how to make certain changes to the output data value to color
mapping based on the new data value mapping tables. Finally, we will include some general
hints about radar localization.

Effects of VCP-driven key reorganization

The general functioning of radar localization is that files containing generic radar product keys
(nationalData/radar*.template files) are converted into radar-specific keys for each radar in the
site's radarsInUse.txt file and written to the localization data set as radar*.txt files.

Switching from an organization based on specific tilts to one based on ranges of tilts meant at a
minimum that some depict keys would go away, which necessitated patching procedures for
OB3. Since procedures were being patched anyway, we took the opportunity to reorganize the
radar generic key space to something more logical. If one is curious about how this was done,
read the header documentation in the new radarDataKeys.template and
radarDepictKeys.template files in nationalData/. The primary upshot of this reorganization was
that any key-based radar override files that one had been using became invalid unless the generic
key entries in them were changed. More on this in the general hints section.

Modifying data value mapping

In AWIPS we use a data structure called an image style entry to describe how data are mapped
from image counts to physical data values like dBZ. See the header documentation of
nationalData/imageStyle.txt for more information about the format of style entries. As previously
mentioned, the 4 and 3 bit products usually have information in their headers that can be used to

map from image counts to data values, but not so for most 8 bit products. Thus, the AWIPS radar
subsystem uses image style entries to describe both the characteristics of raw 8 bit data and how
data are displayed. Under the hood, AWIPS detects when the data style and display style are
different, and will rescale the image data so that, for example, 40 dBZ is always 40 dBZ
regardless of what the output display style looks like.

Previous releases had no clean separation between keys that were meant only to carry style info
for 8 bit data sets and style entries that were meant for controlling how 8 bit image products were
displayed. To rectify this, we have introduced a new file called
nationalData/radarGenericImageStyle.txt. This file contains display style entries for mosaics (for
more on mosaics see radarMosaics) and all the style entries that are meant to describe how image
counts map to data values for eight bit products. In here are also entries that control how the
image counts in 4 bit VIL data are mapped to approximated reflectivity for the `VIL/Comp Ref'
product. The mosaic display style and the VIL to reflectivity mapping is fair game for user
configuration, but the rest of the entries that descibe the meaning of 8 bit data sets should not be
changed unless those data sets change. These entries remain generic - the radar localization does
not convert them to radar-specific keys.

Before 8 bit products came on line, very few radar products had display style different from that
associated with the data set. Now that we are combining all bit depths for reflectivity and
velocity into a single menu selector and data value to color mapping, having different display
style entries is the rule rather than the exception for base reflectivity and velocity products. The
display style entries for radar products are found in nationalData/radarImageStyleInfo.template,
and these are based on generic depict keys. If an entry is changed in
radarImageStyleInfo.template, one will also often need to change the units or color table entry in
radarDepictKeys.template, or perhaps the value of one of the RADAR_* directives that control
the color table values for classes of radar product (see directives).

An example of something one might change is the scaling for the 8 bit Vertically Integrated
Liquid water product (DVL, key 50843). There are currently two commented-out entries for it in
radarImageStyleInfo.template. This product is unique because the data has hybrid log/linear
scaling, and furthermore that scaling will change slightly from ORPG build 8 to build 9. The first
commented-out entry is the same as the default scaling of the data for build 8. Uncommenting it
will have no effect other than to generate redundant style entries while build 8 is being used;
when build 9 is put in place it will have the effect of forcing the color to VIL value relationship
to remain what it was during build 8. The second commented-out entry is one that is the same as
the four bit VIL data. If one were to uncomment that second entry and run the -radars
localization task, one would end up with linearly scaled output for the digital VIL. One would
probably also want to change the color table for this product in radarDepictKeys.template to be
the same as the 4 bit VIL in this case. The point of this is not necessarily to recommend either of
these changes, but merely to provide an example of how one might do this.

Another example of something one might want to change is the output scaling for the Storm
Total Precipitation, key 50111. In places where rainfall intensity is highly seasonal, it might
make sense to have a smaller range of values when heavy rainfall is less common and a larger

range of values when it is more common. Alternatively, one may want to convert to a pure log
output scaling, which as mentioned before can now be done.

General hints for radar localization

1. When customizing, the approach always needs to be `start with the delivered defaults,
and then edit in your changes;' never `start with my old customization, then attempt to
reimplement the new capabilities.' The second approach will inevitably end up negatively
affecting some default capabilities. This is not theoretical - there have already been
several instances where SST has had to spend time troubleshooting radar display
problems resulting from this. This was extremely important for OB3 because the
keyspace had been rearranged.

2. When you override nationalData/radar*.template files, do not edit the files in place in
nationalData/. You need to provide override files at either
/data/fxa/customFiles/radar*.template or localization/LLL/LLL-radar*.template. Also,
except for radarDataMenus.template where order is important, there is no reason to
replicate every generic key entry. Enter only the ones you want to add or change, and the
rest will retain their default entries from the nationalData/ file. Overriding every generic
key makes restoring customizations after an upgrade more complicated, and so is
strongly discouraged.

3. Your overrides for nationalData/radar*.template files are usually better placed at
/data/fxa/customFiles/radar*.template instead of localization/LLL/LLL-radar*.template.
If you override radarDataMenus.template in customFiles/ and you want to change the
whole layout, start the file with a line containing `#replace'; otherwise your entries will be
added to the bottom of the menu. Occasionally you will want to be able to have a
localization used for service backup have different radar tables than your primarly
localizaton, and for this you will want to use LLL-radar*.template files. Thus, this is a
recommendation, not a hard and fast rule.

4. It is usually better to change radar color tables using directives instead of directly
overriding the radarDepictKeys.template files. See directives for more information,
specifically, the directives RADAR_Z through RADAR_VH. Also, it is perfectly OK to
enter user-defined color table indices here, as well as something like `1167,100' (table
and default brightness). Not all depict keys have color table entries linked to one of these
directives, and sometimes there will be legitimate reasons to assign a totally different
color table to a key that is linked to a directive by default. Thus, again, this is a
recommendation and not a hard and fast rule.

Appendix -- Table of current tilt angle bins

primary min max VCP VCP VCP VCP VCP VCP VCP
 angle angle angle 12 121 112 11 21 31 32
 ===== ===== ===== ==== ==== ==== ==== ==== ==== ====
 0.5 0.4 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5
 0.9 0.8 1.1 0.9 --- --- --- --- --- ---
 1.5 1.2 1.6 1.3 1.5 1.3 1.5 1.5 1.5 1.5
 1.8 1.7 2.0 1.8 --- --- --- --- --- ---
 2.4 2.1 2.6 2.4 2.4 2.1 2.4 2.4 2.5 2.5
 3.4 2.7 3.6 3.1 3.4 2.9 3.4 3.4 3.5 3.5

 4.3 3.7 4.6 4.0 4.3 3.8 4.3 4.3 4.5 4.5
 5.3 4.7 5.6 5.1 --- 4.8 5.3 --- --- ---
 6.0 5.7 6.6 6.4 6.0 6.1 6.2 6.0 --- ---
 7.5 6.7 8.0 8.0 --- 7.7 7.5 --- --- ---
 8.7 8.1 9.5 --- --- --- 8.7 --- --- ---
 10.0 9.6 11.0 10.0 9.9 9.7 10.0 9.9 --- ---
 12.0 11.1 13.0 12.5 --- 12.2 12.0 --- --- ---
 14.0 13.1 15.6 15.6 14.6 15.5 14.0 14.6 --- ---
 16.7 15.7 17.9 --- --- --- 16.7 --- --- ---
 19.5 18.0 22.0 19.5 19.5 19.5 19.5 19.5 --- ---

Author: Jim Ramer
Last update: 17 Oct 05

Radar Mosaics.
For build 5.1, the radar mosaics now work a little differently. First, the radars that go into the
mosaic are no longer always automatically the set of radars that are in radarsOnMenu.txt. For an
RFC or national center, this will still be the case if no action is taken by the site. However, for
WFOs, the number of radars in any mosaic will be limited to the closest nine. Most importantly,
however, is that there is now an option to supply a table that will control in a very specific
manner which radars are in the mosaic, and will even allow mosaics of more than one set of
radars.

If created on site, this table should be placed at the file path
$FXA_CUSTOM_FILES/mosaicInfo.txt. If placed under configuration control the path
localization/LLL/LLL-mosaicInfo.txt should be used. Here is an example of such a table. Placing
the comments in line is a good idea as it helps whoever might need to manage the table.

// This file controls each radar mosaic that can be generated.
// Each line represents one mosaic. Here is a model of each line:
//
// scales | file/list | count | center | title
//
// Here is the meaning of each column:
//
// scales : A space delimited list of scale indices to use for this mosaic.
// Defaults to the contents of mosaicScales.txt.
// file/list : A space delimited list of radars to use in this mosaic, or
// alternatively, a file where this list is. If not supplied
// defaults to radarsInUse.txt.
// count : Max number of radars to include in the mosaic. If this is an RFC
// or national center, this can be any number and will default to
// all available radars. Otherwise, this will default to nine, and
// will arbitrarily be limited to nine.
// center : Takes the radars in the list closest to this point, up to the
// value in the `count' column. This is a lat/lon, which defaults
// to the contents of CenterPoint.dat, which should be the center
// of the area of responsibility.
// title : Should be unique for each line. A line without a title will
// appear directly on the main `Radar' menu, others will be in
// a pull right.
//
// If a version of this file is not supplied for the localization, a
// default version will be created with one entry that looks like this:
//
// | radarsOnMenu.txt | | |
//
//
5 4 | kcys kftg kgld kgjx kpux | | |
3 | | 8 | 40 -109 | West
3 | | 8 | 35 -95 | South
In the example, the default Mosaic that has its menu entries directly on the top level menu called
`Radar' has the five radars kcys, kftg, kgld, kgjx and kpux in it. Immediately following those
menu entries will be a pull-right labeled `West'. In that pull-right will be menu entries for
mosaics that include the 8 radars nearest to the point 40N 109W. Immediately following the pull-

right labeled `West' will be a pull-right labeled `South'. In that pull-right will be menu entries for
mosaics that include the 8 radars nearest to the point 35N 95W.

The main Mosaic will be shown on the WFO and State scales (scales 4 and 5) and the other two
will be shown on the regional scale. Note that if no scales are listed for the mosaic, the contents
of mosaicScales.txt will determine the scales, and that file defaults to just the State scale if it is
not provided.

The reader should note that unless a radar appears in the radarsInUse.txt file, it will not be
included in a mosaic. The radarsInUse.txt file that applies is always whatever one is applicable
for the localization running on the data server.

The remaining files in the default system that apply to mosaics all reside in the directory
localization/nationalData/, and they are called mosaicDepictKeys.template,
mosaicDataMenus.template and mosaicProductButtons.template. The reader is directed to
documentation in the headers of those files for additional information about how those files
work. If one needs to make local changes to these files, the user should create copies of the
originals in the file paths LLL-mosaicDepictKeys.template, LLL-mosaicDataMenus.template,
and LLL-mosaicProductButtons.template in the directory localization/LLL/. After successful
edits have been completed, the new files should be saved off somewhere so that they can be
restored after upgrades.

Once one has edited any of these files, one needs to run the -radar localization task on a
workstation host and then restart the D-2D on that host in order to view the newly configured
mosaics. One must run the -radar task and then restart the notification server on the appropriate
machine in order to get notifications for the newly configured mosaics.

Author: Jim Ramer
Last update: 14 Aug 00

Readme Grids

The user should note that if one is not working in a source
code environment (one that only contains the $FXA_HOME/data and
$FXA_HOME/bin directories) all documentation and metadata files will be in
$FXA_HOME/data, all utility programs will be in $FXA_HOME/bin, and all
localization scripts will be in $FXA_HOME/data/localization/scripts/,
and all scripts are set up to recognize which type environment you
are in and will respond to this. Also, if one is not working in a source
code environment, checking out and checking back in files does not apply.

In general, there are five steps in updating anything involving grids.

1) Check out any of the affected files. There are quite a few that
 might be affected by a change involving gridded data...here is the
 current list of all files that might affect the default system:

 $FXA_HOME/src/localization/nationalData/gridSourceTable.template
 $FXA_HOME/src/localization/nationalData/activeGridSources.txt
 $FXA_HOME/src/localization/nationalData/gridPlaneTable.txt
 $FXA_HOME/src/localization/nationalData/virtualFieldTable.txt
 $FXA_HOME/src/localization/nationalData/contourStyle.rules
 $FXA_HOME/src/localization/nationalData/gridImageStyle.rules
 $FXA_HOME/src/localization/nationalData/iconStyle.rules
 $FXA_HOME/src/localization/nationalData/arrowStyle.rules
 $FXA_HOME/src/localization/nationalData/*.wc
 $FXA_HOME/src/applications/volumeBrowser/browserFieldMenu.txt
 $FXA_HOME/src/applications/volumeBrowser/browserPlanViewMenu.txt
 $FXA_HOME/src/applications/volumeBrowser/browserSoundingFieldMenu.txt
 $FXA_HOME/src/applications/volumeBrowser/browserSoundingMenu.txt
 $FXA_HOME/src/applications/volumeBrowser/browserSpacePlanViewMenu.txt
 $FXA_HOME/src/applications/volumeBrowser/browserSpaceXSectionMenu.txt
 $FXA_HOME/src/applications/volumeBrowser/browserTimeHeightFieldMenu.txt
 $FXA_HOME/src/applications/volumeBrowser/browserTimeHeightMenu.txt
 $FXA_HOME/src/applications/volumeBrowser/browserXsectFieldMenu.txt

2) Edit required tables.

 The file virtualFieldTable.txt is a table where one can
 control how to generate a particular field, or add new derived
 fields. The file gridSourceTable.template is where one introduces
 new gridded data sources to the system, and activeGridSources.txt is
 where you make sources displayable. The file gridPlaneTable.txt
 is where one adds new levels to the system. In all of these tables,
 new items should be added to the end, never inserted, because that
 changes the indexing. Documentation for how to manage these tables can
 be found in gridTables.html.

 The files contourStyle.rules, gridImageStyle.rules, iconStyle.rules,
 and arrowStyle.rules control the look and feel of renderings of gridded
 data. Documentation for how to manage these tables can be found
 in styleRules.html.

http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/gridTables.html
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/styleRules.html

 The files browserFieldMenu.txt, browserTimeHeightFieldMenu.txt and
 browserXsectFieldMenu.txt contain, respectively, the menu layouts
 for plan view fields, time height fields, and cross section fields.
 The file browserPlanViewMenu.txt contains the menu layout for all
 of the plan view level selections. The rest of the browser menu
 layout files should rarely, if ever, be changed. These files all
 have documentation in the file. If not in a source code environment,
 the default versions of these reside in $FXA_HOME/data/vb/.

 The most common reason to edit these files is probably to change the
 look and feel or the display units of some item. Here one probably
 only needs to edit the appropriate `.rules' file. The next most
 common reason is to add a new type of derived field. For this, one
 probably needs, at a minimum, to make changes to virtualFieldTable.txt,
 one or more of the *.rules files, and browserFieldMenu.txt.
 For adding a new gridded data source, one needs to at least check
 out gridSourceTable.template. If this new gridded data source has
 data on previously unused levels, one would have to add these to
 gridPlaneTable.txt and browserPlanViewMenu.txt, and if there were
 new fields, one would have to add these to virtualFieldTable.txt,
 browserFieldMenu.txt, and the.rules files.

3) Rerun the `grids' task in the localization process. This will
 incorporate all of your changes.

4) Check all of the files you checked out back in.

5) Restart fxa to pull in all of the changes.

Author: Jim Ramer
Last update: 8 Jul 99

Sat Dirs

The following is a summary of the data that one should expect to be found
in the satellite data directories. The reader should note that this
arrangement is not a necessary result of any code in the satellite
decoder...it is driven by the relationships set up by the satellite
data keys. The source data for the satellite data keys are the
files eastSatDataInfo.template and westSatDataInfo.template in
$FXA_HOME/src/localization/nationalData. The localization scripts
write the satellite data keys into the file satDataKeys.txt in the
directory $FXA_HOME/data/localizationDataSets/$FXA_LOCAL_SITE.
Any changes made to these files need to be kept consistent with
the depict keys, product buttons, style info, and menu entries for
satellite products.

All of these directories are under $FXA_DATA. All of these directories
have a 3 letter code for the satellite channel being used. These are as
follows:

i11 - 11 micron Window IR channel.
i12 - 12 micron Low level water vapor channel.
iwv - 6.7 micron upper tropospheric water vapor channel.
i39 - 3.9 micron short wave window channel.
vis - Visible light channel.

Some of the data in these directories is in the exact same geographic
coordinates as the satellite sector we receive from nesdis; others are
remapped or clipped, and this will be noted. Also, some directories
contain hard links to a subset of the files in another directory; this
is done to present to the user a data set with either a desired time
continuity or with images that are mostly filled with data.

These directories contain raw nesdis sectors for the hemisphere:
sat/SBN/netCDF/nhSat/nhem_i11
sat/SBN/netCDF/nhSat/nhem_i12
sat/SBN/netCDF/nhSat/nhem_iwv
sat/SBN/netCDF/nhSat/nhem_vis
sat/SBN/netCDF/nhSat/nhem_i39

These directories contain links to sat/SBN/netCDF/nhSat/nhem*
sat/SBN/netCDF/nhSat/nhem_i11/clean
sat/SBN/netCDF/nhSat/nhem_i12/clean
sat/SBN/netCDF/nhSat/nhem_iwv/clean
sat/SBN/netCDF/nhSat/nhem_vis/clean
sat/SBN/netCDF/nhSat/nhem_i39/clean

These directories contain raw North American nesdis sectors (superNat):
sat/SBN/netCDF/superNat9/super_i11
sat/SBN/netCDF/superNat9/super_i12
sat/SBN/netCDF/superNat9/super_iwv
sat/SBN/netCDF/superNat9/super_vis
sat/SBN/netCDF/superNat9/super_i39

These directories contain links to sat/SBN/netCDF/superNat9/super*

sat/SBN/netCDF/superNat9/super_i11/clean
sat/SBN/netCDF/superNat9/super_i12/clean
sat/SBN/netCDF/superNat9/super_iwv/clean
sat/SBN/netCDF/superNat9/super_vis/clean
sat/SBN/netCDF/superNat9/super_i39/clean

These directories contain CONUS images, which are remapped from both the
North American, and high res east/west conus sectors.
sat/SBN/netCDF/conusC/conus_i11/remap
sat/SBN/netCDF/conusC/conus_i12/remap
sat/SBN/netCDF/conusC/conus_iwv/remap
sat/SBN/netCDF/conusC/conus_vis/remap
sat/SBN/netCDF/conusC/conus_i39/remap

These directories contain links to sat/SBN/netCDF/conusC/conus*/remap:
sat/SBN/netCDF/conusC/conus_i11
sat/SBN/netCDF/conusC/conus_i12
sat/SBN/netCDF/conusC/conus_iwv
sat/SBN/netCDF/conusC/conus_vis
sat/SBN/netCDF/conusC/conus_i39

These directories contain and high res east conus sectors. Only one version
of these are kept because they are used only for clipping/remapping.
sat/SBN/netCDF/eastCONUS/conus_i11
sat/SBN/netCDF/eastCONUS/conus_i12
sat/SBN/netCDF/eastCONUS/conus_iwv
sat/SBN/netCDF/eastCONUS/conus_vis
sat/SBN/netCDF/eastCONUS/conus_i39

These directories contain and high res west conus sectors. Only one version
of these are kept because they are used only for clipping/remapping.
sat/SBN/netCDF/westCONUS/conus_i11
sat/SBN/netCDF/westCONUS/conus_i12
sat/SBN/netCDF/westCONUS/conus_iwv
sat/SBN/netCDF/westCONUS/conus_vis
sat/SBN/netCDF/westCONUS/conus_i39

These directories contain and high res east conus data clipped to the
regional scale.
sat/SBN/netCDF/eastCONUS/conus_i11/regClip
sat/SBN/netCDF/eastCONUS/conus_i12/regClip
sat/SBN/netCDF/eastCONUS/conus_iwv/regClip
sat/SBN/netCDF/eastCONUS/conus_vis/regClip
sat/SBN/netCDF/eastCONUS/conus_i39/regClip

These directories contain and high res west conus data clipped to the
regional scale.
sat/SBN/netCDF/westCONUS/conus_i11/regClip
sat/SBN/netCDF/westCONUS/conus_i12/regClip
sat/SBN/netCDF/westCONUS/conus_iwv/regClip
sat/SBN/netCDF/westCONUS/conus_vis/regClip
sat/SBN/netCDF/westCONUS/conus_i39/regClip

Author: Jim Ramer
Last update: 6 Jun 98

Script Override
Introduction

Starting in the OB5 release, the means by which scripting can be overridden will become much
more flexible.

If one means to override an entire subordinate script, the way this works will not change. It will
remain just as has always been described in section 2 of fileChanges. As described there, one can
replace the entire functionality of a subordinate script only via a realization file. For example,
one of the subordinate scripts is called makeGridSourceTable.csh. The presence of a realization
file called makeGridSourceTable.csh will cause the functionality of that script to be totally
replaced.

Here is a list of all of the subordinate scripts that are subject to this type of override, along with
that task that runs the script. One should note that the subordinate script makeScales.csh actually
does have some functionality replaced rather than augmented by makeScales.patch.

Script Task
-------------------------------- -----------------------------------
makeGridSourceTable.csh grids
makeDataSups.csh dataSups
makeScales.csh scales,clipSups
makeClipSups.csh clipSups
assembleTables.csh tables
makeTextKeys.csh text
makeTopoFiles.csh topo
updateGridFiles.csh grids
updateRadarFiles.ksh radar
makeMapFiles.csh maps
makeWWAtables.csh wwa
makeStationFiles.csh station
makeDirectories.csh dirs
createAuxFiles.csh auxFiles

The following subordinate scripts can have their functionality replaced, but will not source a
.patch file.

Script Task
-------------------------------- -----------------------------------
genRadarDataMenus.ksh radar
genRadarDataKeys.ksh radar
genRadarDepictKeys.ksh radar
makeRadarSups.csh radar
genRadarProdButtonInfo.ksh radar
genRadarMultiLoadKeys.ksh radar
genRadarExtensionInfo.ksh radar
doMosaicProcessing.ksh radar
staUtil.csh station
wwaUtil.csh wwa
fixGridGeo.csh fixGeo

fxatextTriggerConfig.sh trigger

Patch scripts

Any previously written .patch scripts will behave exactly the same in OB5 as they had
previously. The new feature in .patch scripts is that the localization scripting can recognize lines
in .patch scripts that contain simply '#partition'. This has the effect of allowing the user to break a
.patch script into parts, each part being sourced at a different point in the execution of the
primary subordinate script. Previously, the user had no control over where in a subordinate script
this occurred. A .patch script with no #partition lines will behave exactly as before.

The low level logic that allows this to happen is implemented in the utility program fileMover
and the utility script fileGrab.csh. A .patch file with one occurence of #partition is considered to
have two partitions, first (1) and second (2). Each possible patch file has a "default partition,"
meaning that a file without partitions will be treated as if it has only that partition. For now, the
primary partition is almost always the second (2) partition, and is almost always sourced at the
end of the primary subordinate script.

Here is a table of the partitions that the localization scripting will recognize for all the currently
possible .patch scripts. The table contains the script name and the partitions that will be sourced
at the beginning, in the middle, and at the end of the primary subordinate script. The letter D
means it is the default partition. The letter R (very rare) means that this partition will result in
replacing functionality in the primary subordinate script rather than just being sourced.
Sometimes the .patch scripts will be located in the file system based on the ingest site rather than
the display localization ID; this is noted with an I after the primary subordinate script name.

Script Beginning Middle End
------------------------ --------- ------ ---
makeGridSourceTable.csh I 1 2D 3
makeDataSups.csh I 1 2D
makeScales.csh 1 2DR 3
makeClipSups.csh I 1D 2
assembleTables.csh 1 2D
makeTextKeys.csh 1 2D
makeTopoFiles.csh 1 2D
updateGridFiles.csh I 1 2D 3
updateRadarFiles.ksh I 1 2D 3
makeMapFiles.csh 1 2D
makeWWAtables.csh 1 2D
makeStationFiles.csh 1 2D
makeDirectories.csh I 1 2D
createAuxFiles.csh I 1 2D

For the scripts that have three different places to override, this is what happens between the
middle override point and the end. For makeGridSourceTable.csh, this is where the sources get
turned on and off by activeGridSources.txt and inactiveGridSources.txt. For makeScales.csh, this
is where the default movable points and baselines get created, and where the default Home point
location is established. For updateGridFiles.csh, this is where the key and style files get
generated, the families get posted to the main menu, and where all the dynamically generated

volume browser menus get created. For updateRadarFiles.ksh, this is where the radar acq params
get generated, and where the national mosaic radar data keys get attached to the main radar data
key file.

An important thing to keep in mind is that each possible override file is partitioned
independently. It is possible to supply .patch files as realization files, site specific files, or as
custom files. Before partitioning, all the scripting in these various override files would be
appended and then sourced. With partitioning, these files are still all appended together, but the
partitioning happens first. For example, suppose you supplied a site specific .patch script with no
partitions and also the same .patch script as a custom file with a single `#partition' as the first
line. This would not result in the scripting in the site specific file being treated as in partition one
and the scripting in the custom file being treated as in partition two. Being unpartitioned, the
scripting in the site specific file would be assigned to the default partition, usually partition two.
The custom file, its first line being `#partition', would have all its scripting assigned to partition
two, regardless of which partition was default or how many occurences of `#partition' were in the
site specific file.

Author: Jim Ramer
Last update: 29 Jun 04

Direct display of shape files in WFO
advanced.
WFO advanced now has the ability to display shape files directly.
Shape files can be used to produce three types of displays, plain
vectors, labeled vectors, and labeled points. There are also now
five user shape file entries on the menu, which allow the user to
display a shape file directly by just placing the shapefile with
the correctly named attribute(s) at the correct pathname.

The easiest way to explain how this works is to show the data key
entries for the predefined user shape files and discuss the meaning
of the entries. This is from the file dataInfo.manual in the directory
$FXA_HOME/data/localization/nationalData:

1311 | | | | | | |NAME |userFile1 | |user shape file map
1
1312 | | | | | | |NAME |userFile2 | |user shape file map
2
1313 | | | | | | |NAME |userFile3 | |user shape file map
3
1314 | | | | | | |LAT,LON,NAME |userFile4 | |user shape file map
4
1315 | | | | | | |LAT,LON,NAME |userFile5 | |user shape file map
5

Each data key entry consists of one line in the file, broken into
fields by vertical bars. The data key fields that are non blank refer
to, respectively, the data key, the shape file attribute(s) to use,
the file name of the shape file triplet (minus the .shp, .shx, and
.dbf extensions), and some arbitrary identification text. For
information about the meaning of other unused fields, see the header
documentation in the file dataInfo.manual.

Three of these entries are set up for vector map backgrounds and two
are set up for labeled points. In order to actually display a user
supplied shape file, one must take the following steps:

1) Make sure the attributes are correct.

 The eight column in a data key entry is always a list of attribute
 names when creating an entry for a shape file map background. If there
 are no attribute names present, then the software will assume that user
 wishes to display a plain vector map background. If one attribute name
 is present, then the assumption is that labeled vectors are being
 displayed. Three attribute names results in an attempt to display
 labeled points. In the case of labeled vectors, the single attribute name
 must refer to a text attribute and this attribute is what will be used to
 label the vectors; if this is not the case an error will be logged and the
 software will display plain vectors. If labeled points are being
 displayed, then the first and second attribute names must refer to
floating
 point attributes that contain the latitude and longitude of the points,
 and the third must refer to a text attribute that contains the text that

 will be used to label the points. In the case where one is trying to
 use the predefined user shape file display capability, a shape file
 for labeled vectors must contain a text attribute named literally `NAME';
 a shape file for labeled points must contain floating point attributes
 named literally `LAT' and `LON', and a text attribute named literally
 `NAME'.

2) Put the shape file components in the proper place.

 In order to utilize the user shape file display capability, the shape
 file components must be placed in the directory $FXA_HOME/data or
 $FXA_HOME/data/localizationDataSets/$FXA_LOCAL_SITE. To use the first
 available user slot for displaying vectors from a shape file, one would
 end up putting the files userFile1.shp, userFile1.shx, and userFile1.dbf
 in this directory. To use the first available user slot for displaying
 labeled points from a shape file, one would end up putting the files
 userFile4.shp, userFile4.shx, and userFile4.dbf in this directory.

3) Make the proper menu selection.

 Open the `Maps' data selection menu from the top level menu bar on the
 WFO advanced workstation. Find and open the submenu labeled
 `User Shape File'. In there there will be five product buttons labeled
 `Map 1' through `Map 5'. These are for loading the user shape files
 `userFile1' through `userFile5', respectively.

The predefined user shape file mechanism is not the only means whereby
one can display shape files with the WFO advanced workstation. One can
add additional shape file base map backgrounds to the workstation on
a permanent basis. This can either be done as a local customization
or a permanent addition to the national data set. In either case,
one must make the proper data key entries, depict key entries, product
button entries, and menu entries. The following table shows
the files that must be edited to make each type of entry; the first
file is the one used for a local customization, the second the one used
for a permanent addition to the national data set. One should note that
by default the environment variable FXA_CUSTOM_FILES should point to
/data/fxa/customFiles.

Data keys:
$FXA_CUSTOM_FILES/localDataKeys.txt
$FXA_HOME/data/localization/nationalData/dataInfo.manual

Depict keys:
$FXA_CUSTOM_FILES/localDepictKeys.txt
$FXA_HOME/data/localization/nationalData/depictInfo.manual

Product buttons:
$FXA_CUSTOM_FILES/localProductButtons.txt
$FXA_HOME/data/localization/nationalData/productButtonInfo.txt

Menu entries:
$FXA_CUSTOM_FILES/otherBackgroundMenus.txt
$FXA_HOME/data/localization/nationalData/backgroundMenus.txt

Shape files:

$FXA_CUSTOM_FILES/*.{shp,shx,dbf}
$FXA_HOME/data/localization/nationalData/*.{shp,shx,dbf}

For adding a shape file map background to the national data set,
making all of the proper entries in these files should then just
require a workstation restart to enable the new map background.
For a local customization, one needs to run a localization with
the -tables and -maps tasks as well as restarting the workstation.

For guidance in how to make these entries, one should consult the
header documentation in the national data set versions of these
files, and look at the entries for keys 1311 through 1315 for
examples.

Author: Jim Ramer
Last update: 7 Dec 98

Static Progressive Disclosure for Point Data
When point data is displayed, we generally add additional data points/stations as we zoom up,
with the attempt to add as much data as is practical without stations writing over the top of each
other. The act of adding data as one zooms is refered to as progressive disclosure.
When we display point data in AWIPS, some data sets have fixed stations (like METARs) and
some have locations that change with time (like ship reports). For those data that have time
varying locations, we always compute the progressive disclosure on the fly. For those with fixed
stations, we often will precompute the progressive disclosure, and we refer to this as static
progressive disclosure. There are several reasons to precopmute the progressive disclosure. First,
there is a desire to have the appearance or not of a given station as one steps through frames to be
the result of whether or not there is data for the given station, not the result of changes in
progressive disclosure. Second, if we have a stations map background, there is a desire to have
the progressive disclosure be the same in the background as in the overlaid data. Finally, static
progressive disclosure allows certain important stations to always show up at low zoom levels.
There are two types of static progressive disclosure files that are used by the D-2D at run time.
Static plot info files are used to define the progressive disclosure for a data set, and can be used
directly to plot a station map background. Location plot info files are used to plot a map
background with fixed locations, such as city locations or county names. Static plot info files
need to have a .spi extension, and location plot info files need to have a .lpi extension. Static plot
info (.spi) files are also used to drive station selection for displaying point data in the volume
browser. Files of this type can either be supplied directly or be generated by the localization task.
When .spi and .lpi files are generated, they are usually generated from files with a .goodness
extension. Goodness files are called this because the arbritrary user preferences in these files
have acquired the name "goodness values." There are two types of goodness files: station
goodness files and location goodness files. Finally, a type of file called a cities file can also be
used to generate location plot info files. See va_driver for detailed information of the format of
these file types.
The -station localization task is where all static progressive disclosure files are managed.
mainScript.csh is the script that one uses to run localizations. Most of the real work of creating
static progressive disclosure files is done by the utility program va_driver.
Here is a brief narrative of what the -station localization task does. First, .lpi files are created for
labeling zones, counties, and county warning areas. Then the warnGen tables are used to
generate a .goodness file for warning locations. Next, the contents of nationalData/CitiesInfo.txt
and any available LocalCitiesInfo.txt file supplied as an override file are used to create a
.goodness file for cities. (See the introductory section of fileChanges for a brief description of
file override.) After that, .goodness files are created for the LDAD station tables and the synoptic
data stations. Most of the rest of the override files are gathered next; any .lpi, .spi or .goodness
files that exist in the national data set or as override files are moved into the localization data set.
Each goodness file that does not have a correspondingly named .lpi or .spi file already is input to
va_driver to produce a .lpi or .spi file, depending on the format of the goodness file. The next to
last thing is to make .spi files based on the ingest station tables for certain data sets. The final
step is to populate static netCDF point data sets. (See the end of section 2.1 of
adaptivePlanViewPlotting for more information about static netCDF point data sets.)
There are several things to note about the way file override works for these data sets. The basic
CitiesInfo.txt file should never be overridden except as a realizaton file, and only rarely. One

http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/va_driver.doc.html
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/mainScript.html
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/va_driver.doc.html
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/fileChanges.html
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/adaptivePlanViewPlotting.html

should ideally override this with a LocalCitiesInfo.txt file in customFiles/. One should not
replicate the whole CitiesInfo.txt file in LocalCitiesInfo.txt and start editing. One need only
provide information for new cities or for those needing to be changed. An entry spelled exactly
the same in both city and state will override any previous entry for that city. If a city is totally
unwanted, override it with a -90.0 lat to just get it out of the way. An extra character at the end of
the state field, which is ignored except for the case of determining uniqueness, can be used in the
case where two different cities actually have the same name and state.
The most important thing to remember about file override for location and station goodness files
is this: if there is a like named .lpi or .spi file supplied (either as a national data set or override
file) the .goodness file will be ignored. By default, realization and site specific files will replace
existing .goodness, .spi, or .lpi files, and those from custom files will be appended, but this can
be overridden. The default replacement behavior can be changed by making the first line of the
override file either #append or #replace. Just as with the cities file, if there is already an existing
file of this type, one needs only to put the entries one wants to change or add in the override file,
assuming the override file is appending.
In the case where one wants to have certain important stations that appear at lower zoom levels,
there are a couple of strategies to try. First, one can just list the important stations in a like named
.primary override file. Be advised that if one puts two stations that are very close to each other in
a .primary file, one of them will still not appear until higher zoom levels. Second, one can put
floating point progressive disclosure parameters in place of the goodness values for a few
stations, and let va_driver fill in the rest. It is not recomended to try to set all the progressive
disclosure parameters manually. If one spends alot of time to tailor the stations just right for two
or three zoom states, they will invariably produce unexpected results for other zoom states.
Finally, as previously mentioned, there are several data sets for which static progressive
disclosure files are automatically made from the ingest station table. When this is done, if there is
already a static progressive disclosure file, then this step will add any stations in the ingest
station table but not already in the existing static progressive disclosure file. This is now
controlled by the contents of the file progDiscStnTables.txt, for which a default version is
created in the scripting for the -station localization task. Here are the default contents of
progDiscStnTables.txt:
metar MTR 82
maritime BUOY 84
profiler profiler 11001
raob raob 9000
modelBufr modelBufr 10001
goesBufr goesBufr 10005
poesBufr poesBufr 10006
Each line refers to a data set for which this processing will be done. Override files for this can be
supplied and by default they append. The entries on each line are the name of the ingest station
table (minus a trailing StationInfo.txt), the name of the static progressive disclosure file (minus
the trailing .spi extension) and the data key for the directory where this data set is stored. It is
also possible to create static progressive disclosure information from the data set itself. For now,
this happens only for maritime data, and this occurs because of the existence of the file
maritimeGoodnessDesign.txt, which contains instructions for creating station goodness file
entries from the raw maritime data.

Author: Jim Ramer
Last update: 10 May 04

Style Rules
Seven style rules files control Volume Browser displays as follows:
graphStyle.rules

how to display standard graphs of a parameter versus time or versus height
contourStyle.rules

how to display contour renderings of scalar fields of gridded data
gridImageStyle.rules

how to display image renderings of scalar fields of gridded data
iconStyle.rules

how to display a scalar grid as a field of icons
arrowStyle.rules

how to display vector gridded data as either conventional or bidirectional arrows
barbStyle.rules

how to display vector gridded data as wind barbs
streamlineStyle.rules

how to display vector gridded data as streamlines

These files reside in the directory localization/nationalData, which can be found in
$FXA_HOME/src in an environment with a source tree or in $FXA_HOME/data otherwise.

Style rules file contains two types of lines: rules and style info. Each rule should be immediately
followed by style info. A rule describes a subset of all of the possible gridded data items to
which to apply some style info.

Rules
A rule line always begins with an asterisk. After that, separated by commas, appear sources,
planes, and fields. To see a list of the possible source names, look at the tenth column in the file
gridSourceTable.txt. To see a list of possible field IDs, look at the first column in the file
virtualFieldTable.txt. To see a list of possible plane names, one really needs to run the program
testGridKeyServer, with a single argument of `p'. This will direct a list of planes to standard
output; the plane name is in the second column.

By default, if one never mentions any planes on a rule line, then the rule is assumed to refer to all
planes. Once any planes are mentioned, then the rule refers only to those planes. The same is true
for fields and sources. One can also use some special syntax with the greater than symbol for
identifying a range of planes. For example, the text 850MB > 700MB refers to all known planes
with MB as their vertical coordinate and pressure values ranging from 850 to 700. One might
also say 1000MB-500MB > 700MB-500MB, but here what one gets is all of the composite (two-
level) planes with MB as their vertical coordinate whose plane index ranges from that of the
1000MB-500MB plane to that of the 700MB-500MB plane. If two planes referred to in such a
manner have either dissimilar plane types (standard or composite) or dissimilar vertical
coordinate types, what you select is just a range of plane indices.

http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/styleRules.html%23graph
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/styleRules.html%23contour
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/styleRules.html%23grid
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/styleRules.html%23icon
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/styleRules.html%23arrow
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/styleRules.html%23barb
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/styleRules.html%23stream

It is perfectly valid for two different rules to point to the same gridded data item. One might, for
example, apply a rule for all instances of some field, and then make an exception for one plane or
one source. When two or more different rules point to the same gridded data item, the style info
for the last rule is what becomes associated with that item.

Style Info

graphStyle.rules

The style info for standard graphs has four to nine primary items separated by vertical bars. Here
is a description of each item, in order. The first four fields must be present, even if blank. The
rest are optional.

1. This units string replaces whatever units string is in the legend text in the depictable info
table. If blank the default is left alone.

2. The data that come from the virtual data server are multiplied by this...
3. and added to by this before being displayed. This is mostly for units conversion purposes.
4. This field can have two comma-delimited parts. The first part, if non-blank, causes a log

scale to be used. The second part, if non-blank, causes all items in the time series data to
be summed in time, which is applicable only to time series.

5. A number which affects the minimum value of the data axis for the graph. If with a
leading equals sign (=), then the minimum value must be exactly this; otherwise is must
be no greater than this. If left blank, the minimum value of the data axis is totally
floating.

6. A number which affects the maximum value of the data axis for the graph. If with a
leading equals sign (=), then the maximum value must be exactly this; otherwise is must
be no less than this. If left blank, the maximum value of the data axis is totally floating.

7. Sometimes a particular line graph may have little or no range of values. If this is the case,
a minimum range of values is applied to the data axis, and this field controls that
mimimum range. If greater than zero, this range is an arithmetic range; if less than -1, it
specifies a minimum ratio. For a logarithmic scale, this defaults to -10, otherise to 10.
This is ignored if inconsistent with entries made in the previous two fields (minimum and
maximum data axis values).

8. When a logarithmic scale is made for data that goes to or through zero, there is a break
between the log part of the graph and the linear part immediately around zero. This entry,
when greater than zero, controls this value, which otherwise the code will determine
based on the characteristics of the data being displayed. For a linear scale, this is a value
which the data axis need not contain, but if extended indefinitely a major division will
fall exactly there. In either case, this defaults to zero if not defined. This is ignored if
inconsistent with entries for minimum and maximum data axis values.

9. A list of up to 3 comma-delimited values, which apply only to time series, not parameter
vs height graphs. Whenever one of these values appears within the range of values on the
data axis, a dotted horizontal line will appear at that value. The existence of these values
has no direct effect on how the data axis is chosen, so if one needs to be sure they always
appear on the graph, then the minimum and maximum data axis values need to be set
appropriately.

contourStyle.rules

The style info for contour data has eleven primary items separated by vertical bars. Here is a
description of each item, in order.

1. This units string replaces whatever units string is in the legend text in the depictable info
table. If blank the default is left alone.

2. The data that come from the virtual data server are multiplied by this...
3. and added to by this before being contoured. This is mostly for units conversion

purposes.
4. This is the approximate number of labels that will be placed on a contour that is as long

as the display is wide.
5. This is the format control string for labels on the contours. Format control strings look a

lot like Fortran format descriptors, owing to the fact that the contouring routine is in
Fortran. See the description at the end of this document for more about format control
strings. This will default to something reasonable if left blank.

6. Format control string for labeling maxes and mins. Just an X results in using the same
thing as for labels. Blank means no labels for maxes and mins.

7. What to use to mark mins and maxes. First character is mins, second character is maxes.
Use a dot for a place holder to indicate no mark for either mins or maxes. An @ will
suppress either maxes or mins from being labeled even if there is a non-blank entry in
item 6.

8. This eight-digit hexadecimal number controls the line style. The last four digits
represents the bit pattern of the line style. A leading 8 means use solid for positive
contours and the bit pattern for negative contours.

9. This item contains up to six sub-items separated by commas. It is allowable to leave this
blank, or provide fewer than six items; the missing items (or items with all white space)
will revert to their default values. Here is a description of each sub-item, in order.

i. If non-blank, this allows one to supply a list of positive contour values, and all of
the corresponding negative values will be contoured as well.

ii. The display width in km to which the default contouring interval applies, defaults
to 5000km.

iii. Exponent that determines the response to zooming of the contour interval. A
value of 1 means a two to one zoom results in halving the contour interval; a
value of 0.5 means a four to one zoom is required to halve the contour interval.

iv. Smoothing distance. If greater than zero, a smoother will be applied to take out
perturbations smaller than this distance in km. If less than zero, the smoother will
operate on perturbations smaller than that many grid points. 0 means no
smoothing.

v. If non-blank, this makes this display sampleable. A digit specifies the precision of
the sampling: number of digits past the decimal for typical magnitude numbers,
literal precision for large magnitude numbers.

vi. By default, a sample string is identified with the virtual field table ID. Here one
can provide an alternate ID for the sample string. A single period means format
the sample string with no ID. This sub-field is not meaningful if the previous sub-
field is blank.

http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/styleRules.html%23format

10. Number of contour values. If negative, then this is the approximate number of contours
desired, and the user is expected to supply a minimum contour increment in the next
item. If 0, the user is expected to supply a contour increment in the next item. If 1000,
then the user is expected to supply three values in the next item: an increment and a range
of values to contour. If positive, then the user is expected to supply a list of that many
contour values to use. If a negative value is used here, a single contour increment will be
used for the entire loop of some particular product.

11. Contour increment or list of values to contour, space-delimited.

It should be noted that the contour increment (11) and the labeling frequency (4) are what should
nominally appear at one to one zoom on the CONUS scale with density and magnification both
set to one. Different display scales, zooms, densities and/or magnifications will cause these to be
adjusted.

gridImageStyle.rules

The style info for image renderings of gridded data has ten primary items separated by vertical
bars. Here is a description of each item, in order.

1. This units string replaces whatever units string is in the legend text in the depictable info
table. If blank the default is left alone.

2. The data that come from the virtual data server are multiplied by this...
3. and added to by this get the display units. Color bar is labeled in these units.
4. Value to which to map the minimum pixel count. Two values separated by a greater than

sign will cause this to vary with the vertical coordinate value. Presence of the item `log'
in the rule (delimited by commas like everything else) will cause this to vary with the
natural log of the vertical coordinate value.

5. Value to which to map the maximum pixel count. Two values separated by a greater than
sign will cause this to vary with the vertical coordinate value. Presence of the item `log'
in the rule (delimited by commas like everything else) will cause this to vary with the
natural log of the vertical coordinate value.

6. This item contains up to two sub-items separated by commas. If the first is non-blank,
mapping from data to counts is logarithmic. If this feature is used, then the values to
which to map the minimum and maximum pixel counts must both be positive and the
minimum pixel count value must be smaller than the maximum pixel count value. The
second item is a smoothing distance. If greater than zero, a smoother will be applied to
take out perturbations smaller than this distance in km. If less than zero, the smoother
will operate on perturbations smaller than that many grid points. 0 (the default) means no
smoothing.

7. This item contains up to four sub-items separated by commas. It is allowable to leave this
blank, or provide fewer than four items; the missing items (or items with all white space)
will revert to their default values. Here is a description of each sub-item, in order.

i. If non-blank, this allows one to supply a list of positive label values for the color
bar, and all of the corresponding negative values will be labeled as well. This
mode also allows one to use a log scale for negative values.

ii. If non-blank, values that map to a color index less than 1 will be black; by default,
they take on a color index of 1.

iii. If non-blank, values that map to a color index greater than 254 will be black; by
default, they take on a color index of 254.

iv. If non-blank, data will be displayed as a pixelated (non-interpolated) image.
8. Default color table index. $FXA_HOME/data/colorMaps.mark is a commented CDL file

which can be used to tell which color table indices go with which color table.
9. Labeling control flag:

<0 The range of data values in the grid is determined and then the data are scaled to
cover that range minus 20 percent. This is to allow for the fact that once a scaling is
determined for one frame in a loop for a particular product, that scaling will be used
for each frame.

=0 The next item is the labeling increment.
>0 The next item is a list of values to label on the color bar.
>20 This is an ImageStyle key that defines the color bar labeling, in image counts. This is

usually used where the data being displayed are represented by an enumeration, like
the hydrometeor class. Item 10 needs to be empty in this case.

10. Labeling increment or list of values to label on the color bar, space-delimited.

iconStyle.rules

The style info for rendering of gridded data as a field of icons has six primary items separated by
vertical bars. Here is a description of each item, in order.

1. This units string replaces whatever units string is in the legend text in the depictable info
table. If blank the default is left alone.

2. The data that come from the virtual data server are multiplied by this...
3. and added to by this before being rendered. This is mostly for units conversion purposes.
4. Number of different characters to use as icons. An optional second comma-delimited

parameter is the character set to use. 0 is regular ASCII, 1 is large ASCII, 2 is weather
symbols, 3 is special symbols, and 4 is large special symbols.

5. List of values, space-delimited and in ascending order, for which icons will be plotted.
6. List of characters, as a contiguous string, that will be used as icons for the values listed in

item 5. Alternatively, may be a list of spaced-delimited ASCII character codes to use.

arrowStyle.rules

The style info for rendering of vector gridded data as a field of arrows has three primary items
separated by vertical bars. There are also two optional additional fields that may be supplied.
Here is a description of each item, in order.

1. This units string replaces whatever units string is in the legend text in the depictable info
table. If blank the default is left alone.

http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/characterSets.html

2. The data that come from the virtual data server are multiplied by this to get the display
units. If this is a negative number then logarithmic scaling will be used for the arrow
lengths.

3. This is the magnitude value, in display units, that is scaled to the default length, which is
25 pixels times the character magnification. Two values separated by a greater than sign
will cause this to vary with the vertical coordinate value. Presence of the item `log' in the
rule (delimited by commas like everything else) will cause this to vary with the natural
log of the vertical coordinate value.

4. This is the magnitude value, in display units, that is the smallest value for which to show
an arrow. Defaults to zero.

5. This is the magnitude value, in display units, that is the largest value for which to show
an arrow. Defaults to an arbitrarily large number.

barbStyle.rules

The style info for rendering of vector gridded data as a field of wind barbs has four or five
primary items separated by vertical bars. Here is a description of each item, in order.

1. This units string replaces whatever units string is in the legend text in the depictable info
table. If blank the default is left alone.

2. The data that come from the virtual data server are multiplied by this to get the display
units for placing ticks and flags on the barbs.

3. This is the magnitude value, in display units, that is the smallest value for which to show
a barb. Defaults to zero.

4. This is the magnitude value, in display units, that is the largest value for which to show a
barb. Defaults to an arbitrarily large number.

5. If non-blank, this makes this display sampleable. A digit specifies the precision of the
magnitude sampling: number of digits past the decimal for typical magnitude numbers,
literal precision for large magnitude numbers. By default, a sample string is identified
with the virtual field table ID. If an additional comma delimited sub-field is provided
here, that is an alternate ID for the sample string. A single period means format the
sample string with no ID.

streamlineStyle.rules

The style info for rendering of vector gridded data as streamlines has four primary items
separated by vertical bars. Here is a description of each item, in order.

1. If greater than one, no two streamlines will approach any closer than this number of
cells.. If less than one, a streamline will terminate if it runs through 1/minspc consecutive
already-occupied cells.

2. No streamline will be started any closer than this number of cells to an existing
streamline.

3. This is the magnitude value, in virtual data units, that is the smallest value for which to
show streamlines. Defaults to zero.

4. This is the magnitude value, in virtual data units, that is the largest value for which to
show streamlines. Defaults to an arbitrarily large number.

Processing Style Rules
After making changes in a rules file, one needs to run the `-grids' task in the localization to
implement the changes. In the normal diagnostic feedback from the `-grids' task is a message
`running processStyleInfo'. Any syntactic problems with changes to the rules files will show up
as error messages here.

If there are syntactic problems with a rules file it may be useful to run the command

textBufferTest rulesFile > tempFile
This will yield a file where continuations are resolved and comments have been eliminated; thus
it can be directly compared to the line numbers that are referred to in diagnostics from
processStyleInfo. The program textBufferTest builds in D-2D/src/util and should be in
$FXA_HOME/bin at a remote installation.

Format Control Strings
An example of a label format control string is "2:f5.2;". The f5.2 is the Fortran format to be used
for generating labels. The 2 means that two characters are removed from the front of the string
generated by the format before leading spaces are stripped. The ; on the end means that trailing
zeroes after the decimal point are NOT removed, which of course is meaningful only for a
floating format. If no : or ; is present, the string is assumed to contain only a Fortran format. The
routine will provide defaults for any of these specifications that are omitted. Currently, internal
work arrays limit labels to 6 characters in length.

Some examples:

Value FCS Result
1004.2 "i4" "1004"
1004.2 "2:i4" "04"
3.50 "f6.2" "3.5"
3.50 "f6.2;" "3.50"
3.50 "1:f6.2;" "3.50"
3.50 "1:f4.2" ".5"

Author: Jim Ramer
Last update: 16 Oct 07

Text Templates
In WFO Advanced, the warnGen application is used to generate the text of warnings, watches, or
advisories (WWAs) whose issuance requires direct geographic interaction with a weather
display. This includes virtually all of the short term severe weather warnings. Warngen uses
template files to control exactly how the text of each WWA is created. Template files allow one
to change the characteristics of a particular WWA, or add a new one, without having to change
the code.

There are four main concepts to understand within template files: paragraphs, substitutions,
variables, and bullets.

Paragraphs

The text of a template is very free format. In general, consecutive spaces are changed to one
space before processing, spaces preceding a period are removed, and all consecutive lines of text
without an intervening blank line are considered to be in a paragraph. Also, individual lines and
arguments in substitutions have their leading and trailing spaces stripped before processing. A
place holder character (~) and a paragraph break character (&) are available to override this
default behavior. Later in this document is a table of all special characters.

Substitutions

A substitution is a signal to the software to build some text based on the geographic, temporal, or
other characteristics of the WWA in question. The general format of a substitution is as follows:

 < substitution_type | qualifier_type = qualifier_value | ... >

The substitution type, qualifier type, and qualifier value are in general just text. However, certain
qualifier types for certain substitution types do result in the qualifier value being interpreted as a
number. Not all qualifier types require that a qualifier value be present. Normally, leading and
trailing spaces are stripped off of the qualifier value. However, if a `==' (double equals sign) is
used between a qualifier type and value, then a leading and trailing space are added to the
qualifier value.

If a line or series of lines contains nothing but a substitution that results in no text being
generated, it is as if those lines never appeared in the template. Thus, a null substitution will not
create a paragraph break in this case. If it is desired that text from two substitutions be directly
adjacent with no intervening spaces, then the trailing delimiter from the first needs to be directly
adjacent to and on the same line as the leading delimiter from the next. A line continuation
(backslash at the end of a line, see special characters table) can accomplish this as well.

To date, by convention, substitution types are all caps and qualifier types are all lower case with
underscores. The text that results from a substitution can be completely within a paragraph, be a
single paragraph in itself, or span several paragraphs. Place holder and/or paragraph break

http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23Paragraphs
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23Substitutions
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23Variables
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23Bullets

characters in the text from a substitution are fully interpreted in organizing paragraphs. Later in
this document is a table of currently available substitutions. Two very important types of
substitutions rely on geographic entity lookup tables (GELTs) to produce their text. Some
additional information about GELTs is available in newGELTmaker. Additionally, the reader is
directed to the entry for the VAR substitution. The purpose of this substitution is to assign values
to template variables (see next section); the functionality of this substitution type has recently
been greatly enhanced.

Variables

While it is not possible to nest substitutions, it is possible to direct the text of a substitution into a
variable, and then that variable can be referred to within the value of a `lead' or `trail' qualifier in
another substitution. The text of any substitution can be directed to a variable by placing a
qualifier of the type `var' in the substitution. The value of the `var' qualifier is the name of the
variable to which the text of the substitution is assigned. When directing the text of a substitution
to a variable, that text will not appear in the output unless that variable is later referenced.
Variables can also be referenced in any plain text outside of substitutions. Variable names should
be all alphabetic or numeric characters, with no escape sequences or spaces (underscores are
OK). A variable name is referred to with a leading `$$' (double dollar sign) and a trailing `!'
(exclamation point). There are several predefined template variables that are set up by either the
localization or the warnGen application that are helpful in composing templates. When
generating the final output text, all interactions between variables and any substitution not in an
inactive bullet (see next section) are resolved in order to determine the value of the variable each
time it is referred to. During the initial parse that determines the state of the bullets in the GUI,
whether substitutions are within bullets is ignored. Thus, where template variables are used to
determine the initial state of the warnGen GUI, it is recommended to rely on predefined template
variables or variables whose value is not determined within bullets. The new enhanced
functionality of the VAR substitution now allows the template writer much more control over the
value of variables outside bullets.

Bullets

A bullet is a piece of text that can appear or not appear in the output text based on a software
switch under control of the user. The basic format of a bullet is as follows:

 {<tag>=trigger= ^[txt.op.txt] title text | bullet text }

In this idealized format, all the non-alphabetic characters are literal. Everything in a bullet is
optional, except for the leading and trailing curly, and the vertical bar separating the title text
from the bullet text.

The essential characteristics of a bullet are what text it generates as output (bullet text), whether
that text will actually be included in the final output text (activation state), what text will be
presented in the warnGen GUI relating to the bullet (title text), whether the bullet will be
presented in the GUI (show state), and whether the user will be able to change the initial

http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/newGELTmaker.doc.html
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23VARsub
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23Variables
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23Substitutions
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23PTV
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23Bullets
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23VARsub

activation state from the GUI (lock state). By default, bullets are initially inactive, do show up on
the GUI, and are not locked.

The bullet text is what actually appears in the output text should the final state of the bullet be
active. The bullet text can contain any plain text and any complete substitutions, but cannot
contain other bullets. Just as with a substitution, the text from a bullet can be completely within a
paragraph, be a single paragraph in itself, or span several paragraphs. Substitutions can appear
within the text of a bullet, but bullets cannot be imbedded within substitutions. The bullet text
must be between the first vertical bar and the trailing curly. If one puts variable-defining
substitutions into the text of a bullet, then the behavior of those substitutions depends on whether
one is initially parsing the template or generating text. In the initial parse, these substitutions will
assign values to their variables as if they were not inside a bullet. At text generation time,
whether that substitution is used to assign a value to the variable is controlled by whether that
bullet is activated.

The title text can appear anywhere before the initial vertical bar, and after any optional tag and/or
trigger designations. Variables that appear in this text will be translated, but only at GUI
initializaton time. The caret symbol (^) can appear in this same area, and its presence means the
initial activation state of the bullet is to be included in the output text; otherwise, the initial
activation state will be inactive. For those bullets that appear on the GUI, the user can toggle
their activation state unless their lock state is to be locked.

The logical operator designator ([txt.op.txt]) can also appear in the area after the tag and/or
trigger designations and before the initial vertical bar. These logical operators make it possible
for bullets to be hidden from the user interface and to have their states controlled by the contents
of template variables, which includes predefined template variables and environment variables.
A logical operator designator should have one of the following formats:

[show xxx.oo.yyy], [on xxx.oo.yyy], [toggle xxx.oo.yyy], [lock xxx.oo.yyy], or
[xxx.oo.yyy].

Any text not matching one of these formats will be interpreted as the plain text part of the title.
The xxx and yyy are any arbitrary text that may or may not contain template variables (normally
at least one will contain a variable). The `oo' is one of the following logical operators: eq, ne, gt,
lt, ge, le, in (left string is contained in right string), or ni (left string is not contained in right
string). The operators gt, lt, ge, and le are purely string comparisons. Only one logical operator
designator is allowed in a bullet title. The one with the lead keyword `show' means that if the test
is true, then present that bullet in the user interface. The one with the lead keyword `on' means if
the test is true, then that bullet should be on (active) by default. The `toggle' test will present that
bullet in the user interface and toggle the default activation state as determined by the leading
caret sign (^) if true. The `lock' test will result in the activation state of the bullet being
unchangable in the GUI if the test is true. The remaining type of test with no keyword will result
in the bullet being withheld from the GUI (show state is false), and whether the bullet is active
(has its text included in the final output) will depend on the truth of the test. A new feature
recently implemented is that for any logical operator other than in and ni one can have the the

arguments be interpreted numerically if the operator is upper case; that is EQ, NE, GT, LT, GE,
or LE.

The trigger designator allows one to specify that the initial activation state of the bullet can be
controlled by the contents of a previous text product. The leading equals sign (=) of the trigger
designator must be immediately after the leading curly ({) of the bullet if there is no tag
designator, or immediately after the closing angle bracket (>) of the tag designator if there is one.
If the trigger designator is only a single equals sign, then this will invoke a default algorithm for
choosing the exact text that triggers the initial state of the bullet to be active. Otherwise, the text
that falls between the two equals signs is the trigger text. The trigger text can be divided into
multiple strings, each of which must be present in the text to activate the bullet, using a comma
(,) as a delimiter. Finally, one can place a leading minus sign (-) on a trigger string, which means
that this text must not be present to activate the bullet. For bullets that show up on the user
interface, this controls only the initial activation state of the bullet; the user can change it if the
bullet is not locked.

Associating tags with bullets is a recently implemented feature. The tag is used to give the bullet
an identifier, and this identifier can be used in conjunction with predefined patterns of template
variables to control various characteristics of the bullet. This is especially useful if one has
already entered a logical operator designator for the bullet and there are still other characteristics
that one wants to independently control. Also, because it is possible to give the same tag to
several bullets, one can use this feature to control the characteristics of several different bullets
all together. The leading < of the tag designator must be immediately after the leading curly of
the bullet, and there must be no non-alphabetic characters within the tag designator. Suppose that
the text for the tag designator was <mytag>. Then the value of the template variable named
mytag__on could be used to determine the initial activation state of that bullet, assuming it was
not an empty string. If the parse time translation of mytag__on were FALSE or OFF, then the
bullet would be initialized as inactive; otherwise, any translation other than an empty string
would initialize it as active. Other available tag suffixes are __show, __lock, and __trigger. The
reader should note that these tag suffixes have two underscores in them, and that a parse time
translation for a tag variable of an empty string will never have any effect. In this example, if the
value of mytag__trigger were NOTRIGGER, controlling the activation state by previous text
would be disabled; otherwise, the parse time translation of mytag__trigger would become the
trigger text. The value for mytag__show would be a simple binary control for that state – parse
time translations of FALSE or HIDE for the show state variable would remove the bullet from
the GUI; otherwise, it will be present. For the variable mytag__lock, parse time translations of
FALSE, FREE, or UNLOCK would let the user control its activation state from the GUI; any
other value except RADIO would lock the initial activation state. The value RADIO would cause
all bullets that have the same tag to have their activation states coordinated with radio button
functionality. Where a logical test and a tag variable both affect the same characteristic, the tag
variable takes precedence unless the logical test was to lock the bullet and the tag variable was to
give it radio button functionality.

Title Lines

For products that are not on the very top level warnGen menu (in the Other: selector), the title
that appears in that menu is controlled by the first line in the template file, which has the
following format:

 // "sort text | title text"

Any text before the optional vertical bar does not actually appear on the warnGen menu, but just
controls the sorting of the products in the menu. If a template has no title, then no entry
corresponding to it will appear in the Other: product selector.

Special characters for template files

\
Backslash at the end of a line represents a line continuation to the module that actually
reads the text file into memory. Line continuations are meaningless in the context of the
template and can cause odd paragraphing behavior, so this use is not recommended. In all
other cases, a backslash escapes the immediately following character. This means that the
following character will appear in the text without the backslash, but will not be
interpreted as a special character.

//
Double slash is a comment marker in the module that actually reads the text file into
memory. From there to the end of the line is a comment. Comments are OK, but they
should be used with care inside a substitution or bullet.

$$
Double dollar sign is the signal that what follows is a variable name, and that it should be
replaced with the value of that variable in the output text. The variable name is up to the
next escape or exclamation point.

!
Variable name terminator. In the case where a `!' is used to terminate a variable name, the
exclamation point does not appear in the output text.

When appearing at the beginning of a line, the pound sign can be part of a C/C++ style
include statement, which is interpreted by the module that actually reads the text file into
memory.

<>
Substitution delimiters. Text in angle brackets does not appear in the output directly.
Substitution text is a description of some text which can be built based on the geographic,
temporal, or other characteristics of the warning, watch, or advisory in question. Also,
immediately after the leading curly for a bullet, these serve as bullet tag delimiters.

{}
Bullet delimiters. Text in curly braces can appear or not appear in the output text based
on a software switch under control of the user, or based on logical operators embedded in
the bullet title.

|
Field separator. Separates title from the text in a bullet, individual qualifiers from each
other in a substitution.

=
Separates the type of a qualifier from its value. Also, when immediately following the
lead curly or optional tag designator in a bullet, allows the state of the bullet to be
controlled by the text of a previous product.

^
Marks a bullet as being included by default.

,
Comma delimits individual trigger strings when the lead curly or optional tag designator
of a bullet is immediately followed by an equals sign, and then another equals sign to
designate trigger text.

~
Indent/place holder. When internal to a paragraph, will cause a space to be placed where
otherwise the automatic paragraph formatting might cause a space to be removed. At the
beginning of a paragraph, causes all text in that paragraph to be indented one space for
each ~ that appears. An escaped space will behave just like a place holder, but not like an
indent marker.

%
Reverse indent marker. When at the beginning of a paragraph causes all text in that
paragraph except for the first line to be indented one space for each % that appears.
Reverse indent markers can appear immediately after standard indent markers (~
characters).

&
Paragraph break. Causes a new paragraph to start without an intervening blank line. Two
consecutive paragraph breaks will force a blank line to appear.

[]
Used as translation delimiters within translation control strings, and as delimiters for
logical expressions in bullet titles.

.
Delimits logical operators within logical expressions that may appear in bullet titles.

`
The backquote is an invisible character, which will result in no output text but will still be
treated as a non-null piece of text for the purposes of formatting the output from a GELT.

Available substitutions

Each type is followed by a sub table describing the applicable qualifiers. Qualifiers require no
value unless qualifier values are mentioned. We break these into three broad categories: those
that have no specific meaning in the template code itself but have meaning because of the way
WarnGen is implemented, those that are meaningful in the template code in the absence of
WarnGen, and those that are obsolete.

Substitutions dependent on the WarnGen implementation

TWO_TIMES

http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23TCS

This substitution generates no text. When present, the `Change...' dialog in the warnGen
interface becomes active. The begining and ending times in this dialog are accessible in
the template using the START and EXPIRE substitutions.

DURATIONS
This is a special substitution that generates no text. Each qualifier is a possible duration
for the WWA, in number of minutes or in hh:mm format. The qualifier with the value
`default' is the default duration. (This substitution type inverts the usual syntax for
qualifier types and values.)

BEGIN_MOTIONLESS
This substitution generates no text. The presence of this substitution will tell warnGen to
allow feature tracking, but to initialize it with no motion. The user will still need to drag
the point to the desired area, but until one moves the tracking icon on a different frame,
the motion will remain exactly zero. This substitution is meaningless if a MOVEMENT
substitution is not present.

CORRECT
This substitution generates no text, and is meaningful only in original issuance (not
followup) templates. When present, warnGen will attempt to decode earlier versions of
the text product being issued here for the purpose of issuing corrections.

REISSUE
This substitution generates no text, and is meaningful only in original issuance (not
followup) templates. When present, warnGen will attempt to decode earlier versions of
the text product being issued here for the purpose of issuing additional products if the
weather event continues beyond the original expiration. This also activates the ability to
do corrections.

COMBINED
This substitution generates no text. When present, it is a signal to warnGen that this
template is meant to produce text that refers to two separate weather phenomena, and can
be used only to correct or reissue products that also refer to two separate weather
phenomena.

XXXMATCH
This substitution generates no text. Rarely, there will be a situation where multiple text
products that refer to the same VTEC event are stored in the text database with different
AFOS XXXs. When this occurs, it is usually the result of the site having recently
undergone a transition in either its WMO ID or the primary XXX it uses for issuing
products. When present, this substitution tells warnGen to allow this template only to
correct and/or follow up products with the same XXX as it will generate.

SEGMENTED
This substitution generates no text. When present, warnGen will assume the text product
being generated will be of segmented format, meaning the UGC and VTEC occur after
the MND header. Currently, warnGen can generate products of this type only with a
single segment, except for the SLS, which has predefined geographic segmentation.

ETN_STATIC
This substitution generates no text. Normally warnGen will attempt to update the event
tracking number in the VTEC when products are issued that are not corrections or
followups. When this substitution is present, this updating will not occur – whatever ETN
the template generates will be used.

DEPICT_KEYS
This is a special substitution that generates no text. Each qualifier is a map background
key that should be loaded in the warnGen program when this template is being used.
Multiple occurences of this substitution cause all the unique mentioned keys to
accumulate as map background keys, unless a key has a qualifier of `remove', in which
case the key will removed as a map background key.

AUX_INFO
This is a special substitution that generates no text. Each qualifier is a key, and each value
is some text that can be passed back to the client based on that key. This substitution
encompasses a great deal of functionality; see the complete treatment of AUX_INFO
below. At a minimum, to function correctly in warnGen, the issue_prod key must have a
value corresponding to the CCCNNNXXX of the product being created. One or more
space-delimited CCCNNNXXXs occuring with the follow_prods key specifies that this
template will be used to issue followup products for those text product types.

TextTemplate essential substitutions

The following six types are time generating substitutions. All have the same list of possible
qualifiers.

ISSUE
Causes text to be generated describing the issue time of the text product being generated.

START
Causes text to be generated describing the start time of the text product being generated.

EXPIRE
Causes text to be generated describing the expiration time of the text product being
generated.

EVENT
Causes text to be generated describing the time of occurrence of the weather event for
which the text product is being generated.

PURGE
Causes text to be generated describing the purge time of the text product being generated.

NOW
Causes text to be generated describing the current time.

— Qualifiers for time generating substitutions. —

clock
Output in clock format, e.g. 905 PM MDT. Default. Will add a day of week if code
detects that day may be ambiguous.
header
Output in product header format, e.g. 255 PM MDT WED JUL 12 1995.
ymdthmz
Output in full VTEC format, yymoddThhmmZ, where yy is year, mo is month, dd is day,
hh is hour, and mm is minute.
dthmz

http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23AIF

Output in abbreviated VTEC format, ddThhmmZ, where dd is day, hh is hour, and mm is
minute.
ddhhmm
Output in like format, where dd is day, hh is hour, and mm is minute.
plain
Output including a plain language description of the time of day, e.g. 200 PM MDT
WEDNESDAY AFTERNOON.
abstime
Output a decimal integer representation of a time that can be used with the relational
comparisons that appear in bullet title lines. If there is an argument, then it is assumed to
be a decimal UNIX time to use as the time value, in which case this controls the value of
the time to output rather than the format.
local
Output in local time. Default.
gmt
Output in Greenwich Mean Time (UTC).
interval
Value is number of minutes to which to round time. By default times are not rounded.
round
Same as interval, but causes the resulting time to be used to alter the internally held value
for the time being output.
delta
Value is number of minutes by which to change the time specified by the substitution
type. Default is zero. A floating point number between -2 and 2 means units are fraction
of the duration of the watch or warning.
update
Whatever time is computed for this as a result of interval, round, or delta, force that time
into the type indicated by the value.
last_table
Output this time text only if the last area table used produced some output.
no_text
Will not generate any text.
value
If the substitution successfully produces text and this qualifier is present, the text
produced will be replaced with this text.
lead
Value is some arbitrary text that will precede the time description.
trail
Value is some arbitrary text that will follow the time description.
var
Value is the name of a variable that has assigned to it the text produced here.

TIME_ZONE
This substitution generates no text; its purpose is to control how and whether time zone
information is put into formatted time strings.
no
If present, do not output time zone information.

yes
If present, do output time zone information. Default.
change
If present, output time zone information when the time zone changes. Will always output
a time zone the first time after this is invoked.
force
Output time zone information using a specific UNIX time zone environment variable, the
text of which is in the value.

VAR
This substitution is made available for the purpose of allowing the user to direct text into
a variable. This substitution has recently had its functionality enhanced to include the
ability to perform logical tests to determine the resulting value of the variable.
test
Contains a logical test formatted just as in the title line for a bullet, but without the []
delimiters. All consecutive test qualifiers immediately before a value qualifier must be
logically true before that value qualifier is used.
value
The text that becomes the translation assigned to the variable. If there are multiple value
qualifiers, then the first one that has all its immediately preceding test qualifiers true will
be used. In the absence of test qualifiers, the first one is used.
lead
Text prepended to the translation assigned to the variable.
trail
Text appended to the translation assigned to the variable.
var
Value is the name of a variable that has assigned to it the translation produced here. If
none of the value qualifiers has all its preceding test qualifiers logically true, then no text
will be generated and no value will be assigned to the variable. In the absence of any test
and value qualifiers, the text assigned to the variable will be a catenation of the lead and
trail qualifier values, which gives backward compatibility to previous implementations of
the VAR substitution.

DISTANCE_UNITS
This substitution generates no text; its purpose is to control the units with which distances
are reported.
units
Units string to attach to distances, defaults to `MILES'.
multiplier
Number by which to multiply raw distance values to get the desired unit. Raw distances
are in km, so default multiplier is 0.6211 (1/1.61).

MOVEMENT
This substitution generates text that describes the movement of the weather event for
which the WWA is being generated. If the movement is marked as undefined, no text will
be generated. The presence of a MOVEMENT substitution is what triggers the appeance
on the screen of the tracking object.
units
Units string to attach to speed, defaults to `MPH'.

multiplier
Number by which to multiply raw speed from tracking calculation to get desired unit.
Raw speed is in km/s, so default multiplier is 2236 (3600/1.61).
interval
Value is number of speed units to which speed is rounded. By default, speeds are not
rounded except to an integer.
stationary
If this is text, then it is the text used to describe a stationary weather event. If a number,
then it is the speed in output units below which a weather event is considered stationary.
Defaults to `STATIONARY' and 2.5.
move_lead
Value is some arbitrary text that will precede the speed and direction description for a
weather event that is not stationary. Defaults to `MOVING~'.
move_trail
Value is some arbitrary text that will follow the speed and direction description for a
weather event that is not stationary. Defaults to an empty string.
value
If the substitution successfully produces text and this qualifier is present, the text
produced will be replaced with this text.
lead
Value is some arbitrary text that will precede the entire movement description.
trail
Value is some arbitrary text that will follow the entire movement description.
var
Value is the name of a variable that has assigned to it the text produced here.

POLYGON
Puts encoded latitude and longitude coordinates into the product that can be used for
plotting warnings.

STORM
Puts encoded storm motion (degrees and speed in knots) and latitude and longitude
coordinates of the storm location at issue time into the product.

COORDS
Just like putting both the POLYGON and STORM substitutions into the product.

COLUMNS
This is a special substitution that generates no text. It controls column layouts.
lead
Text that occurs before the first column. Defaults to `~~' (two place holders).
separator
Text that occurs between columns. Defaults to `~' (one place holder).
trail
Text that occurs after the last column. Defaults to an empty string.

AREA
This substitution causes text to be generated describing the area of the WWA. This
substitution makes use of a GELT.
file

Value is the name of a GELT file, minus the file suffix. One can use UNIX environment
variables within the file name. There can be several `file' qualifiers in one `AREA'
substitution. With one exception, all qualifiers up to the next `file' qualifier modify that
`file' qualifier. The default behavior is to process each `file' qualifier in order until one is
found that actually generates some text, then return that text for the substitution. When
two consecutive file qualifiers refer to the same file, the values of other qualifiers will be
preserved. They will often revert to defaults when a new file is introduced. If this is not
true, then this will be noted and that qualifier will be referred to as persistent.
accumulate
If this qualifier is present, then all file qualifiers will be processed and the list of items
used will be the sum of the items produced from all of the tables. This qualifier is
persistent.
area
This qualifier defines the area of interest for which this GELT file will try to provide a
description. If the value is `WWA' then the base polygon of the WWA is used to define
the area of interest. If the value is some other GELT file, then whatever area is currently
held within that GELT is used as the area of interest. This is useful for imposing
consistency between different GELTs that might otherwise react differently to filtering
because they have different types of geographic entities. If this qualifier is not present,
whatever area is currently held within that GELT is used, unchanged. The first time a
GELT file is referred to within a template, this qualifier needs to be present. This
qualifier is persistent even to file changes.
format
The purpose of this qualifier is to control how lists of individual items from a GELT are
put together. The value can be `list' (default), `ugc', `count', `none', `simple',
`xxx_columns', or `blank'. `list' will cause each item returned to be put in a list separated
by ellipses. `ugc' will cause the items to be formatted as if they were a list of UGC codes.
`xxx_columns' will cause the items to be arranged in columns, where the actual text of
the value is `one_column', `two_columns' up through `seven_columns'. `count' just
returns an ASCII string representing the number of items in the list. `simple' means just
catenate the text together. `none' means no text is generated for this file qualifier. `blank'
means no text is generated for the list, but lead and trail qualifiers will still be used. This
qualifier is persistent.
multiple
If the value is `yes', then the substitution will produce text only if more than one point
describes the weather event. If the value is `no', then the substitution will produce text
only if a single point describes the weather event. Any other value invokes the default
behavior, which is to allow any number of points in the weather event. If the weather
event does not exist, then this qualifier has no effect. This qualifier is persistent.
min_count
Minimum number of unique items that must result from the GELT query after translation
in order to allow the current qualifier to generate text. Defaults to one. When in
accumulate mode and the value is negative, accumulation will stop as soon as that many
(absolute value) are present. This qualifier is persistent.
max_count

If positive, and more than this many items are returned from the GELT query, no text will
result. If negative, will truncate the list to that many (absolute value). When in
accumulate mode and the value is positive, will dispose of only the text from the specific
`file' qualifier that caused the count to exceed the threshold, not all text. Defaults to a
very large number. This qualifier is persistent.
output_field
Each geographic entity in a GELT has some descriptive text associated with it, which is
broken into one or more fields delimited by vertical bars. The value of the `output_field'
qualifier is the index of the field which is the text returned for each geographic entity, one
based. Zero (the default) means return all text regardless of field delimiters.
item_format
This value is a translation control string which controls how each item from the GELT is
reformatted. The default is to do no reformatting. This is really a more powerful version
of the `output_field' qualifier.
sort_by
This value is a translation control string which controls how the individual items from the
GELT are sorted before being used. If blank, then no sorting occurs, which is the default
behavior. This qualifier is persistent.
stratify_by
This value is a translation control string which controls one manner by which the
individual items from the GELT are grouped before being used. Items for which the
result of the translation is the same are considered to be in the same group. For each
group, it is as if a separate substitution entry were present, with the formatting and
application of lead/trail qualifiers occurring independently. If blank, then no stratification
occurs, which is the default behavior. This qualifier is persistent.
group_by
This value is a translation control string which controls yet another manner by which the
individual items from the GELT are grouped before being used. This manner of grouping
responds to the sort_by qualifier. Consecutive items that have the same result of the
group_by translation are in the same group. These groups do not respond as if each were
from a separate substitution entry. An item's position in a group can be acted on by the
item_format translation control string. If blank, all items are in the same group, which is
the default behavior. This qualifier is persistent.
in_group
If positive, and more than this many items in any group result from the GELT query, no
text will be returned. If negative, will truncate each group to that many items (absolute
value). When in accumulate mode and the value is positive, will dispose of only the text
from the specific `file' qualifier that caused the maximum group size to exceed the
threshold, not all text. Defaults to a very large number. This qualifier is persistent.
max_groups
If positive, and more than this many groups result from the GELT query, no text will be
returned. If negative, will truncate the list to that many groups (absolute value). When in
accumulate mode and the value is positive, will dispose of only the text from the specific
`file' qualifier that caused the group count to exceed the threshold, not all text. Defaults to
a very large number. This qualifier is persistent.
unique_by

http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23TCS
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23TCS
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23TCS
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23TCS

The result of the translation control string in a unique_by qualifier is the way in which
items can be marked as non-unique and be removed. If blank, then it will not be used,
which is the default behavior. This qualifier is persistent.
delta
Invokes a feature which causes a time, distance, and bearing to be assigned to each
geographic entity, based on when the weather event will be closest to that entity. If a
value is present, entities having a time associated with them within that many minutes of
the start time of the warning will not be used. The time, distance, and bearing can be used
by a translation control string. This qualifier is persistent.
interval
If present, times assigned to geographic entities will be rounded to this many minutes.
This qualifier is persistent.
max_dist
A point more than this far (in km) from the location of the weather phenomenon will not
be referenced. This also causes a time, distance, and bearing to be assigned to each
geographic entity, based on when the weather event will be closest to that entity. This
qualifier is persistent.
adapt_dist
Allows an item to be removed based on a special maximum distance only if specified text
either occurs or does not occur in the text for the item. A number specifies the pertinent
distance in km. A string that begins with a plus or minus will test only against the rest of
the string. A string that begins with a minus will test true if it is not in the raw text,
otherwise strings test true if they are in the raw text. Multiple test strings can be supplied
with multiple adapt_dist qualifiers. To be false, only one text-not-there test must fail; to
be true, only one text-there test must succeed.
group_alone
Allows one to specify that an item must be in a group all by itself in order to be included,
based on whether specified text either occurs or does not occur in the text for the item. A
string that begins with a plus or minus will test only against the rest of the string. A string
that begins with a minus will test true if it is not in the raw text, otherwise strings test true
if they are in the raw text. Multiple test strings can be supplied with multiple group_alone
qualifiers. To be false, only one text-not-there test must fail; to be true, only one text-
there test must succeed.
proximal
Value is an additional phrase prepended to the description of a single point if it happens
to be directly over some geographic entity. If a number, then this is how close (in km) a
weather event must be to a location to be considered "OVER" it. The default values are
"OVER~" and 3 km. This qualifier is persistent.
portions
If present, activates a feature which will provide a plain language description of which
portions of a geographic entity fall within the area of interest. A value, if present,
represents the minimum size in square km that an entity must be in order to be described
in this fashion, the default being zero.
central
If present, activates a feature which will allow the use of the keyword "central" when
describing a portion of an area.

http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23TCS
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23TCS

extreme
If present, activates a feature which will make use of the keyword "extreme" when
describing the situation where only a very small portion of some geographic entity falls
within the area of interest.
min_fraction
Value is the minimum fraction of a geographic entity which must fall within the area of
interest for that geographic entity to be included. Default value is zero, so if this qualifier
is not included, then the feature is in effect turned off.
min_area
Value is the minimum size in square km of a geographic entity which must fall within the
area of interest for that geographic entity to be included. Default value is zero, so if this
qualifier is not included, then the feature is in effect turned off.
test_both
When present, a portion of a geographic entity must pass both tests to be included in the
area of interest. By default, it must pass only one test or the other.
value
If the substitution successfully produces text and this qualifier is present, the text
produced will be replaced with this text. This qualifier is persistent.
lead
Value is a translation control string which will provide text that will precede the text
provided by the GELT. First item from the GELT is input to the translation control string
to produce the result. This qualifier is persistent.
trail
Value is a translation control string which will provide text that will follow the text
provided by the GELT. Last item from the GELT is input to the translation control string
to produce the result. This qualifier is persistent.
include_field
It is possible to include only those geographic entities for which a certain text fragment
occurs in a certain field; the value of this qualifier is the index of that field. This index
affects the next `include_text' qualifier that occurs. The default is 0, which causes all
fields to be checked.
include_text
Text to look for in the field pointed to by the last `include_field' qualifier. The occurrence
of the `include_text' qualifier is what actually activates this feature. Multiple occurrences
of the `include_text' qualifier for a single `file' qualifier will result in multiple checks for
text that must be present in an entity. The default behavior is for no include checks to
occur. The effect of this qualifier never carries over between `file' qualifiers.
exclude_field
It is possible to exclude those geographic entities for which a certain text fragment occurs
in a certain field; the value of this qualifier is the index of that field. This index affects
the next `exclude_text' qualifier that occurs. The default is 0, which causes all fields to be
checked.
exclude_text
Text to look for in the field pointed to by the last `exclude_field' qualifier. The
occurrence of the `exclude_text' qualifier is what actually activates this feature. Multiple
occurrences of the `exclude_text' qualifier for a single `file' qualifier will result in

http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23TCS
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23TCS

multiple checks for text that must not be present in an entity. The default behavior is for
no exclude checks to occur. The effect of this qualifier never carries over between `file'
qualifiers.
no_same
If present, will not generate any text if the last time a GELT-based substitution was used
the identical text was generated.
cross
This allows an additional table to be used to add information to individual item
descriptions. In the cross-reference table, the description is of the centroid of the entity
found in the main table in the `file' qualifier. See the description of translation control
strings for information about how to use the information from a cross-reference table in
an item description.
used
This qualifier allows one to exclude geographic entities that were previously used to
generate text in some other instance of an AREA or WX substitution. There are three
main values for this qualifier: `clear', which means empty out the list of previously used
entities; `accumulate', which means add entities from this substitution to the list; and
`avoid', which means do not generate text for those entities in the list. There are also two
hybrid values for this qualifier: `begin', which means clear then accumulate; and
`implement' which means avoid then clear.
var
Value is the name of a variable that has assigned to it the text produced here.
area_handling
Value is how the input area is used to update the current active area held by the GELT.
Defaults to `initialize', which means set the active area to be the same as the input area.
`add' means add the input area to the current active area. `remove' means remove the
input area from the current active area. `restrict' means keep in the current active area
only those areas both already in the current active area and in the input area. `toggle'
means change the active state of all points in the input area.
sequence
When present, this qualifier activates a feature whereby potentially redundant text can be
removed from the items returned. If there is grouping as defined with the group_by
qualifier, then redundant text can be removed from all but one item within the group. Any
text before a leading `FROM' before any occurrence of `TO' will be removed from all but
the first of the group. Any text after any occurrence of `TO' and starting with the
occurrence of one of the delimiting strings supplied as arguments to any number of
sequence qualifiers will be removed from all but the last of the group. Delimiting strings
supplied as arguments begining with an underscore allow redundant text to be removed
from the begining of an item when it occurs both at the begining and end of the item.
Text after the underscore in this case is strings that must occur in the redundant text for it
to be removed.

WX
This substitution causes text to be generated describing the location of the weather event
for which the WWA is being generated. This substitution makes use of a GELT.
file

http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23TCS
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23TCS

Value is the name of a GELT file, minus the file suffix. One can use UNIX environment
variables within the file name. There can be several `file' qualifiers in one `WX'
substitution. All qualifiers up to the next `file' qualifier modify that `file' qualifier. The
code will process each `file' qualifier in order until the required minimum number of
weather points has been identified. When two consecutive file qualifiers refer to the same
file, the values of other qualifiers will be preserved. They will often revert to defaults
when a new file is introduced. If this is not true, then this will be noted and that qualifier
will be referred to as persistent.
area
This qualifier defines the area of interest for which this GELT file will try to provide a
description. If the value is `WWA', then the base polygon of the WWA is used to define
the area of interest. If the value is some other GELT file, then whatever area is currently
held within that GELT is used as the area of interest. This is useful for imposing
consistency between different GELTs that might otherwise react differently to filtering
because they have different types of geographic entities. If this qualifier is not present,
whatever area is currently held within that GELT is used, unchanged. The first time a
GELT file is referred to within a template, this qualifier needs to be present.
format
Value is either `list', `line', or `none', of which `line' is the default. `list' will cause a
description of the locations of weather events to be presented as an ellipsis-delimited list.
`line' will cause a list of weather locations to be described as a line spanning these
locations. `none' will result in no text being generated. This qualifier is persistent.
multiple
If the value is `yes', then the substitution will produce text only if more that one point is
being used to describe the weather event. If the value is `no', then the substitution will
produce text only if a single point is being used to describe the weather event. Any other
value invokes the default behavior, which is to allow any number of points. This qualifier
is persistent.
output_field
Each geographic entity in a GELT has some descriptive text associated with it, which is
broken into one or more fields delimited by vertical bars. The value of the `output_field'
qualifier is the index of the field which is the text returned for each geographic entity, one
based. Zero mean returns all text regardless of field delimiters. This qualifier is persistent.
item_format
This value is a translation control string which controls how each item from the GELT is
reformatted. The default is to do no reformatting. This is really a more powerful version
of the `output_field' qualifier. This qualifier is persistent.
portions
If present, activates a feature which will provide a plain language description of which
portions of a geographic entity fall within the area of interest. A value, if present,
represents the minimum size in square km that an entity must be in order to be described
in this fashion, the default being zero.
extreme
If present, activates a feature which will make use of the keyword "extreme" when
describing the situation where a point falls very near the boundary of some geographic
entity.

http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23TCS

min_fraction
Value is the minimum fraction of a geographic entity which must fall within the area of
interest for that geographic entity to be included. Default value is zero, so if this qualifier
is not included, then the feature is in effect turned off.
min_area
Value is the minimum size in square km of a geographic entity which must fall within the
area of interest for that geographic entity to be included. Default value is zero, so if this
qualifier is not included, then the feature is in effect turned off.
test_both
When present, a portion of a geographic entity must pass both tests to be included in the
area of interest. By default, it must pass only one test or the other.
value
If the substitution successfully produces text and this qualifier is present, the text
produced will be replaced with this text. This qualifier is persistent.
lead
Value is a translation control string which will provide text that will precede the text
provided by the GELT. First item from the GELT is input to the translation control string
to produce the result. This qualifier is persistent.
trail
Value is a translation control string which will provide text that will follow the text
provided by the GELT. Last item from the GELT is input to the translation control string
to produce the result. This qualifier is persistent.
include_field
It is possible to include only those geographic entities for which a certain text fragment
occurs in a certain field; the value of this qualifier is the index of that field. This index
affects the next `include_text' qualifier that occurs. The default is 0, which causes all
fields to be checked.
include_text
Text to look for in the field pointed to by the last `include_field' qualifier. The occurrence
of the `include_text' qualifier is what actually activates this feature. Multiple occurrences
of the `include_text' qualifier for a single `file' qualifier will result in multiple checks for
text that must be present in an entity. The default behavior is for no include checks to
occur. The effect of this qualifier never carries over between `file' qualifiers.
exclude_field
It is possible to exclude those geographic entities for which a certain text fragment occurs
in a certain field; the value of this qualifier is the index of that field. This index affects
the next `exclude_text' qualifier that occurs. The default is 0, which causes all fields to be
checked.
exclude_text
Text to look for in the field pointed to by the last `exclude_field' qualifier. The
occurrence of the `exclude_text' qualifier is what actually activates this feature. Multiple
occurrences of the `exclude_text' qualifier for a single `file' qualifier will result in
multiple checks for text that must not be present in an entity. The default behavior is for
no exclude checks to occur. The effect of this qualifier never carries over between `file'
qualifiers.
filter

http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23TCS
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23TCS

If present, activates behavior where no item in a GELT can be referred to unless it is
identified as being at least partially within the area currently held by the GELT.
no_same
If present, will not generate any text if the last time a GELT-based substitution was used
the identical location description was generated.
proximal
Value is an additional phrase prepended to the description of a single point if it happens
to be directly over some geographic entity. If a number, then this is how close (in km) a
weather event must be to a location to be considered "OVER" it. The default values are
"OVER~" and 3 km. This qualifier is persistent.
max_dist
A point more than this far from the location of the weather phenomenon will not be
referenced. This qualifier is persistent.
adapt_dist
Allows an item to be removed based on a special maximum distance only if specified text
either occurs or does not occur in the text for the item. A number specifies the pertinent
distance in km. A string that begins with a plus or minus will test only against the rest of
the string. A string that begins with a minus will test true if it is not in the raw text,
otherwise strings test true if they are in the raw text. Multiple test strings can be supplied
with multiple adapt_dist qualifiers. To be false, only one text-not-there test must fail; to
be true, only one text-there test must succeed.
group_alone
Allows one to specify that an item must be in a group all by itself in order to be included,
based on whether specified text either occurs or does not occur in the text for the item. A
string that begins with a plus or minus will test only against the rest of the string. A string
that begins with a minus will test true if it is not in the raw text, otherwise strings test true
if they are in the raw text. Multiple test strings can be supplied with multiple group_alone
qualifiers. To be false, only one text-not-there test must fail; to be true, only one text-
there test must succeed.
interval
If present, a reported time for the weather event is rounded to this many minutes. This
qualifier is persistent.
delta
Normally, a `WX' substitution will describe the location of the weather event as it was
identified on the last frame with the storm marker. If the `delta' qualifier is present, then
this substitution will describe the projected location of the weather event that many
minutes in the future. This substitution will not generate text if the resulting time is not
within the valid period of the WWA.
used
This qualifier allows one to exclude geographic entities that were previously used to
generate text in some other instance of an AREA or WX substitution. There are three
main values for this qualifier: `clear', which means empty out the list of previously used
entities; `accumulate', which means add entities from this substitution to the list; and
`avoid', which means do not generate text for those entities in the list. There are also two
hybrid values for this qualifier: `begin', which means clear then accumulate; and
`implement' which means avoid then clear.

var
Value is the name of a variable that has assigned to it the text produced here.
sequence
When present, this qualifier activates a feature whereby potentially redundant text can be
removed from the items returned. If there is grouping as defined with the group_by
qualifier, then redundant text can be removed from all but one item within the group. Any
text before a leading `FROM' before any occurrence of `TO' will be removed from all but
the first of the group. Any text after any occurrence of `TO' and starting with the
occurrence of one of the delimiting strings supplied as arguments to any number of
sequence qualifiers will be removed from all but the last of the group. Delimiting strings
supplied as arguments begining with an underscore allow redundant text to be removed
from the begining of an item when it occurs both at the begining and end of the item.
Text after the underscore in this case is strings that must occur in the redundant text for it
to be removed.

Obsolete substitutions

LOCK
This substitution is now obsolete. Please see the last paragraph in the AUX_INFO section
for information about how to lock editing of the polygon if this is not the case by default.

UNLOCK
This substitution is now obsolete. Please see the last paragraph in the AUX_INFO section
for information about how to allow editing of the polygon if this is not the case by
default.

FREE_TIMES
This substitution is now obsolete. Please see the last paragraph in the AUX_INFO section
for information about how to allow editing of the times if this is not the case by default.

UGC_FREE
This substitution is now obsolete. Please see the last paragraph in the AUX_INFO section
for information about how to allow editing of the UGCs if this is not the case by default.

Translation Control Strings

This section describes how translation control strings work. As mentioned before, each piece of
text found in the *.id file of a GELT is broken up into fields by vertical bars. A translation
control string allows the user to intermingle literal text, untranslated text straight from one of the
fields of an item of GELT text, or an item of GELT text that is translated somehow.

Here is an example of a translation control string:

 ABC [1]DEF[2,tuv] HIJ [xyz]

The result of this translation control string will be the literal text "ABC ", followed by the
contents of field one, followed by the literal text "DEF", followed by the contents of field 2 acted
on by the translation type `tuv', followed by the literal text " HIJ ", followed by the result of

http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23AIF
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23AIF
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23AIF
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html%23AIF

translation type `xyz' acting on the whole GELT item. A field index of 99 is treated the same as
literal text.

There are several numbers that can be added to the field index that will allow additional
flexibility in formatting. Adding 50 to the field index will cause the formatting code to try to get
a field from cross-reference text. This will work only if a `cross' qualifier is present with the
table from which one is generating text. 50 means all text from the cross-reference table, 51
means field one from the cross-reference table, etc.

The other numbers that can be added to field indices control whether text is generated based on
an item's position in a group. Adding 1000 means show this text only if the item's current group
has exactly one item. Adding 2000 means show this text only if the item's current group has
more than one item. Adding 3000 means show this text only if there is just one weather point.
Adding 6000 means show this text only if there is more than one weather point.

Group positions are referred to as front, back, and mid, referring to the first, last, and anything
not first or last, respectively. Additionally, start and end refer to the first and last in the entire
lists of items. These are the numbers that can be added to a field index to refer to the various
positions in a group:

 100 - start or front
 200 - start
 300 - front
 400 - mid
 500 - back
 600 - end
 700 - back or end

If one of these numbers is added to the field index, then the item must be in that position in the
group for that text to be shown. If the field index is made negative, then the item must not be in
that position in the group for that text to be shown.

Here is a list of the recognized translation types. For some of them, the text of the GELT item is
not actually used.

state
This translation attempts to convert an upper case postal abbreviation into a state name.
The data for this translation are in the file nationalData/state.abrev.

area
This translation attempts to convert a lower case abbreviation of an area of a state into
plain language, such as `ne' to `NORTHEAST'. The data for this translation are in the file
nationalData/areas.abrev.

county_type
This translation attempts to identify the state in question and provide the proper
nomenclature for counties or county equivalents (e.g. PARISH). The data for this
translation are in the file nationalData/county_type.abrev.

counties_type

Same as `county_type' translation except that it will return plural if the number of items
returned from the GELT query is more than one.

area_state
This translation combines the results of the `state' and `area' translation and attempts to
provide text such as `NORTHEAST TEXAS'.

county_area_state
This translation combines the results of the `state' `area', and `county_type' translation
and attempts to provide text such as `BACA COUNTY IN SOUTHEAST COLORADO'.

clock
Provides a clock format description of the local time. Uses the beginning of the WWA for
the `AREA' substitution, uses the time of the weather event for a `WX' substitution. This
translation type does not use the text of the GELT item.

plain
Just like a `clock' translation type except it provides a plain language description of the
date and time.

header
Just like a `clock' translation type except it provides a header format description of the
date and time.

ddhhmm
Provides a ddhhmm format description of the UTC time. Uses the beginning of the
warning for the `AREA' substitution, uses the time of the weather event for a `WX'
substitution. This translation type does not use the text of the GELT item.

count
Returns an ASCII representation of the count of the number of items returned from a
GELT query.

gcnt
Returns an ASCII representation of the count of the number of items in a group.

index
Returns an ASCII representation of the GELT table index of an item. Useful only in a
`sort_by', `group_by', or `unique_by' qualifier.

-index
Returns an ASCII representation of the negative of a GELT table index of an item. Useful
only in a `sort_by' qualifier.

gidx
Returns an ASCII representation of the position in its group for an item.

itime
Returns an ASCII representation of the UNIX time associated with an item. Useful only
in a `sort_by', `group_by', or `unique_by' qualifier.

-itime
Returns an ASCII representation of the negative of the UNIX time associated with an
item. Useful only in a `sort_by' qualifier.

lat
Returns an ASCII representation of the latitude associated with an item. Useful only in a
`sort_by' qualifier.

-lat

Returns an ASCII representation of minus the latitude associated with an item. Useful
only in a `sort_by' qualifier.

lon
Returns an ASCII representation of the longitude associated with an item. Useful only in
a `sort_by' qualifier.

-lon
Returns an ASCII representation of minus the longitude associated with an item. Useful
only in a `sort_by' qualifier.

size
Returns an ASCII representation of the size in hectares of an entity (to the resolution of
the GELT grid). Useful only in a `sort_by' qualifier.

-size
Returns an ASCII representation of the negative of the size in hectares of an entity.
Useful only in a `sort_by' qualifier.

table
Returns an ASCII representation of the order of the `file' qualifier in use within the
substitution. Useful only if in accumulate mode and for a `sort_by', `group_by', or
`unique_by' qualifier.

-table
Returns an ASCII representation of the negative of the order of the `file' qualifier in use
within the substitution. Useful only if in accumulate mode and for a `sort_by' qualifier.

dist
Returns an ASCII representation of the distance from the weather event in tenths of km.
Useful only for a `sort_by', `group_by', or `unique_by' qualifier.

-dist
Returns an ASCII representation of the distance from the weather event in tenths of km.
Useful only for a `sort_by' qualifier.

azran
Adds description of distance and bearing in miles and degrees meteorological from an
entity to the weather event. For zero distance will add proximity descriptor.

azrn0
Adds description of distance and bearing only if distance is greater than zero.

azrn1
Adds description of distance and bearing. Uses proximity descriptor if distance is zero;
strips portion of area descriptor otherwise.

azrn2
Adds description of distance and bearing only if distance is greater than zero; strips
portion of area descriptor.

azrn3
Describes distance and bearing; uses proximity descriptor if distance is zero.

azrn4
Describes distance and bearing only if distance is greater than zero.

county_count
Returns an ASCII representation of the count of the number of items returned from a
GELT query, followed by the same output one would get from the `counties_type'
translation.

alpha
Removes all non-alphabetic characters.

S
Blank if the item count is less than two, otherwise returns "S".

s
Blank if the item count is less than two, otherwise returns "s".

Predefined template variables

Normally, when one refers to AFOS text product IDs (CCCNNNXXX) in templates, one will use
template variables that look like $$NNNid!, where NNN is the AFOS product type. The
localization creates entries that define the correct values for these template variables in the
include file ${CURRENT_CWA}-offtIncl.txt, which lives in localizationDataSets/LLL/.
CURRENT_CWA points to the CWA for which one is currently issuing products, and LLL is
the localization in use; all templates should include this file. For example, for the BOU county
warning area, the translation of $$SVSid! will be DENSVSBOU. The localization will create
definitions for $$NNNid! for each NNN that appears in the file
nationalData/wgn_wwa_NNN.txt.

The localization will also create definitions for the variables $$cccValue! and $$xxxValue!,
which are the primary CCC and XXX with which the warnGen and WWA applications issue
products. There will sometimes also be definitions for $$ccc2Value! and $$xxx2Value!, which
are an optional secondary CCC and XXX. Certain legacy templates will use
$$cccValue!NNN$$xxxValue! where AFOS text product IDs are referred to, but this syntax can
cause problems in the case where there is not complete uniformity in the CCCs and XXXs being
used for TextTemplate-generated products at the site.

Additionally, the variable $$wmoValue! points to the primary WMO ID being used to issue
products for the site. The values of $$wmoValue!, $$cccValue!, $$xxxValue!, $$ccc2Value!,
and $$xxx2Value! are controlled, respectively, by the WMO, CCC, XXX, CCC2, and XXX2
directives. See directives.html for more information on directives.

The variables that have been discussed so far are defined within the context of localization and
have their definition pulled into the templates through include files. The remainder of these
variables are ones that are set as environment variables within the context of the warnGen
application.

Among these are predefined template variables that point to things that have to do with the
VTEC coding. The action code for the primary VTEC line is found in the template variable
$$ACT_VAL!. Currently supported action codes for warnGen are NEW (new event), COR
(correction), EXT (extension in time), CON (continuance), CAN (cancellation), and EXP
(expiration). These action codes are used extensively in the default templates to make decisions
about which text to show based on the action being taken. At text generation time,
$$ACT_VAL! is always defined, whether the product being created is based on a previously
issued product or not; at parse time it will often be an empty string. By defined, we mean it refers
to something other than an empty string.

http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/directives.html

There are also several predefined variables that are defined only when the product being created
is based on a previously issued product. The variable $$PREV_TEXT! will translate to a single
string containing all of the text from the previously issued product, up to 5000 characters.
$$ACT_VAL2!, is the action code for the second event of a followup product.
$$VTEC_EVENT! and $$VTEC_EVENT2! are VTEC event strings for the first and second
events for a followup product. An example of a VTEC event string would be KTOP.TO.W for a
Topeka tornado warning. $$PPS_VAL! is the primary VTEC phenomenon and significance (e.g.
TO.W) of the product being followed up and $$NNN_VAL! is the text product type (e.g. TOR)
of that product. $$HYDRO_VAL! will contain the text of the hydro VTEC line,
$$CAUSE_CODE! will contain the two letter immediate cause code and $$TEXT_CAUSE! will
contain the plain text of the immediate cause. Of these, only $$VTEC_EVENT!, $$PPS_VAL!,
and $$NNN_VAL! are guaranteed to be defined every time a previous product is involved.
$$ACT_VAL2! and $$VTEC_EVENT2! are defined only when the previous product refers to a
second weather event, $$HYDRO_VAL! is defined only when a hydro VTEC line exists,
$$TEXT_CAUSE! exists only when plain language is found in the product that refers to an
immediate cause, and CAUSE_CODE is defined only when either the text cause can be decoded
or there in an immediate cause coded in the hydro VTEC line.

Finally, the variable $$MND_VAL! contains the MND header qualifier. $$MND_VAL! should
always be at the end of the product type line in the MND header. This is set with a plain
language indication of when a product is text, experimental, or corrected.

AUX_INFO functionality

As was previously mentioned, the values for the keys found in the AUX_INFO substitution drive
a very diverse set of functionality, and as such we have this separate section to describe how the
warnGen application responds to these various keys. By convention, there is only one
AUX_INFO substitution present in the main files of all the default templates. However, there can
be multiple instances of this substitution, and in theory multiple instances of any key as well.
When this occurs, the last value encountered for that key is what is used.

The keys geo_descriptor, wwa_type, wx_hazard, specific_hazard, and ugc_codes at one time
were how the warnGen application told the MDL Watch, Warning, and Advisory (WWA)
application about the products it is generating. Their presence is not harmful, but these no longer
have any effect because the WWA application has been decommissioned.

The single most important key is issue_prod; its value is the CCCNNNXXX of the text product
that this template is designed to create. Optionally, one can add a second space-delimited item
here that is the VTEC event (e.g. KMSP.FL.Y) for the product being issued.

Occasionally, text products other than the product being issued or the product(s) being followed
up will need to be parsed to determine everything about a given VTEC event. As an argument to
the key parse_prods, one can provide a space-delimited list of CCCNNNXXXs for additional
product types that should be parsed to determine everything about the given VTEC event.

The presence of the follow_prods key is what designates a template as being primarily for
creating followup products instead of original-issuance products. The value for this is a space-
delimited list of either text product IDs or VTEC events for which one wishes to use this
template to create followup products.

Warngen now supports two new types of followup actions – corrections for followup products
and extensions in time. Neither of these is activated by default in the software; one must use the
follow_actions key in the template to activate them. The value of this key is a list of additional
non-default followup actions to activate for the template – COR for corrections and EXT for
extensions in time. An action must actually be supported before putting it in this list; it is
expected that future releases will support additional actions.

The text_cause key allows one to specify that a previous product used with the template must
either have or not have a plain text immediate cause present. If the value is YES, the previous
product must have a plain text immediate cause; if the value is NO, then the previous product
must not have a plain text immediate cause.

The cause_codes key allows one to specify lists of immediate cause codes that either must or
must not be in the previous product for it to be used with the template. A value of NONE means
that the previous product must not have a cause code to be used; a value of ANY means that the
previous product must have some cause code to be used. Otherwise, the value is a list of space-
delimited immediate cause codes, one of which must be the code in the previous product in order
for it to be used with the template. A leading space-delimited NOT means that none of the codes
in the list can be in the previous product for it to be used.

There is now the ability to exert fine scale control over what characteristics of the product one is
issuing should remain unchangeable from the time of the last Restart or selection from the
followup action list. The characteristics that one can control in this manner are the times, the
polygon, the text bullets, whether one can add UGCs, and whether one can remove UGCs. Each
of these characteristics is represented by a suffix in the key: _time, _polygon, _bullets, _ugcadd,
and _ugcdel, respectively. The prefix in the key is the action being undertaken. The recognized
actions are NEW, COR, CON, CAN, EXP, and EXT. If one is correcting anything but a new
product, the prefix is compound. Thus, for example, if the entry CORCON_times=free appeared
in an AUX_INFO substitution, this would allow editing the times for correcting a continuance.
The entry EXT_polygon=lock would lock the polygon for a new extension in time, and
COR_ugcadd=lock would prevent one from adding UGCs to a correction to a new product. All
of these states have well-defined default values so usually templates will not need these entries,
but if these entries are made they will override whatever the defaults are.

Author: Jim Ramer
Last update: 04 Dec 2006

WarnGen Backup
Historically, there have been two primary types of backup in WarnGen, Full backup and Partial
backup. Partial backup is no longer considered consistent with the current concept of operations,
and so the selectors that invoke it have been removed from the WarnGen GUI as of OB8.2.
Furthermore, the selector on the WarnGen GUI that invokes Full backup is now entitled simply
`Backup'. Many sites may retain some partial backup data structures, which ideally should be
removed. For most sites, the usa_cwa_total.* shape file set should be deleted from nationalData/;
failing to do so will reduce the geographic precision of the WarnGen tables. A few sites may
continue to use the usa_cwa_total.* shape file set to delineate downstream areas outside their
CWA for which they have Dam Break warning responsibility for dams inside their CWA. In this
case, the partial backup data structures are used to support this; one DOES NOT NEED the
partial backup option on the WarnGen menu to issue these types of warnings.

For those sites that need to use the usa_cwa_total.* shape file set to delineate downstream areas
outside their CWA for which they have Dam Break warning responsibility, there are some things
to be aware of. This capability is invoked by two customizations. First, the downstream counties
need to be placed in the usa_cwa_total.* shape file set for the site. Other than counties in your
CWA, ONLY those downstream counties should be included in the area defined for your site in
that shape file. It may be tempting to just rely on an older version of usa_cwa_total.* shape file
set that has entire neighboring sites included, but this will result in the aforementioned problems
with geographic precision. Second, for any template that one needs the expanded effective CWA,
the line containing:

#include "wwa_county_ugc.template"
needs to be changed to say:
#include "wwa_county_ugc_stretch.template"
While this functionality was originally designed specifically for the dam break template (by
default, wwa_dam_break), this change can be made in any template. If a site will retain follow-
up responsibility for those downstream counties, then this change should also be made in the
non-convective FFS template (by default, wwa_flflood_sta) as well. Once configured in this
manner, one does not need to use any of the backup functionality on the warnGen GUI to issue
dam break warnings for these counties outside your CWA; just draw the warning to include the
counties.

For short-fused warnings, Full backup is the preferred method of backup for a short unscheduled
takeover of backup responsibilities. For an extended scheduled backup, it may be preferable to
restart a whole D-2D for the backup site.

When one selects a Backup site on the WarnGen menu, the WarnGen program will exit and
restart running under the localization ID of the full backup site. If one is running WarnGen for a
backup site, the Backup selector will be colored yellow.

The availability of sites for full backup is controlled by two things. First, the desired full backup
site must be listed in the SBID directive in the wwaConfig.txt file (see directives for more on
this). Second, one must have run the localization for the full backup site.

http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/directives.html

When one runs a localization for a full backup site, it is important to get the arguments right.
Suppose that LLL is the primary localization ID for your site, and that BBB is the localization ID
for some site for which you want to do full backup. Here are three examples of how you might
run a localization for this purpose:

 ./mainScript.csh -WWA BBB
 ./mainScript.csh BBB
 ./mainScript.csh -wwa BBB

The first command is the most common way to run the localization for the backup site the very
first time you set it up for full backup. Note that the task identifier is -WWA in all caps, which
will run enough localization tasks for a site to support full backup, as opposed to -wwa, which
will just try to regenerate the WarnGen tables. The second command would be used in the case
where you also desire to run a D-2D as the backup site. The third command is what you would
use if the site was already established as a working full backup site but you need to update
templates or perhaps regenerate the geographic tables because of new shape files.

Normally at an installed site, one will always run localizations with only one localization ID on
the command line. However, for development, testing, or certain other unusual situations, one
might run a localization with two localization IDs on the command line. If this is the case, the
command needed to run a localization that can support the full backup function must be this:

 ./mainScript.csh -WWA BBB LLL

and NOT this:

 ./mainScript.csh -WWA BBB BBB

There are some gotchas to watch out for in configuring a system for Full service backup. First,
you have to have the correct format for the SBID directive in the LLL-wwaConfig.txt file.
Suppose that the entire set of sites for which you wanted to enable full backup is BBX, BBY, and
BBZ. Here is the proper format for the SBID directive:

 @@@SBID "BBX", "BBY", "BBZ"

The following formats are NOT correct:

 @@@SBID "BBX, BBY, BBZ"

 @@@SBID BBX, BBY, BBZ

 @@@SBID "BBX", "BBY, "BBZ"

 @@@SBID "LLL", "BBX", "BBY", "BBZ"

The last incorrect example will work but will result in multiple entries for your default site
appearing in the `Backup' selector.

Another gotcha is using bad customization practices for the wwaConfig.template file. First of all,
unless you are changing the set of templates that you want to appear on the very top level of the
WarnGen GUI, there is no reason to customize this file. By default, any file in customFiles/ or
localization/LLL/ with a correct pathname and properly formatted title line will automatically get
posted to the Other: list on the WarnGen GUI. See TextTemplate for more on the format of
templates. Bad customization practices in this file can break this feature. If it is deemed
absolutely essential to override wwaConfig.template, you should change only the lines directly
applicable to posting templates to the very top level of the GUI. Especially, do not change or
remove any lines that look like these:

 int = numMajorProds, index, count
 SeqOfTextString = prodTypeNames, prodTypeFileNames, cwaIds

 "XXX000",\

 "YYY000",\

 warngen.cwaIds: ###CWAS

To know whether your site has an override file for wwaConfig.template, look for the following
pathnames:

 /data/fxa/customFiles/wwaConfig.template
 /data/fxa/customFiles/LLL-wwaConfig.template
 /awips/fxa/data/localization/LLL/LLL-wwaConfig.template

It is an especially bad idea to modify nationalData/wwaConfig.template in place.

Author: Jim Ramer
Last update: 12 Feb 08

http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/TextTemplate.html

binary cartographic data files &

extended binary cartographic data files

This program is a stand-alone program for performing operations on WFO
Advanced .bcd (binary cartographic data files) or .bcx files (extended
binary cartographic data files), which are the file formats that the
workstation actually reads to draw map backgrounds. A .bcd file contains
vector data in lat/lon coordinates. A .bcx is essentially a .bcd file
with a text string associated with each record. Both input and output
are assumed to be the same file type.

The program allows the user 6 different operations which can be
performed on either .bcd or .bcx files except where noted. These are
summarized here and explained in detail below:

- remove identical vectors
- clip based on a depictor file
- collapse short vectors
- clip an ASCII file based on a depictor file
- clip an ASCII file based on a depictor file with lat/lon units conversion
- shorten records to a standard length
- convert an ASCII file to a bcd file

For the mode that removes identical vectors, the usage is as follows:

bcdProc r {x} input_file output_file

r: the letter `r'
x (optional): if the letter `x' is present, assume .bcx file.
input_file: pathname of file to read.
output_file: pathname of file to write.

For the mode that clips based on a depictor file, the usage is as follows:

bcdProc c {x} input_file depictor output_file

c: the letter `c'
x (optional): if the letter `x' is present, assume .bcx file.
input_file: pathname of file to read.
depictor: pathname of depictor file (.sup file) to clip with.
output_file: pathname of file to write.

For the mode that collapses short vectors, the usage is as follows:

bcdProc t {x} input_file dist output_file

t: the letter `t'

x (optional): if the letter `x' is present, assume .bcx file.
input_file: pathname of file to read.
dist: vectors shorter that this distance in km will be collapsed.
output_file: pathname of file to write.

This mode reads lines from an ASCII file, finds first two consecutive
space-delimited words that can be a lat/lon, and removes the record
if that lat/lon is not within the area of the depictor file. To be
a lat/lon, a word must contain a decimal point and represent a floating
point number within the allowable range of values for lats and lons in
degrees. The usage is as follows:

bcdProc a input_file depictor output_file

a: the letter `a'
input_file: pathname of file to read.
depictor: pathname of depictor file (.sup file) to clip with.
output_file: pathname of file to write.

This mode reads lines from an ASCII file, find first two consecutive
space-delimited words that can be a lat/lon, and removes the record
if that lat/lon is not within the area of the depictor file. To be
a lat/lon, a word must represent a floating point or integer number.
This mode can perform units conversions on lats and lons. Validity of
number as a lat/lon is checked after the units conversion.
The usage is as follows:

bcdProc i input_file depictor output_file {c1} {latmult} {lonmult}

i: the letter `i'
input_file: pathname of file to read.
depictor: pathname of depictor file (.sup file) to clip with.
output_file: pathname of file to write.
c1 (optional): Number of characters to skip in each line of text before
 trying to find lats and lons. Defaults to 0.
latmult (optional): Units conversion for latitudes, defaults to 1.
lonmult (optional): Units conversion for latitudes, defaults to 1.

This mode reads a bcd or bcx file that may not have records truncated
to the standard number of points (currently 500) and writes out a
file with records that are truncated in that manner.
The usage is as follows:

bcdProc s {x} input_file output_file

s: the letter `s'
x (optional): if the letter `x' is present, assume .bcx file.
input_file: pathname of file to read.
depictor: pathname of depictor file (.sup file) to clip with.
output_file: pathname of file to write.

For the mode that converts an ASCII file to a bcd file, the usage is as
follows:

bcdProc b {x} input_file output_file

b: the letter `b'
x (optional): if the letter `x' is present, assume .bcx file.
input_file: pathname of file to read.
output_file: pathname of file to write.

For a bcx file, the ASCII would look like this:

label_string
lat lon
lat lon
 :
 :
label_string
lat lon
lat lon
 :
 :

For a bcd file, the format would look like this:

lat lon
lat lon
 :
 :
blank_line
lat lon
lat lon
 :
 :
blank_line

All lats and lons are decimal degrees, east and north positive.
Sequential lines containing lats and lons are treated as a single
linked vector. The blank line/ label causes a new linked vector to
start. Any number of linked vectors may be included in a file, and
they can be any arbitrary length.

Author: Jim Ramer
Last update: 15 Oct 02

fileMover

fileMover is a standalone program meant to facilitate moving files into
the localization data set. For ASCII files it will always be certain
that the resulting file terminates with a newline. The usage is as
follows:

 fileMover {-123} {+123} \
 {c} {b} {a} {z} {x} {e} {i} {o} {n} {d} {k} {s} {u} \
 input_file output_file

The optional literal single character flags can be in any order among
themselves, but must occur before the `input_file' argument.

For the '-123' and '+123' arguments, the '-' and '+' are literal, and
the 123 can be any number of numeric digits.

The default behavior of this program is to copy the ASCII file designated
by the argument `input_file' to the path designated in the argument
`output_file', replacing the contents of the output file. Zero length
input files are treated as if the file did not exist.

The default replacement behavior can be changed in one of two ways.
As one might expect, it can be changed by a command line argument.
Furthermore, if the input file has as its first line `#append', the
file will normally append regardless of what the command line
arguments say. If the input file has as its first line `#replace',
the file will normally replace the output file regardless of what the
command line arguments say. There is a command line argument that
suppresses this feature.

If the argument `input_file' is blank, missing, or a literal '-', the
program will take input from stdin.

Similarily, if the argument `output_file' is blank, missing, or a
literal `-', the program will write to stdout. If the argument
`output_file' is a literal `~', it will write to stderr. A value of
`==' for the output_file argument will cause the output file to have the
same file name as the input file but in the current working directory.
Finally, a value of `=' for the output file will do basically the same
thing as `==', except it will strip any leading *- or *-- off of the
output file name.

The '-123' and '+123' allow one to select parts of a partitioned file.
A partitioned file is any file that has lines in it begining with
`#partition'. All lines up to the first occurence are considered to
make up partition 1, all lines up to the next occurence are considered
to make up partition 2, and so on. The numeric digits list the
partitions to include. A partitioned file that has no data in the
selected partitions is considered empty. If the argument used has the
leading '-', then a non-partitioned file will be considered empty. The
leading '+' results in the entire contents of a non-partitioned file
being used. By default partioning is not considered, which would be sort

of like '+123456789'.

Here is the meaning of the rest of the single character literal flags.

c Strip comments. Comment is anything from a // to the end of the line,
 and any line that starts with #, except for #include.

b Strip blank lines. Any line that is empty or all spaces is considered
 a blank line. If stripping comments, a line that is all comments is
 considered blank.

a Append the input file to the output file if it already exists; default
 behavior is to replace the output file. Normally, if `#append' or
 `#replace' occurs as the first line of the file, that will override
 the behavior selected by the presence of absence of this argument.

z Treat the file as a binary file. The means the c and b flags are ignored,
 will not try to add a newline at the end of the file if missing.

x Do not use the presence of `#append' or `#replace' as the first line
 of the file to determine whether to append or replace.

e By default, empty (zero length) input files are completely ignored; this
 will cause them to be processed.

i Print the path of the input file to standard output.

o Print the path of the output file to standard output.

d Write message about any exceptional conditions to standard output.

n No-op: do not actually move any file data, just process the arguments
 and print any diagnostics.

k Treat each line for output as a vertical-bar-delimited key file entry.
 The first vertical-bar-delimited field on the line is treated as the
 key. If there are redundant key values, keep only the last entry.

s Same as k, but with a space as the delimiter.

u Remove any non-unique lines. Leading and trailing spaces are ignored
 for determining uniqueness.

Author: Jim Ramer
Last update: 28 Jun 04

GELTtest

The program GELTtest is a standalone program that can perform a unit
test on the GeoEntityLookupTable class and can filter the contents
of ascii location files based on a geographic entity lookup table.

The program allows the user four different methods of operation
which are summarized here and explained in detail below:

- Unit test of the GeoEntityLookupTable class.
- Unit test of the GeoEntityLookupTable class using entity ids.
- Keep locations within an entity.
- Keep locations not within an entity.

User note 1:
The ascii location files used here must contain one location per
line in the file which have consecutive space delimited fields that can
be interpreted as a latitude and longitude.

User note 2:
When doing a unit test, one point results in describing that point,
two points results in describing the area to the right of that line,
and three or more points results in describing the area inside that
polygon. No points describes the whole table.

For the unit test mode, the usage is as follows:

GELTtest t gelt_name {p} {x} {c} {w} {v} {g} {G} {lat lon} {lat lon} ...

t: The letter `t'.
gelt_name: Path name to geographic entity lookup table with no extensions;
 uses InfoFileServer with this path.
p (optional): Describe portions of areas.
x (optional): Use keyword `extreme' in describing portions of areas.
c (optional): Most liberal use keyword `central' in describing portions
 of areas.
w (optional): Returns all of the text associated with each entity instead of
 just the first field.
v (optional): Also print out size, index, and location of each entity.
g (optional): Treat each different portion of an entity as a separate
 virtual entity.
G (optional): Treat each different grid point of an entity as a separate
 virtual entity.
lat: Latitude of a point to describe.
lon: Longitude of a point to describe.

For the unit test mode that uses entity ids, the usage is as follows:

GELTtest t gelt_name i field {p} {x} {c} {w} {v} {g} {G} id {id} ...

t: The letter `t'.
gelt_name: Path name to geographic entity lookup table with no extensions;
 uses InfoFileServer with this path.
i: The letter `i'.
field: Field in table where the ids provided can be found.
p (optional): Describe portions of areas.
x (optional): Use keyword `extreme' in describing portions of areas.
c (optional): Most liberal use keyword `central' in describing portions
 of areas.
w (optional): Returns all of the text associated with each entity instead of
 just the first field.
v (optional): Also print out size, index, and location of each entity.
g (optional): Treat each different portion of an entity as a separate
 virtual entity.
G (optional): Treat each different grid point of an entity as a separate
 virtual entity.
id: Entity id to activate in the table.

For the mode that keeps locations within an entity, the usage is as follows:

GELTtest a in_file gelt_name out_file entity_id

a: The letter `a'.
in_file: Input file with location information.
gelt_name: Path name to geographic entity lookup table with no extensions;
 uses InfoFileServer with this path.
out_file: File to write filtered location information to.
entity_name: First vertical bar delimited field in the identifier of the
 geographic entity to compare with (whole identifier if no
 delimiters).

For the mode that keeps locations not within an entity, the usage is as
follows:

GELTtest i in_file gelt_name out_file entity_id

i: The letter `i'.
in_file: Input file with location information.
gelt_name: Path name to geographic entity lookup table with no extensions;
 uses InfoFileServer with this path.
out_file: File to write filtered location information to.
entity_name: First vertical bar delimited field in the identifier of the
 geographic entity to compare with (whole identifier if no
 delimiters).

Author: Jim Ramer
Last update: 8 Jul 99

image_mask

The program image_mask is a standalone program that can perform very
simple operations on flat files that represent image data.

The program allows the user four different methods of operation
which are summarized here and explained in detail below:

- Null out pixels in an image based on values in another image.
- Null out values in an image that have too few like neighbors.
- Null out values in an image whose total count in the image is too few.
- For null pixels, assign value from neighbor if non-null in another image.
- Null out values in an image whose fraction of edge pixels is too large.
- Null out values whose total count is too small compared to another image.

User note 1:
In all cases, the image file gets rewritten.

User note 2:
The type of an image concerns how many bytes per pixel it has. For this,
a `b' means a byte image (one byte per pixel), a `w' means a word image
(two bytes per pixel), and an `i' mean an integer image (four bytes
per pixel).

User note 3:
For all usage modes, an optional literal `e' as the first argument will
result in the endian state for word images to be verified and adjusted
if needed, based on the assumption that total variablity in the data
will be greatest in the least significant byte.

For the mode that nulls out pixels based on values in another image,
the usage is as follows:

image_mask m image_type image_file mask_type mask_file {null} {n} {min} {max}

m: The letter `m'.
image_type: Type of image file (see note 2).
image_file: Pathname of the image file.
mask_type: Type of mask file (see note 2).
mask_file: Pathname of the mask file.
null (optional): Value that is used as the null value to place into the
 image file (defaults to zero).
n (optional): By default, pixels are nulled out if the corresponding value
 in the mask image is from `min' to `max'. If this literal n
 is present, pixels are nulled out if the mask value is outside
 this range.
min (optional): Lowest value in the mask image that triggers insertion of a
 null into the main image file (defaults to zero).
max (optional): Highest value in the mask image that triggers insertion of a
 null into the main image file (defaults to zero).

Note that the image and the mask must have the same number of pixels, but
can have different types.

For the mode that nulls out pixels that have too few like neighbors,
the usage is as follows:

image_mask n image_type image_file nx ny {min} {null}

n: The letter `n'.
image_type: Type of image file (see note 2).
image_file: Pathname of the image file.
nx: Inner dimension of the image.
ny: Outer dimension of the image.
min (optional): Less than this many like-value neighbors trigger insertion
 of a null into a pixel in the image file (defaults to one).
null (optional): Value that is used as the null value to place into the
 image file (defaults to zero).

Note that each pixel can potentially have eight neighbors.

For the mode that nulls out pixels that have too few like values in the
entire image, the usage is as follows:

image_mask c image_type image_file {min} {null}

c: The letter `c'.
image_type: Type of image file (see note 2).
image_file: Pathname of the image file.
min (optional): Less than this many like values in the whole image triggers
 insertion of a null into a pixel (defaults to one).
null (optional): Value that is used as the null value to place into the
 image file (defaults to zero).

For the mode that assigns neighboring values to null pixels if they are
non-null in another image, the usage is as follows:

image_mask f image_type image_file nx ny mask_type mask_file {null} {min}
{max}

f: The letter `f'.
image_type: Type of image file (see note 2).
image_file: Pathname of the image file.
nx: Inner dimension of the images.
ny: Outer dimension of the images.
mask_type: Type of mask file (see note 2).
mask_file: Pathname of the mask file.
null (optional): Null value in image file (defaults to zero).
min (optional): Lowest value in the mask image that does not allow setting
 data values in the main image file (defaults to zero).
max (optional): Highest value in the mask image that does not allow setting
 data values in the main image file (defaults to zero).

Note that the image and the mask must have the same number of pixels, but
can have different types.

For the mode that nulls out values in an image whose fraction of edge pixels
is too large in the entire image, the usage is as follows:

image_mask s image_type image_file nx ny {pct} {null}

s: The letter `s'.
image_type: Type of image file (see note 2).
image_file: Pathname of the image file.
nx: Inner dimension of the image.
ny: Outer dimension of the image.
pct (optional): Threshold percentage (defaults to 10).
null (optional): Null value in image file (defaults to zero).

Note that an edge pixel is defined as one that has any of its eight neighbors
with a different value.

For the mode that nulls out all pixels of a value when its total count in
the image is too small compared to the total count in the mask, the usage
is as follows:

image_mask p image_type image_file mask_type mask_file {pct} {null}

p: The letter `p'.
image_type: Type of image file (see note 2).
image_file: Pathname of the image file.
mask_type: Type of mask file (see note 2).
mask_file: Pathname of the mask file.
pct (optional): Threshold percentage (defaults to 5). All pixels of a
 given value in the image are nulled out if their total
 count is less than this percentage of the total count
 in the mask image.
null (optional): Value that is used as the null value to place into the
 image file (defaults to zero).

Author: Jim Ramer
Last update: 30 Oct 02

initCdlTemplate

initCdlTemplate is a standalone program that is used to write
geographically dependent and topographic information into a
template NetCDF file. Specifically, it writes values to a standard set
of global attributes that define the geographic characteristics of
all WFO-advanced plan-view grid and image file. It also writes a
topography grid, a grid spacing grid(s), and a coriolis parameter
grid into the template file.

If the user does not supply a topography grid, it will not attempt
to write one. If variable space for the grid spacing grid(s),
coriolis parameter, or topography (when supplied) does not exist, the
program will continue and will warn the user about those fields it
could not write.

The usage is as follows:

initCdlTemplate templateFile depictorFile {topoFile}

templateFile: Full path to the NetCDF template file being written to.
depictorFile: Full or abbreviated path name of the depictorFile that
 describes the geographic characteristics of the grid.
topoFile (optional): Full path to a file containing topography for the
 grid. File should be an ascii file, one value per
 line, scanning left to right, bottom to top.

User Note: This program is not meant to create variable space or define
 the existence of the global attributes in question. It is
 assumed that these items are all defined in the cdl file from
 which the template file was created with an `ncgen' command.

Author: Jim Ramer
Last update: 6 Jun 98

keyMunge

keyMunge is a standalone program meant to change key values in key files
in an automated fashion; the usage is as follows:

 keyMunge {c} main_file key1 key2 keyAdd output_file {term}

The `c' is an optional literal flag that will cause keys to be output
in a compressed base 32 format. 'main_file' is the file being edited,
and 'output_file' is the file to write the results to. 'key1' and
'key2' are the range of keys which are changed in the 'main_file'.
'keyAdd' is the value that is added to each key in the 'main_file' to
produce what is written out in the 'output_file'. A key is defined as
any consecutive string of digits, the resulting value of which falls
within the range specified.

The optional 'term' is an additional character, besides the normal
comment sequences of "//" and "#", which will cause processing of the
line for additional keys to terminate.

Author: Jim Ramer
Last update: 21 Jul 99

Grid Key Tables
makeGridKeyTables is a standalone program that produces the data and depictable key entries
for gridded data, using as input the contents of five tables: gridSourceTable.txt,
dataLevelTypeTable.txt, gridPlaneTable.txt, dataFieldTable.txt, and virtualFieldTable.txt. The
files created are gridDataKeys.txt and gridDepictKeys.txt. For a complete description of how
these grid tables work, see gridTables.

Beyond this primary function makeGridKeyTables can also automatically generate multi-loads
based on gridded data. An additional input file it uses to do this is comparisonFields.txt, and the
additional output file it creates to do this is gridMultiLoadKeys.txt. For more details about this,
see families.

The usage for makeGridKeyTables is as follows:

makeGridKeyTables {v} {x} {t} {u} {c}
v (optional):

Causes itemized list of all raw data fields identified to be written to standard output.
x (optional):

Completely expands out all key entries. Normally, many cross section depict keys are
abbreviated because they are so much like many other cross section keys.

t (optional):
Terse form, which is used in the localization. No titles in data keys and no second legend
for depict keys.

u (optional):
Do a unit test on the GridTableServer object before creating the keys.

c (optional):
Causes keys to be compressed into base 32 format.

User note: In order to get meaningful titles for cross section planes, one needs to have run the
command `testGridKeyServer G', which also depends on having access to depictor files for
display scales.

Author: Jim Ramer
Last update: 21 Mar 97

maksubgrid

maksubgrid is a standalone program that is meant to create a geographic
information file that represents a portion of a grid. The usage is as
follows:

maksubgrid base_geo base_nx base_ny clip_geo clip_nx clip_ny \
 { offset_x offset_x } output_geo {IngestCenter} {o}

base_geo: geographic information file that defines the base grid.
base_nx: x dimension of the base grid.
base_ny: y dimension of the base grid.
clip_geo: output clipped grid approximately centered over the area defined
 by this geographic information file.
clip_nx: x dimension of the output clipped grid.
clip_ny: y dimension of the output clipped grid.
offset_x (optional): number of grid points to shift in the x direction.
offset_y (optional): number of grid points to shift in the y direction.
output_geo: name of the geographic information file to write that
 describes the clipped grid.
IngestCenter: Must be the 10th argument. With this option, it use
IngestCenter.dat
 to find the center point instead of from base_geo(see 1st
argument) file.
o : Must be the last argument. With this option, the clipped area can be
 {partly} outside of the original data area.

The file output_geo will always describe the same projection as base_geo,
and will describe a different area that fits within the area of base_geo.
clip_geo can be any arbitrary projection; it is used merely to provide
the area around the clipped grid is centered. It must be true that
clip_nx <= base_nx and clip_ny <= base_ny. The optional shift is applied
after the normal default determination of the output area, but the
shift is truncated so that the area of output_geo still falls within
the area of base_geo.

Author: Jim Ramer
Last update: 11 Mar 08 by Wen Kwock

Creating a Geographic Information File

This program is a stand-alone program for creating a geographic information
file ("sup" file).

The program allows the user ten different methods by which to define
the area covered by the geographic information file, a report of the
percent overlap between two .sup files, and a way to recreate the
arguments which created a file. These are summarized here and explained
in detail below.

 1. Entire useful area of the projection.
 2. Opposing lat/lon corners are specified.
 3. Ranges of Cartesian coordinates are specified.
 4. Offset distances from a point are specified.
 5. Corners of a grid defined by reference corner plus grid spacing.
 6. Area defined by an ASCII map points file.
 7. Area defined by a .bcd map points file.
 8. Move (but not resize) the domain of an existing file so its border does
 not overlap the border of another.
 9. Expand the domain of an existing file to include another.
10. Restrict the domain of an existing file to the intersection with another.

11. Print the percent overlap between two files.
12. Regurgitate a set of argument lists that can be used to recreate an
 existing file.

User note 1:

Where projection indices are referred to, here is their meaning:
1 = STEREOGRAPHIC
2 = ORTHOGRAPHIC
3 = LAMBERT_CONFORMAL (rotation is second standard parallel)
4 = AZIMUTHAL_EQUAL_AREA
5 = GNOMONIC
6 = AZIMUTHAL_EQUIDISTANT
7 = SATELLITE_VIEW (defaults to geostationary height)
8 = CYLINDRICAL_EQUIDISTANT
9 = MERCATOR
10 = MOLLWEIDE
16 = AZIMUTH_RANGE
17 = RADAR_AZ_RAN

User note 2:

Anywhere the following list of arguments is found:
 proj_idx center_lat center_lon rotation {orbit_hgt}
the user may replace this with path name to an existing geo file, from
which the program will extract these arguments.

User note 3:

Anywhere a path name to an existing geo file is needed, it can be either

the full path name or the completion of $GEO_DATA/*.sup

User note 4:

The optional orbit_hgt argument can be used only when the
SATELLITE_VIEW projection (projection 7) is being used. Defaults
to a geostationary height. This projection assumes a spherical earth,
but when defining a sector in terms of correct lat/lon corners, the
depiction will be quite accurate unless it is covering a large area.

User note 5:

Use the CYLINDRICAL_EQUIDISTANT projection to define lat/lon based
areas. The arbitrary x and y coordinates for this projection correspond
to degrees of longitude and latitude. When covering the whole globe,
use the x option with -180 180 -90 90 as your ranges of x/y coordinates.
The center_lon would then be 180 degrees from the seam. Generally, the
center_lat, center_lon, and rotation parameters for this projection will
always be 0 0 0 unless one is defining and area that spans the date line.

User note 6:

The user should keep in mind that the center_lat and center_lon
parameters refer to the center/origin/tangent point of the projection,
which is not necessarily the same as the center point of the area
one is trying to cover with the range of x/ys or lat/lons.

1. For the whole projection mode, the usage is as follows:

maksuparg proj_idx center_lat center_lon rotation {orbit_hgt} output_file

proj_idx: projection index
center_lat: central latitude or latitude of tangent point
center_lon: central longitude or longitude of tangent point
rotation: projection rotation
orbit_hgt (optional): height of orbit (km) for SATELLITE_VIEW only
output_file: name of geographic information file to write

2. For the lat/lon corners mode, the usage is as follows:

maksuparg proj_idx center_lat center_lon rotation {orbit_hgt} output_file
 l lat_1 lon_1 lat_2 lon_2

proj_idx: projection index
center_lat: central latitude or latitude of tangent point
center_lon: central longitude or longitude of tangent point
rotation: projection rotation
orbit_hgt (optional): height of orbit (km) for SATELLITE_VIEW only
output_file: name of geographic information file to write
l: the character "l"
lat_1: latitude of the first corner
lon_1: longitude of the first corner
lat_2: latitude of the opposing corner
lon_2: longitude of the opposing corner

3. For the Cartesian range mode, the usage is as follows:

maksuparg proj_idx center_lat center_lon rotation {orbit_hgt} output_file
 x min_x max_x min_y max_y

proj_idx: projection index
center_lat: central latitude or latitude of tangent point
center_lon: central longitude or longitude of tangent point
rotation: projection rotation
orbit_hgt (optional): height of orbit (km) for SATELLITE_VIEW only
output_file: name of geographic information file to write
x: the character "x"
x_min: smallest x value
x_max: largest x value
y_min: smallest y value
y_max: largest y value

4. For the offset distance mode, the usage is as follows:

maksuparg proj_idx center_lat center_lon rotation {orbit_hgt} output_file
 o base_lat base_lon left right bottom top

proj_idx: projection index
center_lat: central latitude or latitude of tangent point
center_lon: central longitude or longitude of tangent point
rotation: projection rotation
orbit_hgt (optional): height of orbit (km) for SATELLITE_VIEW only
output_file: name of geographic information file to write
o: the character "o"
base_lat: latitude of the base point
base_lon: longitude of the base point
left: distance in km from base point to the left edge
right: distance in km from base point to the right edge
bottom: distance in km from base point to the bottom edge
top: distance in km from base point to the top edge

In this case, if left=right and bottom=top, then the user can just
enter the left/right and bottom/top.

5. For the grid definition mode, the usage is as follows:

maksuparg proj_idx center_lat center_lon rotation {orbit_hgt} output_file
 g def_lat def_lon base_lat base_lon dx dy nx ny {earth}

proj_idx: projection index
center_lat: central latitude or latitude of tangent point
center_lon: central longitude or longitude of tangent point
rotation: projection rotation
orbit_hgt (optional): height of orbit (km) for SATELLITE_VIEW only
output_file: name of geographic information file to write
g: the character "g"
def_lat: latitude of point that defines distance scaling
def_lon: longitude of point that defines distance scaling
base_lat: latitude of the reference corner

base_lon: longitude of the reference corner
dx: x grid spacing in km
dy: y grid spacing in km
nx: number of grid points in the x direction
ny: number of grid points in the y direction
earth (optional): radius of earth to use in km, defaults to 6371.

6. For the ASCII map points file mode, the usage is as follows:

maksuparg proj_idx center_lat center_lon rotation {orbit_hgt} output_file
 a map_file extra minwidth maxwidth

proj_idx: projection index
center_lat: central latitude or latitude of tangent point
center_lon: central longitude or longitude of tangent point
rotation: projection rotation
orbit_hgt (optional): height of orbit (km) for SATELLITE_VIEW only
output_file: name of geographic information file to write
a: the character "a"
map_file: the name of the file containing map points in ASCII format
extra (optional): extra margin in km added around the area of the points
minwidth (optional): minimum width of the area in km
maxwidth (optional): maximum width of the area in km

If the "a" is upper case, this mode will not square off the area.

7. For the binary map points file mode, the usage is as follows:

maksuparg proj_idx center_lat center_lon rotation {orbit_hgt} output_file
 b map_file extra minwidth maxwidth

proj_idx: projection index
center_lat: central latitude or latitude of tangent point
center_lon: central longitude or longitude of tangent point
rotation: projection rotation
orbit_hgt (optional): height of orbit (km) for SATELLITE_VIEW only
output_file: name of geographic information file to write
b: the character "b"
map_file: the name of the file contain map points in binary format
extra (optional): extra margin in km added around the area of the points
minwidth (optional): minimum width of the area in km
maxwidth (optional): maximum width of the area in km

If the "b" is upper case, this mode will not square off the area.

8. For the mode which moves a domain to eliminate border overlap with
another file, the usage is as follows:

maksuparg input_file mod_file n output_file

input_file: path to existing file whose domain to move
mod_file: path to existing modifier geo file
n: the character "n"
output_file: name of geographic information file to write

9. For the mode which expands the domain of an existing file to include
another, the usage is as follows:

maksuparg input_file mod_file u output_file

input_file: path to existing file whose domain to expand
mod_file: path to existing modifier geo file
u: the character "u"
output_file: name of geographic information file to write

10. For the mode which restricts the domain of an existing file to the
intersection with another, the usage is as follows:

maksuparg input_file mod_file i output_file

input_file: path to existing file whose domain to restrict
mod_file: path to existing modifier geo file
i: the character "i"
output_file: name of geographic information file to write

11. For the mode which prints the percent overlap between two files,
(relative to the coverage of the first file) the usage is as follows:

maksuparg reference_file in_question_file p

reference_file: path to reference file
in_question_file: path to file whose relative size you wish to know
p: the character "p"

Note: If the overlap is less than 1% but greater than zero, 1 is
returned. 0 is returned only for a no-overlap situation.

12. For the arguments recreation mode, the usage is as follows:

maksuparg file {lat lon}

file: geographic information file whose creation arguments to retrieve
lat (optional): center lat for offset distance mode
lon (optional): center lon for offset distance mode

Author: Jim Ramer
Last update: 6 Apr 04

makthermo

makthermo is a standalone program that is used for making thermodynamic
depictors. The program operates in two modes; one where the corners
of the diagram are given in temperature and pressure, and one where
the corners are given in the arbitrary x/y coordinates of the diagram.

User note 1:
Where diagram indicies are refered to, here is their meaning:
1 = P_T_LINEAR
2 = SKEW_T
3 = STUVE
4 = P_LOG_T_LIN

User note 2:
Temperatures can be input in either C or K, pressures can be input
in either pascals or millibars. Aspect ratios are in units of degK/pas,
a value of 0.00033 is nominal for a run of the mill skewT with an origin
at 1000mb.

User note 3:
This routine cannot add the optional lat and lon that can be included
in a thermodynamic depictor file. However, a thermodynamic depictor file
is just an ascii file, so a user can append a line with a latitude, then
append a line with a longitude.

For the temperature and pressure corners mode, the usage is as follows:

makthermo diag_idx p_origin t_origin aspect thermo_dep t \
 press_1 temp_1 press_2 temp_2

diag_idx: diagram index.
p_origin: pressure where arbitrary x and y are both 0.
t_origin: temperature where arbitrary x and y are both 0.
aspect: aspect ratio of the diagram.
thermo_dep: the name of the thermodynamic depictor file to write.
t: the letter `t'.
press_1: pressure of one corner.
temp_1: temperature of one corner.
press_2: pressure of opposite corner.
temp_2: temperature of opposite corner.

For the cartesian corners mode, the usage is as follows:

makthermo diag_idx p_origin t_origin aspect thermo_dep x \
 min_x max_x min_y max_y

diag_idx: diagram index.
p_origin: pressure where arbitrary x and y are both 0.

t_origin: temperature where arbitrary x and y are both 0.
aspect: aspect ratio of the diagram.
thermo_dep: the name of the thermodynamic depictor file to write.
x: the letter `x'.
min_x: minimum x value on the diagram.
max_x: maximum x value on the diagram.
min_y: minimum y value on the diagram.
max_y: maximum y value on the diagram.

Author: Jim Ramer
Last update: 6 Jun 98

makxsect

makxsect is a standalone program that is used for making cross section
depictor files, which can be either time-height or space height.

User note 1:
The default vertical representation for all cross sections is a log pressure
vertical coordinate with 1050mb at the bottom and 150mb at the top.

User note 2:
Where projection indices are refered to, here is their meaning:
1 = STEREOGRAPHIC
2 = ORTHOGRAPHIC
3 = LAMBERT_CONFORMAL
4 = AZIMUTHAL_EQUAL_AREA
5 = GNOMONIC
6 = AZIMUTHAL_EQUIDISTANT
7 = SATELLITE_VIEW
8 = CYLINDRICAL_EQUIDISTANT
9 = MERCATOR
10 = MOLLWEIDE
16 = AZIMUTH_RANGE
17 = RADAR_AZ_RAN

The most common usage for creating time-height cross sections is as follows:

makxsect xsect_dep seq_num lat lon

xsect_dep: The name of the xsect depictor file to write.
seq_num: Two time-height depictors with different sequence numbers cannot
 overlay even if their vertical representations are the same.
lat: Latitude of the time-height cross section.
lon: Longitude of the time-height cross section.

The most common usage for creating spatial cross sections is as follows:

makxsect xsect_dep 6 lat lon lat lon {lat lon} ...

xsect_dep: The name of the xsect depictor file to write.
6: The number `6', which means baseline is computed using an azimuthal
 equidistant projection.
lat (optional): Latitude of a baseline point (must be at least 2).
lon (optional): Longitude of a baseline point (must be at least 2).

The complete usage allows the user control of the vertical representation
and the projection upon which spatial baselines are computed. The
complete usage description is as follows:

makxsect xsect_dep geo_proj {c cen_lat cen_lon} {vcoord bottom_p top_p} \
 {lat lon} {lat lon} {lat lon} ...

xsect_dep: The name of the xsect depictor file to write.
geo_proj: Either a sequence number, projection index, or a geographic
 depictor file.
c (optional): The letter `c', which specifies that center lat and lon follow.
cen_lat (optional): Center latitude of projection cross section is based on.
cen_lon (optional): Center longitude of projection cross section is based on.
vcoord (optional): Either a 'p' for log p vertical coordinate, or 'P' for a
 linear p vertical coordinate.
bottom_p (optional): Pressure of the bottom of the cross section.
top_p (optional): Pressure of the top of the cross section.
lat (optional): Latitude of one baseline point.
lon (optional): Longitude of one baseline point.

If one provides a geographic depictor file and no baseline points, this
routine will provide a cross section baseline with the lower left and
upper right corners of the depictor file as baseline points. One can
specify the geographic depictor that the baseline is computed with either
by directly supplying it or by specifying a projection index and a
center point. Supplying only one baseline point is a signal to create
a time-height depictor.

Author: Jim Ramer
Last update: 6 Jun 98

newGELTmaker
1) Introduction

newGELTmaker is a standalone program that is used to create geographic entity lookup tables
(GELTs). GELTs are central to how warnGen works; it is how warnGen can find out what
counties, cities, or zones are in an arbitrary geographic area. newGELTmaker has the same basic
functionality as the older program makeGeoTables, but is more powerful and more flexible. The
program makeGeoTables is obsolete and has been removed from AWIPS.

The usage of newGELTmaker is as follows

newGELTmaker {-v} gelt_script_file
Most of this document will be devoted to describing how GELT script files work. When the -v is
present, newGELTmaker will just list the pathname of one of the files that the GELT script will
try to write, followed by the pathnames of all the files that the GELT script will try to read.
Otherwise it will try to generate one GELT based on the contents of the GELT script.

2) Geographic Entity Lookup Tables

At this point it is helpful to the discussion to say something more about geographic entity lookup
tables (GELTs).

A GELT is a table that allows the client to get information about which geographic entities exist
at some point or within some area. A geographic entity might be a city, a county, or a forecast
zone, for example. A GELT is composed of six parts, each being a file with the same path name
except for the extension. The file with a `.gelt' extension contains a description of the grid on
which the table is based and a list of the rest of the files in the GELT. Because the .gelt file
contains a list of the rest of the files, one can alias a GELT by just creating a symbolic link for
the .gelt file. The file with a `.id' extension contains the earth coordinates and ASCII identifiers
associated with each geographic entity in the table. The file with the `.entity' extension lists each
contiguous area in the table and maps each contiguous area to one or more identifiers in the `.id'
file. The file with the `.table' extension is a grid of 2-byte integers, each a pointer to an item in
the `.entity' file. The files with the extensions `.NS' and `.EW' contain information about how far
north, south, east, or west within an entity a given point is. When created, the files that make up a
GELT are written to the localizationDataSets/LLL/ directory.

The .entity, .table, .NS, and .EW files contain either binary data or data that are hard to make
sense of except by programs, and the format and contents of the .gelt file are pretty
straightforward. However, the contents of the .id files are both human viewable and important
enough to understand that they will be described in detail here. To begin the discussion, here are
the contents of the first three lines of an arbitrary .id file that is part of a GELT:

 93
 1 40.714 -103.107 a 1 LOGAN |ne CO| COC075 | BOU
 2 40.871 -102.354 a 2 SEDGWICK |ne CO| COC115 | BOU

Should the reader be curious, this is from the warning county table of a BOU localization, but
that is not important for now. The first line is always a count of the total number of entries in the
file. The first 5 fields on each entry line are space delimited. The first and fifth field are sequence
numbers that should be considered internal to the GELT software. The second and third fields
are a latitude and longitude. The fourth (`a' in this example) is the entity type. A type of `p'
means the entity is a point entity represented by one grid point. The other types mean that the
entity is an area entity represented by multiple grid points. For area entities, the exact type
corresponds to how the centroid used for computing north, south, east, and west was calculated.
The `a' as in the example means that the centroid is area weighted. An `A' means the centroid
was an arbitrary point supplied by the user. An `m' means the centroid is the point within the
entity furthest from any boundary. The user should note that the lat/lon in the ID file is always
the same as the `m' style centroid, not necessarily the same as the north-south-east-west centroid.

After the first five space-delimited fields is the arbitrary text associated with each entity. The
software that reads GELTs recognizes the vertical bar as a field delimiter. Later on as we discuss
the complexities of output text formatting, keep in mind that the goal of that is precise control
over the creation of this arbitrary text.

3) Input data sets

As tables are built, there are two main things that go into the creation of the information
concerning each entity: the text associated with it and its areal coverage. Sometimes the
information that defines both the text and the areal coverage will come from the same file,
sometimes it will come from different files.

There are three kinds of files from which the information about the text associated with each
entity can be obtained: cities files, ID files, and shape files. The ID file type has exactly the same
format as described in the previous section. Shape files are the public domain format of files
used by the ArcInfo GIS system, and AWIPS uses them as its primary format of cartographic
data exchange. The default set of shape files for AWIPS lives in the directory
localization/nationalData/ and comes in triplets with extensions of .shp[.z], .shx, and .dbf. The
AWIPS software that reads shape files can decompress them on the fly so they often exist in a
compressed state. To learn about how to query shape files for their list of attributes, please see
shp2bcd.

Currently, the default configuration recognizes only one file that is in the cities format,
/awips/fxa/data/CitiesInfo.txt. A site may also optionally supply an override file called
LocalCitiesInfo.txt. Though referred to as a cities file, this file may have other kinds of locations
in it (national parks, military bases, etc.) that are not necessarily municipalities. A cities file is a
plain ASCII file with one entry per line. Here is the format of each line:

 latitude longitude goodness state name|n?
The fields `latitude' and `longitude' are, of course, the location of the place in question. The field
`goodness' is used for progressive disclosure and so is not usually applicable for building
GELTs. The field `state' normally just contains a two character postal abbreviation. Optionally,
additional text can follow the postal abbreviation in the `state' field that allows two cities with

the same name in the same state to nonetheless be identified as unique. Unlike other fields, the
`name' field can have any number of spaces in it. If two or more entries occur that have identical
`name' and `state' fields, only the last entry is used. If the `|n?' is present, then this city is
important to the warning function. If this is not present, then this entry will usually not be used as
an input to a GELT. If n is 1 it is a major city, 2 represents a location of average importance, and
3 is for a minor location. Occasionaly, n will be `01' which is used when a city is actually a
city/county hybrid. The `?', if present, is the character `=', `+', or `~', and means that this city is
too large in area to be considered a point. The `+' means use an area-weighted centroid, `~'
means use the point farthest from any border as the centroid, and `=' means use the supplied
point as the centroid. The centroid is a point used to calculate what is north, south, east, or west
in the city. The `+', `=' and `~' correspond to the centroid types `a', `A', and `m' mentioned in the
previous section.

The most important thing to remember about configuring the output text is that it is always based
on attributes. While the shape files are technically the only file format mentioned here that has
attributes, the ID files and cities files have virtual attributes. For the ID files, the virtual attributes
that exist are `ZERO', `ONE', `TWO', `THREE', `FOUR', `FIVE', `SIX', and `SEVEN'. ZERO
means the whole associated text string, and ONE through SEVEN refer to the individual vertical
bar delimited fields that may exist. If no vertical bars exist, then ZERO and ONE mean the same
thing and the rest are undefined. For cities files, the virtual attributes that exist are `RAW',
`STATE', `SUFFIX', `NAME', `LEVEL', and `CTYPE'. RAW means all text from the `state'
field to the end of the line. STATE means the two character postal ID in the `state' field, and
SUFFIX refers to any additional characters in that field. NAME is the text of the `name' field,
LEVEL is the text of the `n' field, and CTYPE is the text of the `?' field. The fact that
newGELTmaker treats all these file types as having attributes (virtual or otherwise) allows one to
use the same methodology to create the output text for each file type.

For point entities, the areal coverage is determined by just a single lat/lon point. Thus, the areal
coverage of a point entity is usually determined from the same file used to derive its associated
text. For area entities, one needs to use either a shape file or a .bcd file to define the areas of the
entities. Thus, it is possible to define a GELT with area entities completely from a single shape
file. However, if one wants to define a GELT with area entities using information from an ID file
or a cities file to provide the associated text, then one must define the areal coverage using a .bcd
file or a .shape file.

The final type of input data set is the special override file. Like a bcd file, this kind of file cannot
result in adding entities to a GELT, but only can modify entities that are added from other files.
Each line in a special override file is as follows:

 - t lat lon id_string @
All the items in a special override file entry must retain this order. However, each item except for
the `id_string' item is optional. The `id_string' item is used as cross reference to an entry that has
already been defined somehow from one of the other file types. If the `-' (literal minus sign) is
present, it means do not use a shape file to define the area of the entity; this usually means fall
back to using a bcd file to define the area even though a shape is available for the entity. If the `t'
is present, it must be one of the single letter centroid type codes just like one finds in an ID file
(a, A, m, or p); this allows the user to change how the centroid is defined. If present, the `lat' and

`lon' fields must be latitude and longitude in degrees N and E; this allows the user to supply and
alternate location for the entity. This only affects the calculation of what is north, south, east, and
west if the A centroid type is in effect, and will affect the actual location in the table if the p
centroid type is in effect. The `@' (literal at sign) item, if present, allows grid points in this entity
to overwrite grid points that have already been defined.

4) GELT script files

GELT script files are plain ASCII files that contain one keyword/value pair on each line. The
keyword occurs first on the line, followed by the value, space delimited. If the user wants to
preserve multiple spaces in the value, the value can be placed in double quotes. Blank lines are
OK, and the software that reads the GELT script files understands C++ style // comments.

There are three main types of keywords, those that pertain to the whole GELT script (global
keywords), those that introduce an input file (file keywords), and those that determine how an
input file will be used to create the GELT (usage keywords). The global keywords and file
keywords may appear anywhere in the GELT script. The usage keywords must appear after the
file keyword to which they are meant to apply but before the next file keyword.

4.1) Global keywords

geo_file
Allows the user to specify the name of the depictor file (minus the .sup extension) on which the
GELT will be based. This must be supplied for a GELT to be successfully built.

grid_size
Allows the user to specify the spatial resolution of the GELT. If greater than 50, it is assumed to
be the number of grid points in the dimension of the depictor file with the greatest extent.
Otherwise, it can be a floating point value that is the grid point resolution in kilometers. This
must be supplied for a GELT to be successfully built.

output_file
Allows the user to specify the name of the GELT file to be created. This is given minus any of
the different extensions (.gelt, .table, .entity, .id, .NS, .EW) that make up the parts of the GELT.
This must be supplied for a GELT to be successfully built.

supress_file
If not present, this defaults to the argument of the output_file keyword plus a .suppress
extension. This file contains a list of entities for which the creation of positional information will
be suppressed. Positional information is what is written into the .NS and .EW files; this is
information about how far north/south/east/west one is within the entity. Each line in this file
should contain a string referring to one entity, that string being the same as is produced by the
unique_fmt and unique_attr keywords. A line ending in an optional :ns will suppress only
north/south positional information for that entity, and a line ending in an optional :ew will
suppress only east/west positional information. If the argument supplied to the supress_file
keyword is exactly one character long, this functionality will be disabled. It will not cause a

problem if the file ultimately referred to does not exist or is empty; that just means that no
entities will have the creation of positional information suppressed.

diag_dump
Allows the user to specify that additional diagnostics should be sent to stderr. A value of 0
(default) means that no additional diagnostics will appear. A value of 1 means high level
diagnostics, 2 means verbose diagnostics, 3 means diagnostics for each entry in all the input
files, and 4 means diagnostics for each individual edit of an attribute value.

topologic
A value of `true' slightly changes the way areas based on .bcd files are calculated. Sacrifices
some accuracy near boundaries in order to be more sure that closed boundaries do not "leak."

inside
If present, invokes a strategy for building the GELT that assumes that one and only one entity
exists, defined by a .bcd file. The value is the ID string associated with areas inside this entity.

outside
If present, invokes a strategy for building the GELT that assumes that one and only one entity
exists, defined by a .bcd file. The value is the ID string associated with areas outside this entity.

bcd_file
The argument is the path to a .bcd file to read in. There can be any number of bcd_file keywords.

bcd_warn
If the value for this keyword is `true', the user will be warned if a .bcd file cannot be read in.

4.2) File keywords

File keywords can be divided into two main types, regular and override. Regular file entries
designate files that can be used to add entities to a GELT from that file. Override file entries
designate files that can only modify entities created from a regular file. The first three keywords
listed here refer to regular files, the last three to override files. The user should note that an
override file entry will never do anything unless there is a corresponding `override_with' (see
next section) keyword applied to some regular file.

add_by_shape
The argument to this keyword is a name of a shape file set (minus the .shp, .shx, or .dbf
extensions) that will be used to directly add entities to the GELT.

add_by_id
The argument to this keyword is a name of an ID file that will be used to directly add entities to
the GELT.

add_by_cities
The argument to this keyword is the name of a cities file that will be used to directly add entities
to the GELT.

special_override
The argument to this keyword is a name of a special override type of file that will be used to alter
the characteristics of entities defined in the GELT using other file types.

shape_override
The argument to this keyword is a name of a shape file set (minus the .shp, .shx or .dbf
extensions) that will be used to define the area of coverage for entities that have been defined
using a different file.

id_override
This file allows one to override the centroid type, point location, and associated text for an
existing entity with the information from an ID file.

4.3) Usage keywords

override_with
This keyword is meaningful only for regular files. The argument to this keyword is the name of
an override file that can be applied to this file to change certain characteristics of some entities.
One regular file may have any number (including zero) of override files associated with it.

warn
If the value of this keyword is "true", a warning will be output to standard error if this input file
cannot be read.

overlay
If the value of this keyword is "true", then entities defined from this file can displace already
defined entities. Under normal circumstances, once a grid point has been assigned to an entity, it
cannot be reassigned to another. The exception is for point entities, which always will displace
grid points associated with existing area entities. When a point entity is located at the same grid
point as an already existing point entity, then both point entities will be linked to that grid point.

output_attr
The value of this keyword is the attribute list for creating the associated text for each entity. It
combines with the format string that is given as an argument to the output_fmt keyword to define
the text that eventually appears in the .id file in the GELT for each entity from this file. See
section 5.2 for an explanation of attribute lists and format strings.

output_fmt
The value of this keyword is the format string for creating the associated text for each entity. It
combines with the attribute list that is given as an argument to the output_attr keyword to define
the text that eventually appears in the .id file in the GELT for each entity from this file. See
section 5.2 for an explanation of attribute lists and format strings.

unique_attr
The value of this keyword is the attribute list for creating the text that identifies each unique ID.
If two entries in a file end up having the same value for this resulting text, they will be combined
into a single entity. This works in conjunction with the format string given as an argument to the
unique_fmt keyword to control how this text is generated. See section 5.2 for an explanation of
attribute lists and format strings.

unique_fmt
The value of this keyword is the format string for creating the text that identifies each unique ID.
If two entries in a file end up having the same value for this resulting text, they will be combined
into a single entity. This works in conjunction with the attribute list given as an argument to the
unique_attr keyword to control how this text is generated. See section 5.2 for an explanation of
attribute lists and format strings.

filter_attr
The value of this keyword is the attribute list for creating the text that allows one to control
which entities from the file actually end up being used in the final GELT. The text that results
from this must match the regular expression given as an argument to the filter_exp keyword and
not match the argument to the keyword filter_exp_not. If no argument is given to either
filter_exp or filter_exp_not, then this feature is disabled, and if only one of these is present then
only one test is made. This works in conjunction with the format string given as an argument to
the filter_fmt keyword to control how this text is generated. See section 5.2 for an explanation of
attribute lists and format strings.

filter_fmt
The value of this keyword is the format string for creating the text that allows one to control
which entities from the file actually end up being used in the final GELT. The text that results
from this must match the regular expression given as an argument to the filter_exp keyword and
not match the argument to the keyword filter_exp_not. If no argument is given to either
filter_exp or filter_exp_not, then this feature is disabled, and if only one of these is present then
only one test is made. This works in conjunction with the format string given as an argument to
the filter_fmt keyword to control how this text is generated. See section 5.2 for an explanation of
attribute lists and format strings.

filter_exp
The presence of this keyword activates a feature that allows one to eliminate individual entities
in a file from inclusion in a GELT based on not matching the regular expression given as an
argument to this keyword. Only those entities where this regular expression matches with the
string resulting from the filter_attr and filter_fmt keyword arguments will be included in the
GELT. If the filter_exp_not keyword is also present then both tests must pass for an entity to be
included.

filter_exp_not
The presence of this keyword activates a feature that allows one to eliminate individual entities
in a file from inclusion in a GELT based on matching the regular expression given as an
argument to this keyword. Only those entities where this regular expression does not match with

the string resulting from the filter_attr and filter_fmt keyword arguments will be included in the
GELT. If the filter_exp keyword is present then both tests must pass for an entity to be included.

centroid_attr
The value of this keyword is the attribute list for creating the text that allows one to control on an
individual basis what the centroid type is for each entity. The text that results from this is
compared to the values associated with the keywords median_value, user_value, and point_value
to determine the centroid type to use. This works in conjunction with the format string given as
an argument to the centroid_fmt keyword to control how this text is generated. See section 5.2
for an explanation of attribute lists and format strings.

centroid_fmt
The value of this keyword is the format string for creating the text that allows one to control on
an individual basis what the centroid type is for each entity. The text that results from this is
compared to the values associated with the keywords median_value, user_value, and point_value
to determine the centroid type to use. This works in conjunction with the attribute list given as an
argument to the centroid_attr keyword to control how this text is generated. See section 5.2 for
an explanation of attribute lists and format strings.

median_value
By default, the centroid type of entities generated from a shape file is an area weighted centroid.
If the text resulting from the centroid_attr and centroid_fmt keyword arguments equals this, then
this entity will use the point farthest from any boundary for the centroid that determines how far
north, south, east, and west points are.

user_value
By default, the centroid type of entities generated from a shape file is an area weighted centroid.
If the text resulting from the centroid_attr and centroid_fmt keyword arguments equals this, then
this entity will use the a user supplied point for the centroid that determines how far north, south,
east, and west points are.

point_value
By default, the centroid type of entities generated from a shape file is an area weighted centroid.
If the text resulting from the centroid_attr and centroid_fmt keyword arguments equals this, then
this entity will be considered to be a point entity.

lat_attr
Except for shape files, all input file types naturally come with a user-defined lat/lon point. If one
needs a user-defined lat/lon point from a shape file, one needs to identify the attributes from
which this information comes. The argument to this keyword must be the name of an attribute of
type double that contains latitude values in degrees (north positive).

lon_attr
Except for shape files, all input file types naturally come with a user-defined lat/lon point. If one
needs a user-defined lat/lon point from a shape file, one needs to identify the attributes from

which this information comes. The argument to this keyword must be the name of a attribute of
type double that contains longitude values in degrees (east positive).

5.0) Text formatting and its application

There are two ways that text is used in creating GELTs, and they both require very precise
control of how text is formatted in order to function correctly. First, the text associated with each
entity in the .id file is created in this way. Second, when an entity defined from one input file is
modified somehow by the contents of another file, there must be a way to cross-reference each
entity in the file with the specific entity in the other file from which the supplemental
information is obtained. This is also done through text strings.

Section 5.1 describes how the various kinds of text associated with each entity work to perform
this functionality. Section 5.2 describes exactly how to format a single text string.

5.1) Associated text and cross-referencing

In section 4.3, the reader will notice that there are four instances of paired keywords with _attr
and _fmt endings. These correspond to four different types of strings that can be associated with
each entity; output, unique, filter, and centroid text.

The output text associated with each entity is what eventually gets written into the .id file part of
the GELT. To be useful, a regular file must have meaningful output text created, and thus both
output_attr and output_fmt keywords must be supplied. If output text is defined for an override
file, it only can be used for cross referencing. The concept of output text has no meaning for a
special override file.

The unique text associated with each entity is used to determine when entities within an input file
are to be considered redundant. If two entities in a file have the same unique text, then the
information from the second one replaces the information from the first one. The exception is for
polygons in a shape file, where the polygons from all file entities with that unique text are
associated with that one logical entity. This all works exactly the same whether a file is a regular
file or an override file. The ID string associated with each entity in a special override file is
always considered to be unique text. For other files, if no unique_attr and unique_fmt keyword
are supplied, the unique text defaults to the output text.

The filter text associated with each entity is used to eliminate certain entities based on the text
associate with them. This feature is activated only if an argument has been supplied for one or
both of the filter_exp and filter_exp_not keywords. If the filter text associated with an entity does
not match the regular expression supplied with the filter_exp keyword, then that entity will be
ignored. If the filter text associated with an entity matches the regular expression supplied with
the filter_exp_not keyword, then that entity will be ignored. If text exists for both keywords, then
the filter text must both match the filter_exp argument and not match the filter_exp_not
argument to be included. This all works exactly the same whether a file is a regular file or an
override file, but is not applicable to a special override file. If no filter_attr and filter_fmt
keyword are supplied, the filter text defaults to the unique text.

The centroid text associated with each entity is used to control which centroid option is used with
shape files. Other input file types have their own specific means of controlling this. The default
centroid type is the area-weighted centroid. If the centroid text is the same as the value supplied
with the median_value keyword, the the point furthest from the boundary will be used. If the
centroid text is the same as the value supplied with the user_value keyword, the the user-supplied
latitude and longitude will become the centroid. If the centroid text is the same as the value
supplied with the point_value keyword, the entity will be defined by a single grid point at the
user-supplied latitude and longitude.

If a regular file has one or more override_with keywords associated with it, then an attempt will
be made to find a corresponding entity in that override file. If such a match is found, then certain
characteristics of the entity in the regular file will be replaced with those in the corresponding
entity from the override file. A match is found if either the output text, the unique text, or the
filter text of an entity in the regular file matches any of those for an entity in the override file. By
this we mean that a match could be found if an output text item from the regular file matched a
filter text item from the override file. It does not necessarily have to be output to output, unique
to unique, or filter to filter. This liberal matching approach is flexible, but also means one needs
to be careful to avoid unintended matches.

When the override file is a shape file, the only characteristic that is acquired from the entity in
the override file is a different geographic area for the entity. When the override file is not a shape
file, the characteristics that will be transfered will be the centroid type, the user-defined location,
and whether the entity should be an overlay entity (able to have assigned to it grid points already
assigned to other entities). From a special override file, it is possible for an entity to be instructed
not to get its geographic area from a shape file; this means it will either use a bcd file or be a
point entity at the user-supplied location. From an ID file, the output text will be acquired.

5.2) Attribute lists and format strings

There are many instances where the values for two keywords ending in _attr and _fmt work in
tandem to precisely format some kind of text. These represent an attribute list and a format
string, respectively.

Here is an idealized model of what an attribute list looks like:

 ATT_A|dAAA|dAAA ATT_B|dAAA ATT_C|dAAA|dAAA|dAAA
where the vertical bars are literal. Also, here is an idealized model of what a format string looks
like:
 %s some text | %f more text | %d
where the vertical bars and percent signs are literal. One should note that there is no necessary
direct connection between the vertical bars in the attribute list and those in the format string. The
ones in the attribute list are there because the vertical bar is the delimiter between attributes and
each of their corresponding edit directives. The vertical bars in the format string are there
because the text associated with each entity needs vertical bars to separate it logically into fields
for the GELT software.

In the model attribute list, ATT_A, ATT_B, and ATT_C are attributes of any type, of which
there can be any number. Each attribute can have any number of edit directives attached to it,
separated by vertical bars but no spaces. The `d' refers to the directive type, and the AAA refers
to the directive argument. The edit directive is always a single character, but the argument can
have any number of characters in it, or possibly be non-existent. The way the final output string
is created is to interpret each attribute value with its corresponding format descriptor to create a
piece of text, apply each edit directive in turn, then reinsert the resulting text into the format
string to produce the final output string. The format descriptors in the format string are any legal
C language format descriptors that end in `d', `f', or `s'. Examples would be `%d', `%s', `%f',
`%10s', `%5.3f', `%4d', etc. The first format descriptor in the format string applies to the first
attribute in the attribute list, the second format descriptor applies to the second attribute, and so
on.

Here is a table of the edit directives and how their arguments are interpreted:

directive
character function and argument interpretation

Remove leading and trailing spaces, no argument used.
^ Make all upper case, no argument used.
v Make all lower case, no argument used.
< Prepend text of the argument.
> Append text of the argument.
{ Argument is how many characters to remove from beginning of string.
} Argument is how many characters to remove from end of string.
[Argument is length to which to truncate string from the beginning.
] Argument is length to which to truncate string from the end.

P
Parse string using first character of the argument as delimiter. Remainder of
argument is which field to use in output: >0 means count from beginning, <0
means count from end.

p Same as uppercase P except delimiter is a space or, in the case where the first
character of the argument is a backslash, a vertical bar.

Here is an example. Suppose the text for your attribute list is

 ZONE|#|<00|[3 STATE ZONE|#|<00|[3
and your format string is
 %s | %sZ%s
Then, in the case where the value of the character ZONE attribute were "10 " and the value of the
character STATE attribute were "WA", this would yield an output of "010 | WAZ010". Again,
please note that the vertical bar in the format has no relationship to the vertical bars in the edit
directives.

Author: Jim Ramer
Last update: 5 Jan 06

pasteUtil

pasteUtil is a standalone program meant to concatenate corresponding
lines from text files together and write the resulting file to
standard output; the usage is as follows:

pasteUtil entry entry entry ...

Each entry is either a file path or a static delimiter. It is assumed
to be a file path if it does not begin with a `-'. If it does begin
with a `-', the delimiter does not include the `-'.

Each line in the output file contains the data from each corresponding
line in the input file, along with the static delimiters, in the order
they appear on the command line. The delimiters are taken literally;
no additional white space is added. To get white space, the user
needs to quote the delimiters. The length in lines of the output file
is the same as that input file with the greatest number of lines.
Once one of the input files runs out of lines, it is assumed to
contain enough empty lines after that to complete the operation.

Author: Jim Ramer
Last update: 6 Jun 98

processStyleInfo

processStyleInfo is a standalone program that produces the style
entries for gridded data, using as input the contents of four tables:
arrowStyle.rules, gridImageStyle.rules, contourStyle.rules, and
iconStyle.rules. The files created are arrowStyle.txt,
gridImageStyle.txt, contourStyle.txt, and iconStyle.txt.
gridDepictKeys.txt is also modified to handle changes in display units
required by the .rules files. For a complete description of how these
grid tables work, one is directed to the file

 localization/nationalData/styleRules.doc

The usage for processStyleInfo is as follows:

processStyleInfo {v} {x} {t} {c}

v (optional): Causes some diagnostics to be written to standard output.
x (optional): Completely expands out all key entries. Normally, many cross
 section style entries are abreviated because they are so much
 like many other cross section style entries.
t (optional): Terse form, which is used in the localization. No titles in
 style entries.
c (optional): Causes keys to be compressed into base 32 format.

Author: Jim Ramer
Last update: 8 Jul 99

Range Azimuth Calculations

This program is a standalone program for doing range azimuth calculations.
The results are directed to standard output. The units of vectors are
kilometers, with azimuths in degrees from north.

The usage is as follows:

rangeAzimuth {i} {x} {v} lat lon arg3 arg4

i (optional): Output int integer format, otherwise floating point.
x (optional): Vectors are assumed to be cartesian, otherwise in
range/azimuth.
v (optional): Input location and offset vector, outputing resultant location,
 otherwise input two locations, outputing vector.
lat: Latitude of starting location.
lon: Longiitude of starting location.
arg3: Latitude of second location or range/x coordinate of vector.
arg4: Longitude of second location or azimuth/y coordinate of vector.

Author: Jim Ramer
Last update: 6 Jun 98

reformatTest

reformatTest is a standalone program that can be used to
manage, test, and create netCDF files in the new format used
for adaptable plan view plots. See adaptivePlanViewPlotting
for more information.

One of the primary functions of this program is to allow the user
to take netCDF data sets that were not created using the new
NetcdfPointData class and convert them to that format.

This program will never cause previously existing output files
to be deleted or have data removed from them. It will only create
new time stamped files in a directory, add records to an existing
file or overwrite existing data items in an existing record.

The usage for reformatTest is as follows:

reformatTest {s} {l} {a} {n} output input {delta {round {fcst} } }

s (optional): A literal `s', output data is considered static if present.
l (optional): A literal `l', output data is considered to be primarily
 identified by a lat/lon instead of a site ID if present.
a (optional): A literal `a', input is ASCII if present.
n (optional): A literal `n', program will issue notifications if present.
output: The directory (or file in the static case) where data will be
 written.
input: The path to the file from where the data will be read.
delta (optional): Times from input file will have this time offset
 added to them. 0 is the default.
round (optional): Times from input file will be rounded to this time offset.
 If 0 (the default) no rounding will occur.
fcst (optional): If supplied, an extra valid time will be supplied offset
 by this from the times in the input file.

The time offset values supplied in the `delta', `round' and `fcst'
arguments are assumed to be in hours if the magnitude is less than
1800 and in seconds otherwise.

If the `s' option has been selected, the `output' argument needs to
be the path to an actual file rather than a directory.
In either case, an actual netCDF file of the correct format needs
to already exist. In the static case, the file itself must already
exist. In the default case, a file named literally `template' must
exist in the directory. The template or blank static files is generally
created using the command `ncgen'.

The `input' argument is normally another netCDF file with roughly the
same set of client variables, but not necessarily the `record management
variables' specific to the new point data format. If the `a' flag is
present, then the input file is an ASCII file the format of which
follows.

If the `l' option has been selected, then this must be a data set where

records are primarily identified by lat/lon instead of an ID. If this
is so, then the :idVariables attribute in the .cdl file for this data
set will list the latitude and longitude variables.

Here is a idealized view of the contents of an ASCII input file for
the reformatTest program. In this treatment the strings `//', `|',
`id:' and `time:' are literal; everthing else is idealized.

// Comment
id: idtext | idtext ...
time: stamp | stamp ...
varName | dataItem | dataItem | dataItem ...
varName | dataItem | dataItem | dataItem ...
 :

id: idtext | idtext ...
time: timevalue | timevalue ...
varName | dataItem | dataItem | dataItem ...
varName | dataItem | dataItem | dataItem ...
 :

 :
 :

In this file, lines that are all comments, all white space, or blank
are ignored. The records to write to are chosen by a combination of
the id: and time: entries. After the id: string, there must be one
vertical bar delimited string for each variable mentioned in the
`idVariables' global attribute of the output data. For static data,
the time: lines can be left out. Otherwise, the time: line must have
one time value for each variable mentioned in the `timeVariables'
global attribute. These time values need to be encoded just like an
AWIPS file time stamp, such as 20000628_1343 for 1343Z on June 28,
2000. Alternatively, the string `x' will be interpreted as a null
time value, and a plain integer will interpreted as an offset to the
immediately previous value (again less than 1800 hours, otherwise
seconds). After an id: and time: entry, each line up until the next
id: entry is assumed to be data for that record. The varName is the
actual name of a client variable in the output netCDF file. The
dataItem fields that follow are interpreted as values for each
possible data item associated with that variable for the currently
selected record. They will be interpreted as strings or numbers as
appropriate for the type of the variable. For variables with just a
record dimension (or a record dimension and a length dimension for
character data), there will only be one value after the varName.

Author: Jim Ramer
Last update: 13 May 01

shp2bcd

This program is a standalone program for converting the information
from ARCINFO shape files into AWIPS .bcd or .bcx files, which are
the file formats that the workstation actually reads to draw map
backgrounds.

The program allows the user two different methods by which to convert
shape files into AWIPS cartographic data format. It also provides
four different methods that allow the user to summarize the contents
of a shape file in order to better use its contents. These are
summarized here and explained in detail below:

- Convert the contents of a shape file to a .bcd file.
- Convert the contents of a shape file to a .bcx file.
- Write verbose summary of a shape file to standard output.
- Write table of selected attributes to standard output.
- Write bounding box of each shape to standard output.
- Write table of selected attributes to standard output using edit
 directives.

User note 1:
The second and the last usage mode make use of edit directives,
which are summarized at the end of the file.

User note 2:
Path names to shape files should not contain the .shp, .shx, or .bdf
file extension.

For the mode that converts the contents of a shape file to a .bcd file,
the usage is as follows:

shp2bcd c shape_file bcd_file att_filter reg_exp

c: the letter `c'
shape_file: path name to the input shape_file.
bcd_file: full name of the bcd file to write.
att_filter (optional): name of character attribute to filter output with.
reg_exp (optional): regular expression that value of `att_filter' must match.

This section discusses the mode that converts the contents of a shape file
to a .bcx file. For this usage mode, one should keep in mind that the
workstation code that reads bcx files can only handle label lengths up
to 30 characters. The usage for this mode is as follows:

shp2bcd x shape_file bcd_file att_names format att_filter reg_exp

x: the letter `x'
shape_file: path name to the input shape_file.
bcd_file: full name of the bcx file to write.
att_names: attribute names plus edit directives used to make labels.
format: format string used to make labels.

att_filter (optional): name of character attribute to filter output with.
reg_exp (optional): regular expression that value of `att_filter' must match.

For the mode that writes a verbose summary to standard output,
the usage is as follows:

shp2bcd i shape_file

i: the letter `i'
shape_file: path name to the input shape_file.

For the mode that writes a table of selected attributes to standard output,
the usage is as follows:

shp2bcd a shape_file att_one att_two att_three ...

a: the letter `a'
shape_file: path name to the input shape_file.
att_one: name of an attribute to tabulate the value of.
att_two (optional): name of another attribute to tabulate the value of.
att_three (optional): name of another attribute to tabulate the value of.

For the mode that writes the bounding box of each shape to standard output,
the usage is as follows:

shp2bcd b shape_file att_one att_two att_three ...

b: the letter `b'
shape_file: path name to the input shape_file.
att_one (optional): name of a character attribute to tabulate the value of.
att_two (optional): name of a character attribute to tabulate the value of.
att_three (optional): name of a character attribute to tabulate the value of.

For the mode that writes a table of selected attributes to standard output
using edit directives, the usage is as follows:

shp2bcd e shape_file att_names format att_filter reg_exp

e: the letter `e'
shape_file: path name to the input shape_file.
att_names: attribute names plus edit directives used to create output.
format: format string used to create output.
att_filter (optional): name of character attribute to filter output with.
reg_exp (optional): regular expression that value of `att_filter' must match.

Here is an explanation of how to mold an arbitrary list of attributes
into the desired output string using edit directives.

When using the edit directives, the entire list of attributes to
used for output needs to be in a single string, so in general this
argument (`att_names') needs to be quoted, as does the `format'
argument. One can replicate simple operations using the `e' mode with

no directives. For example, the following command using the simple
tabulate operation

shp2bcd a shape_file ATT_A ATT_B ATT_C

would yield the same result as the following command using the edit
directives mode

shp2bcd e shape_file "ATT_A ATT_B ATT_C" "%s %s %s"

on the assumption that each attribute listed was a character attribute.
When using the `e' or `x' option, it is the user's responsibility to
us a %s format descriptor for character attributes, a %f format descriptor
for floating point data, and any of the various format descriptors that
work with integer data for an integer attribute.

When actually using edit directives, the attribute list argument will
look something like this

 "ATT_A|dAAA|dAAA ATT_B|dAAA ATT_C|dAAA|dAAA|dAAA"

Each attribute can have any number of edit directives attached to it,
separated by vertical bars but no spaces. The `d' refers to the
directive type, and the AAA refers to the directive argument.
The edit directive is always a single character, but the argument
can have any number of characters in it, or possibly be non-existent.
The way the final output string is created is to interpret each
attribute value with its corresponding format descriptor to create
a string, then apply each edit directive in turn, then reinsert the
resulting string into the format to produce the output string.

Here is a table of the edit directives and how their arguments are
interpreted:

directive
character function and argument interpretation

 # Remove leading and trailing spaces, no argument used.
 ^ Make all upper case, no argument used.
 v Make all lower case, no argument used.
 < Prepend text of the argument.
 > Append text of the argument.
 { Argument is how many characters to remove from beginning of
string.
 } Argument is how many characters to remove from end of string.
 [Argument is length to truncate string to from the beginning.
] Argument is length to truncate string to from the end
 P Parse string using first character of the argument as delimiter.
 Remainder of argument is which field to use in output; >0
 means count from beginning, <0 means count from end.
 p Same as uppercase P except delimiter is a space or, in the case
 where the first character of the argument is a backslash, a
 vertical bar.

Here is an example. Suppose the text for your attribute list with edit
directives were

 "ZONE|#|<00|[3 STATE ZONE|#|<00|[3"

and your format string were

 "%s | %sZ%s"

Then, in the case where the value of the character ZONE attribute were "10 "
and the value of the character STATE attribute were "WA", this would yield
an output of "010 | WAZ010". Note that the vertical bar in the format
has no relationship to the vertical bars in the edit directives.

Author: Jim Ramer
Last update: 11 Jan 02

testDepictorTable
testDepictorTable is a standalone program that is a unit test of the DepictorTable class. A
depictor table is used to optimize the remapping of points using two MapDepictor objects.
Unlike other mapping tables that do all their mapping from and to integer indices, depictor tables
remap from and to the floating point arbitrary cartesian coordinate systems of the two depictors.
This is accomplished by breaking the area affected by the remapping into many tiles, each tile
having two six-term polynomials for obtaining the output x and y coordinates. This allows this
mapping to be accomplished using no higher math functions. For the case where the output
depictor represents a radar data set, a mapping that occurs for points all near the radar will be
done using a beta-plane to polar coordinate approximation, still optimized in a way that avoids
any higher math functions.

The file containing the table will be written only if it does not already exist. Otherwise the file
containing the table will be read in to create the internal representation of the depictor table. The
filename of the table is iiii___oooo.dpt.gz where `iiii' is the name of the input map depictor file
minus the .sup extention, `oooo' is the same for the output map depictor file, with the three
underscores and the `.dpt.gz' being literal. (If the `n' option below is included, the `.gz' extension
will not be present.)

The usage of testDepictorTable is as follows:

testDepictorTable in_map out_map {precision} {i} {t} {n}

in_map The name of the input geographic depictor.
out_map The name of the input geographic depictor.
precision
(optional)

If positive, desired maximum error in km. If negative, precision will be the size of the
useful area of the mapping divided by this. Defaults to -3000.

i
(optional)

A literal flag that allows one to interactively test mapping individual points.

t
(optional)

A literal flag that allows one to do a timing test on the performance of the mapping
versus a corresponding Xform.

n
(optional)

A literal flag that allows one to suppress the compression of the table upon output.

Author: Jim Ramer
Last update: 22 Apr 02

testFileNotify

testFileNotify is a standalone program meant primarily to generate a
data notification based on the pathname to a file on the data disk.
This must be a file that has a one on one correspondence to a key.
Alternatively, it is possible to generate notifications for keys
directly. Finally, it is also possible to run the program in a
manner where arguments are taken from stdin.

For the mode that notifies files, the usage is as follows:

 testFileNotify {-altDataKeys} pathName pathName pathName ...

The user may supply any number of `pathName' arguments, which must
be the full path to the files to notify.

The optional -altDataKeys argument is a string that begins with a
literal minus sign, followed by the name of a file that the program is
supposed to read to get its data keys. For example, suppose the user
knows that only radar data keys are going to be notified. By making the
first argument -radarDataKeys.txt, the program will read in only radar
data keys instead of all data keys, which greatly speeds up the program.
If you want to know what the meaningful files for this argument are,
look at the #include entries in $FXA_HOME/data/dataInfo.txt and
nationalData/dataInfo.manual.

For the mode that notifies keys, the usage is as follows:

 testFileNotify {-altDataKeys} k key stamp {f000} key stamp {f000} ...

The -altDataKeys argument is as before. The `k' is a literal k. The
`key' argument is a data key to notify, and the `stamp' argument is a
time encoded as a standard AWIPS file time stamp. In the optional
`f000' argument, the leading f is literal, and the rest of the argument
must be an integer, which corresponds to the forecast time to use in
the notification. If that argument is less than 300, it is treated as
as hours, otherwise as seconds. There may be any number of key/stamp
entries, each one corresponding to one notification. Each key/stamp
may or may not have an accompanying f000 argument. If omitted, it
defaults to 0.

For the mode that takes arguments from stdin, the usage is as follows:

 testFileNotify

Note that running the program with no arguments at all triggers this
behavior. Each line received from stdin is assumed to be a set of
arguments for the program as described above, not including the
`testFileNotify' part. Only for the first set of arguments received
in this manner is it meaningful to use the `-altDataKeys' argument.

Author: Jim Ramer
Last update: 14 Sep 00

Testing the Grid Key Server
testGridKeyServer is a standalone program that is used to do a unit test of the GridKeyServer
object and to translate back and forth between keys and source/level/field descriptions for
gridded data. It is also use to create depictor files for predefined lat/lon cross sections and to
create volume browser menu files for predefined lat/lon cross sections and sources.

The usage is as follows:

testGridKeyServer {s} {p} {t} {v} {f} {g|G} {b} {q} {m} {k} {K} {a} {c} {d} {y}
s (optional):

List information about gridded data sources.
p (optional):

List information about gridded data planes.
t (optional):

List information about gridded data level types.
v (optional):

List information about virtual (derived) gridded data fields.
f (optional):

List information about raw gridded data fields.
g or G (optional):

Create depictor files for lat/lon cross section planes.
b (optional):

Create volume browser menu files for predefined lat/lon cross sections and sources.
Source menus as OB8.3 and previous.

q (optional):
Create volume browser menu files for predefined lat/lon cross sections and sources.
Source menus autogenerated with four categories instead of two as OB8.3 and previous.

m (optional):
Create volume browser menu files for predefined lat/lon cross sections and sources.
Source menus generated from browserSourceMenuMaster.txt.

k (optional):
User will be prompted for grid data keys and they will be parsed into source/level/field
components.

K (optional):
User will be prompted for source/level/field components and grid data keys will be
provided.

a (optional):
Same as s, p, t, v, and f, and will allow one to test some lookups.

c (optional):
List CDL files, dimensions, depictor file, and topo file for active sources.

d (optional):
List directories and CDL files for active sources.

y (optional):
Build data key entries for active gridded data source directories (for purging).

User note 1:
Using the upper case version of flags b, q, and m will suppress writing out the
browserSourceMenu_n.txt files.

User note 2:
In order to get meaningful titles for cross section planes, one needs to have run the command
`testGridKeyServer G', which also depends on having access to depictor files for display scales.
This has the most noticable impact on using the p and B options of this program.

Author: Jim Ramer
Last update: 30 April 08

testGridSliceWrapper

testGridSliceWrapper is a standalone program that was originally written
as a unit test for the GridSliceWrapper class. It can also be used
as a scripting interface into the AWIPS gridded data sets.

If invoked with no arguments, it invokes an interactive unit test, which
is really only useful to developers. However, there are five other
modes of operation which make it useful for script driven access to
the gridded data.

For the mode that summarizes available sources, fields, and planes, the
usage is as follows:

 testGridSliceWrapper l

The `l' is a literal l. In this mode the IDs of all active sources are
listed, then the IDs of all fields, then the IDs of all plan view planes,
all one per line. The sources, fields, and planes are each separated by
a blank line. The listing of field IDs includes a description if available.
The fields listed are virtual fields, which means they do not necessarily
have to represent a grid that exists in a netCDF file. They can represent
stuff that is calculated on the fly.

For the mode that provides a data access key based on a source, field,
and plane, the usage is as follows.

 testGridSliceWrapper k sourceId fieldId planeId

The `k' is a literal k. The `sourceId', `fieldId', and `planeId' arguments
are as provided by the `l' option. The key is printed to stdout. This key
is needed for all access to the data. Of particular note is the planeId of
`3D' which gives access to a three dimensional, multi level data set.

For the mode that provides inventory information, the usage is as follows:

 testGridSliceWrapper key

The argument `key' is as provided by the `k' option. The available times
are listed with intial times as a standard AWIPS file time stamp and the
forecast times in both hours and seconds.

For the mode that reads gridded data, the usage is as follows:

 testGridSliceWrapper key stamp fcst {file}

The argument `key' is as provided by the `k' option. The argument `stamp'
is a standard AWIPS file time stamp. The argument `fcst' is forecast
time. The forecast time is just an integer, assumed to be in hours

if <=300, otherwise in seconds. If the `file' argument is not provided,
the grid(s) are retrieved and some summary information is printed to
stderr. If the `file' argument is provided, the entire contents of
the grid(s) retrieved are printed as ASCII to that file, a single dash
(`-') going to stdout. As the grids are written, each line is a row of
the grid. The numbers are written in the same order as they are
held in memory, so that the first row printed is actually at the
bottom of the grid. If the data is vector data, both grids are output
and the two grids are separated by a line with asterisks. For
3D data, a line with just the vertical coordinate value is printed
before the grid. A vertical coordinate value of zero means the surface.

For the mode that reads gridded data and interpolates it to a specific
point, the usage is as follows:

 testGridSliceWrapper key stamp fcst file lat lon

The arguments `key', `stamp', `fcst', and `file' are just as with the
previous mode. The argument `lat' is latitude in degrees north and
the argument `lon' is longitude in degrees east. Each grid retrieved
as a result has its data interpolated to that point and the data is
then output in ASCII to the file selected. Each level is output on
one line; if there is only one level then just the data value(s) for
that level are output. For 3D data, each line will start with the
vertical coordinate value. Vector data is represented by two values.

Author: Jim Ramer
Last update: 06 Mar 01

test_grhi_remap

This routine is a standalone test routine for the grid remapping
software in geolib. This routine is specifically meant to handle
remaps with large numbers of grid points.

By default, both input and output gridded data is assumed to be in ascii
format, one number per line. If an extra leading plus sign is placed on the
input gridded data file name, then it is assumed that the input data file
is an NGDC terrain data file. If an extra leading minus sign is used,
then it is assumed that the input data file is a big endian version of
such (i.e. one standard signed word per value).

If an extra leading plus or minus sign is placed on the output gridded
data file name, then the output is scaled to be in the range of 1 to
254. If a plus, the data is output as a netCdf image data file. If a minus,
then the output is just a stream of bytes (image). In the netCDF case,
the file imageStyle.txt has a style info entry written to it.
If the leading character on the output file name is an equals sign, then
a file containing one standard signed word per value is written.

An output nx of zero will cause the program to clip rather than remap
the data based on the area specified by the output depictor file.
Program will print the output dimensions and write the depictor
file clipArea.sup to describe the area of the clip.

This program has the following usage:

test_grhi_remap {n null} in_grid in_geofile in_nx in_ny \
 out_grid out_geofile out_nx out_ny {mult}

n {optional}: the letter `n'; means specify the null value to use
null {optional}: must be there if the `n' is there, the null value to use
in_grid: name of file containing input grid data
in_geofile: name of geographic info file describing mapping of input grid
in_nx: number of gridpoints in the x direction in the input grid
in_ny: number of gridpoints in the y direction in the input grid
out_grid: name of file where output grid data is written
out_geofile: name of geographic info file describing mapping of output grid
out_nx: number of gridpoints in the x direction in the output grid
out_ny: number of gridpoints in the y direction in the output grid
mult {optional}: what to scale style output by

Notes: A negative ny indicates grid indices increasing down.

Author: Jim Ramer
Last update: 29 Jul 98

testPlotDesign usage documentation
testPlotDesign is a standalone program that is a unit test for the ability to parse design files and
use them to read data. (See adaptivePlanViewPlotting.html for more information on design files.)
Its basic usage is as follows:

 testPlotDesign designFile {dataKey} {station_id} {supfile} {maxdata}

The `designFile' argument need not include the full path...the software will use the standard
AWIPS file locating logic to get the directory of the designFile. If the only argument supplied is
the design file, then the designFile will be parsed and any errors reported.

If one additionally supplies a dataKey, the design file will be used to do an inventory on the data
set to which the dataKey refers. If there is a leading minus sign (-) on the key, then the inventory
will be tested but not output.

Supplying a station_id will mean the inventory will be done for only that station. If one wants to
supply arguments beyond the station ID but does not want to actually use a station ID, just
supply '' (two apostrophes) for that argument.

The supfile argument, if present, will trigger a test of data access using the given combination of
design file, data key, and the geographic area covered by the sup file. If a blank ('') argument is
supplied, then the area covered will be the whole world. The sup file can be supplied without the
directory and .sup extension.

When doing a data access test, the program will normally use the inventory to determine the
times to test for, starting with the latest and going all the way to the earliest. One can limit the
number of times to do a data access test for with the maxdata argument.

Normally performing a data access test will result in output from the test only if there are some
sort of errors being reported or the diagnostics in the design file are turned on (see
adaptivePlanViewPlotting.html section A1.1). However, if there is a scalar string item in the
design file literally called "outputText", that text will be output to standard out.

Author: Jim Ramer
Last update: 07 May 04

http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/adaptivePlanViewPlotting.html
http://esrl.noaa.gov/gsd/eds/fxa/doc/AWIPS-OB9/adaptivePlanViewPlotting.html

textBufferTest

textBufferTest is a standalone program that can do a unit test of
either the TextBuffer class or the InfoFileServer class. In either
case, the program end up using the services of the InfoFileServer to
find a file. If a file is found, some output is directed to standard
out and the program returns and exit status of 0. If no file is
found, will return an exit status of 1. The usage is as follows:

textBufferTest {-v} path_name

-v (optional): If string `-v' is present, program just verifies that the
 desired file exists and prints its full path name, otherwise
 uses the TextBuffer class to print the contents.
path_name: Path or partial path to give to the InfoFileServer.

User note:

For the unit test of the TextBuffer class, a zero length file is considered
a failure condition.

Author: Jim Ramer
Last update: 6 Jun 98

va_driver usage documentation
va_driver is a standalone driver for the routines vis_assign.c and va_advanced.c. This program
reads files which contain station locations, identifiers, and user preferences, producing a file
which can be used by the workstation to display these stations or locations using a meaningful
progressive disclosure strategy. User preference values have acquired the name `goodness
values', and the files containing these are referred to as `goodness files'. All files that this
program reads and writes are ASCII files where each line in the file refers to one station or
location. This program always writes its output to the file va_driver.out. Its usage is as follows:
va_driver goodness_file {=addtl_file} ... {primary_file}
 {s} {c} {l} {p} {a} {r} {f} {v} {V} {g} {m} {w weight} {d dist} {D}
goodness_file:

file containing station locations, identifiers, and user preferences.
addtl_file (optional):

additional file from which to get input stations/locations. Equals sign is not part of the file
name, but is used to prevent it from being interpreted as a primary_file.

primary_file (optional):
file that contains a list of identifiers for stations that are important regardless of the
preferences in the goodness file.

s (optional):
A literal flag which means the goodness file is a station file.

c (optional):
A literal flag which means the goodness file is a cities file.

l (optional):
A literal flag which means the goodness file is a location file.

p (optional):
Goodness values from 1 to 22222 are interpreted directly as progressive disclosure
distances.

a (optional):
A literal flag which means call va_advanced instead of vis_assign to do the calculation;
highly recommended.

r (optional):
If using va_advanced, convert any progressive disclosure distances to goodness values.
This allows one to catenate existing progressive disclosure files and reprocess them to
make an internally-consistent set of PD values.

f (optional):
A literal flag which means, for location files, consider the aspect ratio of the footprint of
what is to be plotted in doing the calculations.

v (optional):
Print to stdout the character s, c, or l based on the type of file being processed.

V (optional):
Print to stdout the character s, c, or l based on the type of file being processed, then
immediately exit without doing a calculation.

g (optional):
The goodness values finally used in the computation of progressive disclosure are
increased each time a station repeats in the input data.

m (optional):
Allow redundantly-named entries to be processed...otherwise will use only last
occurrence of redundantly-named entries.

w (optional):
A literal flag which means invoke a feature that allows one to balance user preferences
versus spatial uniformity.

weight (optional):
A number from 0.0 to 1.0, where 0 means consider only user preferences, 1 means
consider only spatial uniformity. 0 is the default.

d (optional):
A literal flag which means invoke a feature that allows one to consider separation in
determining station uniqueness.

dist (optional):
If d flag is present, stations with the same identifier but further apart than this will still be
considered unique. Defaults to 100km.

D (optional):
A literal flag which means separate raw Cities file records into unique and duplicates.
Output as cities.unique and cities.duplicate.

User notes:
This program operates in three main modes controlled by the 's', `c' and `l' flags. If the `s' flag is
present, the input file is a station goodness file and the output file is a station plot info (.spi) file.
If the `l' flag is present, the input file is a location goodness file and the output file is a location
plot info (.lpi) file. If the `c' flag is present, the input file is a cities file and the output file is also
a .lpi file. If none of these flags is present, the program will try to determine the format. By
convention, both station and location goodness files have a `.goodness' extension and primary
files have a `.primary'. The extensions of `.spi' for a station plot information file and `.lpi' for a
location plot information files are mandatory. If additional input files are given as arguments,
they must all have the same format as the first input file. Additional input files will always
interpret floating point goodness numbers as goodness values rather than progressive disclosure
distances. There is currently only one cities file permanently in existence, called CitiesInfo.txt.
As mentioned above, all files that this program reads and writes are ASCII files where each line
in the file refers to one station or location. The formats of each line in these files are as follows:

station goodness file:

number name latitude longitude elevation goodness accessId

`number' is an integer corresponding to the station number of the station. `name' is what
primarily identifies each station to users. `latitude' and `longitude' are decimal degrees with east
and north positive. `elevation' is an integer that specifies station height in meters. Normally,
`goodness' is an arbitrary integer that says how desirable a given station is to plot in lieu of
another when two stations are too close to avoid an overlap. The larger the number the more
likely a station will show up on a plot. However, if `goodness' is a floating point number
(contains a decimal point) then that value will be used directly as a progressive disclosure value,
which is the distance in kilometers to the nearest other station that is at least as visible. `accessId'
is an optional field that contains the string by which a station is identified for the purpose of data

access. If not present this will default to `name'. The `name' field is currently limited to 11
characters, and the `accessId' field is currently limited to 23 characters.

Historicaly the `number' was the WMO station number or some analogue. All access of station
data in AWIPS is now according to the ASCII station ID, and so the station number is an
obsolete concept. Thus, this field has come to be used for the station-specific data key, where
such a key exists. Thus, for most data sources, this is just always zero.

Additionally, if a line is present with only two real numbers, then those numbers are used as the
minimum and maximum allowable progressive disclosure distances. If the same station name
occurs more than once, only the last occurrence will be used.

location goodness file:

latitude longitude goodness name

All fields are just as in the station goodness file, except that the `name' field can have any
number of spaces in it. The `name' field is currently limited to 39 characters. If a vertical bar
occurs in the `name' field, the vertical bar and everything after it is ignored for plotting purposes,
but these characters can still mark a `name' as being unique.

Normally, if the same location name occurs more than once, only the last occurrence will be
used. However, if a line is present in the file that has just a single `m' on it, multiple occurrences
of a location name will be allowed. Just as with the station goodness files, if a line is present with
only two real numbers, then those numbers are used as the minimum and maximum allowable
progressive disclosure distances.

cities file:

latitude longitude goodness state name|n?

The fields latitude, longitude, and goodness are as before. The field `state' normally just contains
a two-character postal abbreviation. Optionally, an additional character can follow the postal
abbreviation in the `state' field that allows two cities with the same name in the same state to
nonetheless be identified as unique. Unlike other fields, the `name' field can have any number of
spaces in it. If two or more entries occur that have exactly the same `name' and `state' fields, only
the last entry is used. If the `|n?' is present, then this city is important to the warning function. If
n is 1 it is a major city, if n is 3 it is a minor location, and 2 is a location of average importance.
The `?', if present, is the character `=', `+', or `~', and means that this city is too large in area to be
considered a point. `+' means use an area weighted centroid, `~' means use the point furthest
from any border as the centroid, and `=' means use the supplied point as the centroid. The
centroid is a point used to calculate what is north, south, east, or west in the city.

station plot info (.spi) file:

number name latitude longitude elevation distance accessId

The `number', `name', `latitude', `longitude', `elevation', and `accessId' items are exactly as in the
station goodness files. `distance' is the parameter that is used for controlling progressive
disclosure. It is the distance in kilometers to the nearest station that is at least as likely to be
plotted.

location plot info (.lpi) file:

latitude longitude distance name

The `latitude', `longitude', and `name' items are exactly as in the location goodness files.
`distance' is the parameter that is used for controlling progressive disclosure. It is the distance in
kilometers to the nearest station that is at least as likely to be plotted.

"primary" file

A .primary file contains a list of station or location names that are meant to be considered as
important regardless of the goodness values present in the .goodness file. The first station in the
list is considered most important, the second next, and so on. If a station or location appears
twice, the first occurrence is what is used.

Author: Jim Ramer
Last update: 31 Aug 05

	LocalizationOverview
	Localization Overview
	Documentation
	Descriptive Documents
	localization
	adaptivePlanViewPlotting
	characterSets
	developers
	directives
	families
	fileChanges
	gridTables
	ldadContouring
	mainScript
	purgeTables
	radarLocalization
	radarMosaics
	README.GRIDS
	satDirs
	scriptOverride
	shapeFileDisplay
	staticProgDisc
	styleRules
	TextTemplate
	warngenBackup

	Utility Programs
	bcdProc
	fileMover
	GELTtest
	image_mask
	initCdlTemplate
	keyMunge
	makeGridKeyTables
	maksubgrid
	maksuparg
	makthermo
	makxsect
	newGELTmaker
	pasteUtil
	processStyleInfo
	rangeAzimuth
	reformatTest
	shp2bcd
	testDepictorTable
	testFileNotify
	testGridKeyServer
	testGridSliceWrapper
	test_grhi_remap
	testPlotDesign
	textBufferTest
	va_driver

	localization
	The WFO-Advanced Localization Process
	Table of Contents
	1. What is localization?
	2. Some background
	3. Overview
	3.1) The Localization Software Environment
	3.2) Defining Localizations
	3.3) Creating and Using Localizations

	4. Functional breakdown - Localization scripts
	4.1) mainScript.csh
	4.2) Some generic utility scripts
	4.3) makeDataSups.csh
	4.4) makeScales.csh
	4.5) makeClipSups.csh
	4.6) assembleTables.csh
	4.7) makeTextKeys.csh
	4.8) makeTopoFiles.csh
	4.9) makeGridSourceTable.csh and updateGridFiles.csh
	4.10) updateRadarFiles.ksh
	4.11) makeMapFiles.csh
	4.12) makeWWAtables.csh
	4.13) makeStationFiles.csh
	4.14) makeDirectories.csh
	4.15) createAuxFiles.csh
	4.16) makePurgeTables.csh
	4.17) fxatextTriggerConfig.sh
	4.18) LAPS localization
	4.19) MSAS localization

	5. Files in the national data set
	5.1) Scale table
	5.2) Process config files
	5.3) Main and manual data and depict key files
	5.4) Text database and depictable localization
	5.5) Satellite data and depictable keys
	5.6) Product button file
	5.7) Menu files
	5.8) Shape files
	5.9) Vector map background files
	5.10) Topography files
	5.11) Gridded data and Volume Browser tables
	5.12) Display style files
	5.13) Radar-related files
	5.14) Files related to WarnGen
	5.15) Files that control stochastic progressive disclosure
	5.16) Color table files.
	5.17) Run time config files.
	5.18) Files which control plan view plotting.
	5.19) Files that specify the MSAS domain, background, and user-definable variables.

	6. Other site specific control files
	6.1) Localization config files
	6.2) Files referred to through #include
	6.3) File override expansion
	6.4) Files used to activate and deactivate data sets

	7. Localization programs
	7.1) fileMover
	7.2) Programs that create depictor files
	7.3) Programs that manipulate key files and menu files
	7.4) Programs that manipulate cartographic data sets
	7.5) Programs that manipulate tables for gridded data and the Volume Browser
	7.6) Programs that create and manipulate geographic entity lookup tables
	7.7) Programs that create station and location lists

	8. Realization definition files
	9. Customization

	Adaptive-Plan-View-Plotting
	Adaptive Plan View Plotting
	Table of Contents
	1) Introduction
	2) Key Entries for Plan View Plot Displays
	2.1) Plan View Plot Displays
	2.2) Sounding Displays

	3) Design Files
	3.1) Overall structure of design files
	3.2) A design file example
	3.3) Local modification and testing

	4) Lookup Table Files
	4.1) String to string lookup table
	4.2) String to number lookup table
	4.3) Number to string lookup table
	4.4) Number to number lookup table
	4.5) Number to byte lookup table

	Appendix 1) Keywords
	A1.1) Global keywords
	A1.2) Item keywords
	A1.3) Raw data keywords
	A1.4) Function keywords
	A1.5) Display keywords

	Appendix 2) Functions
	A2.1) Special functions
	A2.2) Conversion functions
	A2.3) Mathematical functions
	A2.4) Meteorological functions
	A2.5) Logical functions
	A2.6) List handling functions

	Appendix 3) Display Methods
	Appendix 4) Constants with predefined meanings
	Appendix 5) Enhancements to the netCDF files
	Appendix 6) Standard lookup tables
	Author: Jim Ramer Last update: 8 Oct 07

	characterSets
	AWIPS character sets
	Standard ASCII
	Large ASCII
	Weather Symbols
	Special Symbols
	Large Special Symbols
	Author: Jim Ramer Last update: 3 Aug 01

	developers
	Author: Jim Ramer Last update: 29 Nov 04

	Directives
	Directives
	Author: Jim Ramer Last update: 15 Feb 08

	families
	Model Families
	Author: Jim Ramer Last update: 11 Jan 02

	fileChanges
	File Dependencies
	1) Localization config files
	2) Script functionality override
	3) Other override files
	4) National data set files
	Author: Jim Ramer Last update: 17 Sep 04

	gridTables
	Grid Tables
	The Source Table
	The Level Type Table
	The Plane Table
	The Data Field Table
	The Virtual Field Table
	Functions
	Available Functions
	Vector Rotation Modes
	Author: Jim Ramer Last update: 28 Mar 08

	ldadConturing
	Contouring arbitrary LDAD variables in AWIPS
	Introduction
	Algorithm
	Sample Demonstration
	Author: Jim Ramer Last update: 20 Mar 02

	mainScript
	Author: Jim Ramer Last update: 17 Sep 04

	purgeTables
	Purging in AWIPS
	The purgeProcess executable
	Data structures for the purger
	Understanding individual purge table entries
	File override resulting from running the -purge task
	Radar data purging
	Appendix 1) header documentation from purgeInfo.txt
	Appendix 2) Usage documentation for purgeProcess
	Author: Jim Ramer Last update: 25 Apr 08

	radarLocalization
	Radar Localization
	Introduction
	Effects of VCP-driven key reorganization
	Modifying data value mapping
	General hints for radar localization
	Appendix -- Table of current tilt angle bins
	Author: Jim Ramer Last update: 17 Oct 05

	radarMosaics
	Radar Mosaics.
	Author: Jim Ramer Last update: 14 Aug 00

	ReadmeGrids
	Readme Grids
	Author: Jim Ramer Last update: 8 Jul 99

	satDirs
	Sat Dirs
	Author: Jim Ramer Last update: 6 Jun 98

	scriptOverride
	Script Override
	Introduction
	Patch scripts
	Author: Jim Ramer Last update: 29 Jun 04

	shapeFileDisplay
	Direct display of shape files in WFO advanced.
	Author: Jim Ramer Last update: 7 Dec 98

	staticProgDisc
	Static Progressive Disclosure for Point Data
	Author: Jim Ramer Last update: 10 May 04

	styleRules
	Style Rules
	Rules
	Style Info
	graphStyle.rules
	contourStyle.rules
	gridImageStyle.rules
	iconStyle.rules
	arrowStyle.rules
	barbStyle.rules
	streamlineStyle.rules

	Processing Style Rules
	Format Control Strings
	Author: Jim Ramer Last update: 16 Oct 07

	textTemplates
	Text Templates
	Paragraphs
	Substitutions
	Variables
	Bullets
	Title Lines
	Special characters for template files
	Available substitutions
	Substitutions dependent on the WarnGen implementation
	TextTemplate essential substitutions
	Obsolete substitutions

	Translation Control Strings
	Predefined template variables
	AUX_INFO functionality
	Author: Jim Ramer Last update: 04 Dec 2006

	warngenBackup
	WarnGen Backup
	Author: Jim Ramer Last update: 12 Feb 08

	bcdProc
	binary cartographic data files &
	extended binary cartographic data files
	Author: Jim Ramer Last update: 15 Oct 02

	fileMover
	fileMover
	Author: Jim Ramer Last update: 28 Jun 04

	GELTtest
	GELTtest
	Author: Jim Ramer Last update: 8 Jul 99

	image
	image_mask
	Author: Jim Ramer Last update: 30 Oct 02

	initCdlTemplate
	initCdlTemplate
	Author: Jim Ramer Last update: 6 Jun 98

	keyMunge
	keyMunge
	Author: Jim Ramer Last update: 21 Jul 99

	GridKeyTables
	Grid Key Tables
	Author: Jim Ramer Last update: 21 Mar 97

	maksubgrid
	maksubgrid
	Author: Jim Ramer Last update: 11 Mar 08 by Wen Kwock

	maksuparg
	Creating a Geographic Information File
	Author: Jim Ramer Last update: 6 Apr 04

	makthermo
	makthermo
	Author: Jim Ramer Last update: 6 Jun 98

	makxsect
	makxsect
	Author: Jim Ramer Last update: 6 Jun 98

	newGELTmaker
	newGELTmaker
	1) Introduction
	2) Geographic Entity Lookup Tables
	3) Input data sets
	4) GELT script files
	4.1) Global keywords
	4.2) File keywords
	4.3) Usage keywords

	5.0) Text formatting and its application
	5.1) Associated text and cross-referencing
	5.2) Attribute lists and format strings
	Author: Jim Ramer Last update: 5 Jan 06

	pasteUtil
	pasteUtil
	Author: Jim Ramer Last update: 6 Jun 98

	processStyleInfo
	processStyleInfo
	Author: Jim Ramer Last update: 8 Jul 99

	rangeAzimuth
	Author: Jim Ramer Last update: 6 Jun 98

	reformatTest
	reformatTest
	Author: Jim Ramer Last update: 13 May 01

	shp2bcd
	shp2bcd
	Author: Jim Ramer Last update: 11 Jan 02

	testDepictorTable
	testDepictorTable
	Author: Jim Ramer Last update: 22 Apr 02

	testFileNotify
	testFileNotify
	Author: Jim Ramer Last update: 14 Sep 00

	testGridKeyServer
	Testing the Grid Key Server
	Author: Jim Ramer Last update: 30 April 08

	testGridSliceWrapper
	testGridSliceWrapper
	Author: Jim Ramer Last update: 06 Mar 01

	test_ghri_remap
	test_grhi_remap
	Author: Jim Ramer Last update: 29 Jul 98

	testPlotDesign
	testPlotDesign usage documentation
	Author: Jim Ramer Last update: 07 May 04

	textBufferTest
	textBufferTest
	Author: Jim Ramer Last update: 6 Jun 98

	va_driver
	va_driver usage documentation
	station goodness file:
	location goodness file:
	cities file:
	station plot info (.spi) file:
	location plot info (.lpi) file:
	"primary" file
	Author: Jim Ramer Last update: 31 Aug 05

