
	

	 1	

Evaluation of the FV3 Dynamical Core
Mark	Govett	and	Jim	Rosinski	

NOAA	Earth	System	Research	Laboratory	
July	8,	2016	

Summary and Recommendations
	
FV3	is	a	global	atmospheric	dynamical	core,	adaptable	to	both	climate	and	forecast	applications.	 It	 is	
written	almost	exclusively	in	the	Fortran	language.	The	underlying	grid	is	a	cubed	sphere,	which	has	six	
faces	 encompassing	 the	 entire	 globe.	 The	 code	 is	 quite	 well-written,	 though	 new	 users	 may	 be	
confused	by	the	mixed	use	of	preprocessing	“ifdef”	conditionals	alongside	Fortran	conditionals.	There	
was	no	Users	Guide,	but	limited	documentation	was	available	in	the	scripts	and	text	files.	
	
Computational	parallelism	is	implemented	via	hybrid	OpenMP	(threading)	and	MPI	(message-passing).	
This	 is	a	common	and	well-tested	approach	to	achieving	effective	utilization	of	multiple	nodes	which	
each	contains	multiple	processor	 cores.	Partitioning	of	 the	domain	between	MPI	 tasks	and	OpenMP	
threads	 is	 done	 at	 run-time,	which	 simplifies	 the	 process	 of	 tuning	 application	 performance	 for	 the	
underlying	architecture.	The	code	scales	well	to	very	high	processor	counts.	The	test	case	provided	to	
us	 invokes	 vertical	 remapping	 once	 every	 11	 dynamics	 time	 steps.	 As	 a	 result,	 vertical	 remapping	
consumes	 less	 than	10	percent	of	 the	 total	 run	time.	However,	 remapping	could	require	as	much	as	
50%	of	the	execution	time	if	it	were	called	every	model	time	step.	
	
The	code	requires	a	minimum	of	six	MPI	tasks	to	run,	one	for	each	face	of	the	cube-sphere	grid.	MPI	
communication	 is	 implemented	 via	 a	 sophisticated	 locally-developed	 library	 infrastructure	 (GFDL’s	
FMS,	 for	 “flexible	 modeling	 system”)	 which	 wraps	 all	 the	 MPI	 calls.	 Similar	 to	 most	 models,	 MPI	
message	 packing	 and	 unpacking	 are	 done	 as	 part	 of	 the	 communications.	 Some	 overlapping	 of	
asynchronous	communication	with	computation	is	done,	reducing	the	overall	cost	of	communication.	
However,	 communications	 can	 consume	30%	of	 the	 runtime	 in	 some	configurations,	which	 suggests	
further	potential	improvements	should	be	explored.		
	
Porting	the	code	to	fine-grain	architectures	was	trivial.	The	full	model	was	ported	to	the	MIC	KNC,	as	
well	as	the	KNL	processor.	Performance	of	an	extracted	kernel	using	a	2016	generation,	early	release	
KNL	(64	cores)	was	compared	to	an	Intel	Haswell	and	gave	a	2X	benefit	favoring	the	KNL	processor.	The	
performance	boost	with	KNL	 is	 largely	due	 to	 improved,	high-speed	MCDRAM	memory	packaged	on	
the	chip.		
	
Due	 to	 a	 compiler	 bug,	 we	 were	 unable	 to	 run	 the	 full	 model	 on	 the	 CPU	 or	 GPU	 using	 the	 PGI		
(Portland	 Group	 International)	 compiler,	 so	 we	 extracted	 an	 important	 kernel	 to	 evaluate	 GPU	
performance.	GPU-CPU	comparisons	were	made	using	2013	generation	chips	that	showed	a	60	percent	
performance	 benefit	 (1.6X)	 favoring	 the	 K40	 GPU	 over	 the	 IvyBridge	 processor.	We	 believe	 further	
improvements	 are	 likely.	 In	 addition,	 the	 latest	 generation	NVIDIA	 Pascal	 chip	 is	 expected	 to	 give	 a	

	

	 2	

large	 boost	 in	 application	 performance	 on	 the	 GPU	 due	 to	 a	 projected	 3X	 increase	 in	 memory	
bandwidth.			
	
Recommendations	

• Improve	documentation,	build	and	run	scripts	for	general	use	as	a	community	model.	
• Modify	the	code	so	it	can	be	run	in	serial	mode	(w/o	MPI).	
• Investigate	 potential	 load	 imbalance	 due	 to	 edge	 and	 corner	 cell	 calculations	 on	 the	 cubed-

sphere	grid.	
• Explore	 communications	 optimizations	 including	 elimination	 of	 message	 packing/unpacking	

along	dimensions	where	data	are	already	contiguous.	
• Explore	 the	use	of	 compile-time	 constants	 in	 array	declarations	 and	 loop	bounds	 to	 improve	

performance	on	all	architectures.	
• Adapt	 code	 and	 scripts	 to	 use	 non-Intel	 compilers	 (eg.	 Cray,	 PGI,	 IBM,	 gfortran,	 NAG),	 to	

improve	model	portability.	
• Evaluate	the	performance	of	the	IBM	(OpenMP)	and	Cray	(OpenACC)	compilers	on	GPUs.	

Background
	
The	 FV3	 code	 provided	 to	 us	 by	 GFDL	 (NVIDIA.tar.gz)	 was	 their	 entry	 into	 the	 NGGPS	 phase	 1	
competition.	 This	 included	 the	 dycore	 only,	 with	 no	 physical	 parameterizations.	We	 ported	 the	 full	
dycore	to	a	variety	of	platforms.	The	CPUs	contained	in	these	platforms	spanned	a	range	of	Intel-based	
cores,	 including	 SandyBridge,	Haswell,	 and	Broadwell.	We	also	ported	 the	 FV3	 code	 to	both	 current	
and	 next-generation	 MIC	 architectures.	 These	 included	 the	 Knights	 Corner	 system	 at	 TACC	 named	
"stampede",	as	well	as	early	access	to	a	Knights	Landing	system	(KNL)	courtesy	of	Intel	Corporation.		
	
The	FV3	team	provided	us	with	the	latest	version	of	their	model	in	mid	May	2016,	but	we	lacked	the	
time	and	resources	to	use	it	for	performance	evaluation.	However,	aside	from	the	vertical	remapping,	
we	were	assured	by	GFDL’s	Rusty	Benson	that	the	code	was	essentially	the	same	as	the	NGGPS	Phase	I	
version.	Therefore,	results	from	this	evaluation	are	valid	and	useful.	
	
The	 analytic	 test	 case	 provided	 with	 the	 code	 (GFDL	 test	 case	 #13)	 has	 127	 vertical	 levels,	 and	
transports	 10	 constituents.	 The	 horizontal	 resolution	 we	 chose	 for	 all	 of	 our	 analysis	 was	 192x192	
points	 across	 the	 “i”	 and	 “j”	 dimensions	 of	 each	 of	 six	 faces	 on	 a	 cubed	 sphere	 (approximately	 1/2	
degrees),	 or	 somewhat	more	 than	 200,000	 horizontal	 grid	 points.	 This	 configuration	 is	 sufficient	 to	
allow	scaling	analysis,	but	not	so	 large	as	to	require	a	huge	portion	of	a	supercomputer.	The	default	
configuration	 runs	 in	 64-bit	 precision,	 but	 a	 32-bit	 option	 was	 also	 provided.	 Most	 of	 our	 analysis	
utilized	 the	64-bit	option.	GFDL	personnel	provided	copious	scaling	data	which	clearly	 indicated	 that	
increasing	processor	count	alongside	an	equivalent	 increase	 in	horizontal	 resolution	 ran	equivalently	
fast.	 This	 positive	 “weak	 scaling”	 result	 was	 not	 a	 surprise,	 and	 bodes	 well	 for	 extremely	 high	
resolution	runs	in	the	future.	With	no	physical	parameterizations	present,	a	2-hour	simulation	proved	
sufficient	to	achieve	a	representative	sample	of	all	model	routines	exercised.	

	

	 3	

Code modifications
	
Performance	data	presented	 in	 this	 report	 are	based	upon	 the	 source	 code	provided	by	GFDL,	with	
some	optimizations	 implemented	by	 ESRL.	 The	primary	 optimization	was	 the	 addition	of	 a	 compiler	
flag	(-xCORE-AVX2)	to	take	full	advantage	of	vector	capabilities	in	the	underlying	hardware	in	Haswell	
and	newer	Intel-based	architectures.	The	NOAA	machine	“theia”	is	Haswell.	FV3	exhibited	more	than	a	
12%	speedup	vs.	not	including	this	modification	when	using	6	nodes	on	theia.	Some	additional	minor	
speedup	was	achieved	via	modifications	 involving	 fusing	OpenMP	 loops	where	possible,	 to	minimize	
the	combination	of	 thread	synchronization	overhead	and	 load-induced	thread	 imbalance.	 In	addition	
to	 performance	 enhancements,	 we	 instituted	 the	 use	 of	 a	 thread-safe	 timing	 library	 (GPTL)	 for	 the	
purposes	 of	 estimating	 percent	 of	 peak	 performance	 achieved,	 estimating	 load	 imbalance	 across	
OpenMP	threads	and	MPI	tasks,	estimating	threading	overhead,	and	assessing	MPI	performance	based	
on	the	volume	of	data	exchanged	via	explicit	messages.	

Performance profile and scaling
	

Figure	1.	Timing	profile	for	FV3	dynamics	for	various	node	counts	on	NOAA	machine	“theia”	(Intel	Haswell	processors).	 In	all	cases	best	
performance	 is	presented,	which	turned	out	to	be	2	MPI	tasks	 in	the	X	dimension	and	2	MPI	tasks	 in	the	Y	dimension	for	each	of	the	6	
cubed	sphere	faces.

7.277	 4.253	 2.922	 1.818	

22.983	

9.007	 5.481	 2.558	

2.152	

1.069	
0.705	

0.359	

8.243	

4.009	
2.811	

1.46	

44.435	

20.247	

13.649	

6.793	

12.28	

5.987	

4.089	

2.07	

10.291	

5.091	

3.481	

1.772	

6.208	

2.993	

2.069	

1.067	

5.566	

2.681	

1.847	

0.943	

10.606	

5.279	

3.621	

	1.85		

0	

20	

40	

60	

80	

100	

120	

140	

1	 2	 3	 6	

Ru
n	
im

e	
(s
ec
)	

Number	of	nodes		

FV3	run	imes	on	theia	for	various	node	counts	

COMM_TOTAL	 c_sw	 UPDATE_DZ_C	 Riem_Solver_C	 d_sw	

UPDATE_DZ_D	 Riem_Solver3	 PG_D	 tracer_2d	 Remapping	

	

	 4	

Figure	 1	 profiles	 important	 code	 regions	 in	 FV3	 at	 the	 default	 1/2	 degree	 horizontal	 resolution	 for	
various	node	counts	as	run	on	the	NOAA	Haswell-based	machine	“theia”.	Scaling	is	excellent	from	1	to	
6	nodes,	even	showing	super-scaling	in	some	cases,	especially	moving	from	1	node	to	2.	Cache	effects	
are	 the	most	 likely	 cause	 of	 the	 super-scaling.	 Assuming	 good	weak	 scaling	 (data	 provided	by	GFDL	
confirms	 this),	 we	 can	 extrapolate	 and	 expect	 similarly	 good	 scaling	 from	 6	 nodes	 at	 a	 1/2	 degree	
resolution	 to	 24	 nodes	 at	 a	 1/4	 degree	 resolution,	 and	 so	 on	 up	 to	 6144	 nodes	 at	 a	 horizontal	
resolution	 of	 1/32	 degree	 (approximately	 3.7	 km).	 Of	 course	 this	 extrapolation	 assumes	 a	 quality	
interconnect	on	the	machine	on	which	the	model	 is	being	run.	 In	other	words,	 if	the	communication	
time	(labeled	“COMM_TOTAL”)	becomes	a	much	greater	fraction	of	the	total	run	time	at	much	higher	
node	counts	and	higher	resolutions	due	to	a	poor	interconnect,	then	the	weak	scaling	expectation	will	
no	longer	be	valid	and	model	run	times	will	be	longer	than	expected.	

Code structure
	
Computationally,	horizontal	advection	and	vertical	remapping	are	done	in	separate	sets	of	subroutines.	
For	 each	 invocation	 of	 vertical	 remapping,	 there	 are	 11	 executions	 of	 the	 "small-step	 horizontal	
dynamics".	In	this	configuration,	the	relative	cost	of	vertical	remapping	is	minimal.	However,	if	various	
factors	 such	 as	 wind,	 terrain,	 or	 physical	 parameterizations	 embodied	 in	 a	 realistic	 simulation	
necessitate	 more	 frequent	 invocation	 of	 vertical	 remapping,	 the	 relative	 cost	 of	 remapping	 can	
become	very	significant.	The	cost	of	remapping	if	needed	once	per	small-step	could	approach	50%	of	
the	aggregate	computational	cost	of	the	FV3	dynamics.			

FV3	is	a	hybrid	MPI/OpenMP	code.	Partitioning	of	the	horizontal	domain	across	OpenMP	threads	and	
MPI	tasks	is	done	at	run-time.	The	horizontal	grid	is	a	cubed	sphere,	which	contains	six	"faces"	mapped	
across	 the	 globe.	 This	 grid	 specification	 is	 one	approach	 to	 alleviating	 the	notorious	 "pole	problem"	
associated	 with	 converging	 meridians	 in	 earlier	 numerical	 models	 set	 on	 a	 latitude/longitude	 grid.	
Currently	there	must	be	at	least	a	single	MPI	task	operating	on	each	face	of	the	cubed	sphere.	Thus	a	
minimum	of	six	MPI	tasks	must	be	employed	in	an	FV3	run.			
	
Data	layout	in	FV3	is	(i,j,k)	(Fortran	ordering).	Computationally	expensive	routines	d_sw	and	c_sw	both	
drive	"shallow	water"	aspects	of	the	simulation,	which	means	independence	of	the	"k"	portion	of	the	
calculations.	 This	 dimension	 of	 parallelism	 is	 exploited	 via	 OpenMP	 parallelism.	 With	 127	 vertical	
levels,	this	is	more	than	adequate	to	saturate	all	available	cores	on	current	CPU-based	hardware.	The	
amount	of	work	performed	at	each	vertical	 level	 in	these	routines	is	perfectly	load	balanced.	Though	
some	induced	load	imbalance	will	probably	exist	on	any	real	machine	due	mainly	to	the	fact	that	the	
number	of	cores	most	likely	does	not	evenly	divide	into	the	number	of	vertical	levels	(or	vice	versa)	
	
The	FV3	code	is	highly	vectorized.	 Interior	 loops	 in	both	the	shallow	water	dynamics	and	the	vertical	
remapping	 contain	 independent	 calculations	 which	 can	 easily	 vectorize	 without	 any	 additional	
prodding	via	compiler	directives	or	hints.	Any	realistic	horizontal	resolution	or	MPI	task	count	enables	
utilization	of	the	full	512-bit	length	of	the	vector	register	on	the	latest	MIC	platform	(KNL).	
	
For	vertical	remapping,	data	layout	remains	(i,j,k),	as	in	the	shallow	water	portions	of	the	model.	But	
due	 to	 many	 dependencies	 in	 the	 vertical	 dimension,	 OpenMP	 threading	 is	 applied	 over	 the	 "j"	

	

	 5	

dimension	rather	than	"k".	Loop	order	within	remapping	is	therefore	OpenMP	over	"j"	on	the	outside,	
followed	by	 "k",	 and	 then	vectorizable	 loops	over	 "i"	on	 the	 inside.	 Since	 loop	order	doesn't	exactly	
match	 array	 order,	 ("j"	 and	 "k"	 are	 reversed)	 there	will	 be	 some	 cache	 inefficiencies	which	 are	 not	
present	 in	 the	 shallow	 water	 parts	 of	 the	 code.	 But	 given	 stride-1	 vectorized	 inner	 loops,	 with	 a	
threaded	loop	outside	of	that,	performance	of	the	vertical	remapping	portion	of	FV3	is	quite	good.	Due	
to	 data	 dependencies	 in	 the	 vertical,	 most	 "k"	 loops	 within	 remapping	 cannot	 be	 threaded	 or	
vectorized.	 But	 vectorizing	 over	 "i"	 and	 threading	 over	 "j"	 provide	 sufficient	 parallelism	 for	 good	
performance	on	 fine-grain	MIC	KNC	processors,	which	contain	512-bit	vector	 registers	on	each	core,	
and	up	to	244	thread	contexts	on	each	card.	

MPI Communication
	
The	horizontal	dynamics	 requires	MPI	 communication	every	 time	step.	The	communication	 is	across	
horizontal	boundaries	of	the	regions	owned	by	each	MPI	task.	The	code	is	written	to	allow	overlapping	
of	 communication	with	 computation	 if	 the	underlying	architecture	 supports	 it.	 This	 is	done	by	using	
asynchronous	 communication	 (MPI_Isend/MPI_Irecv),	 followed	 by	 some	 amount	 of	 computation	
which	 can	be	done	 alongside	 the	 communication,	 followed	by	MPI_Wait	which	defines	 the	point	 at	
which	boundary	data	being	communicated	must	be	present	before	computation	can	proceed.			
	
Like	many	numerical	models,	FV3	employs	its	own	wrapping	communication	layer(s)	on	top	of	calls	to	
intrinsic	routines	in	whatever	MPI	library	is	being	used.	One	of	the	tasks	of	the	higher	level	routines	is	
to	"pack"	data	destined	for	communication	into	user-space	buffers	prior	to	sending	via	MPI	messages.	
Once	received,	 the	data	are	then	"unpack"ed	from	user-space	buffers	 into	their	appropriate	 internal	
array	locations.	This	packing	and	unpacking	can	introduce	significant	overhead,	depending	on	the	size	
of	the	horizontal	regions	owned	by	each	MPI	task.	We	note	that	in	an	(i,j,k)	model	such	as	FV3,	packing	
and	unpacking	of	data	being	communicated	across	the	northern	and	southern	boundaries	of	each	MPI	
task	adds	unnecessary	overhead.	Since	"i"	is	the	innermost	dimension,	the	data	are	already	contiguous	
and	 ready	 to	 be	 sent/received	 in	 blocks	 of	 reasonable	 size.	 Packing	 and	 unpacking	 does	 allow	 for	
fewer,	larger	messages,	but	we	suspect	that	this	slight	advantage	is	not	offset	by	the	penalty	imposed	
by	employing	the	CPU	to	pack	and	unpack	the	data.	Of	course	this	argument	does	not	apply	along	the	
lateral	 ("j")	 dimension,	 since	 the	 data	 are	 not	 contiguous	 in	 this	 dimension.	 Thus	 packing	 and	
unpacking	is	required	along	these	boundaries.			
	
MPI	 communication	 can	 be	 expensive.	 In	 FV3,	 the	 cost	 of	 communication	 can	 be	 up	 to	 30%	 of	 the	
model	run	time	at	task	counts	which	are	high	relative	to	the	size	of	the	horizontal	domain.	Therefore,	
minimizing	 the	 amount	 of	 packing	 and	 unpacking	 of	 data,	 and	 overlapping	 computation	 with	
communication	wherever	possible,	 is	 important	 if	one	 is	 to	achieve	good	scaling	and	overall	 time	 to	
solution.	We	 found	 that	 comparing	 FV3	 to	 NIM	 (a	 global	 forecast	 model	 developed	 at	 NOAA/ESRL	
which	 was	 also	 part	 of	 the	 NGGPS	 phase	 1	 evaluation),	 FV3	 requires	 less	 volume	 of	 data	 to	 be	
communicated	per	time	step,	but	that	the	overall	cost	of	communication	was	somewhat	larger.	Some	
of	this	discrepancy	is	no	doubt	due	to	the	fact	that	FV3	packs	and	unpacks	its	messages	while	NIM	does	
not.	Higher	communication	cost	may	also	be	due	to	the	extent	to	which	overlapping	of	computation	
with	communication	is	possible	in	each	model.	More	investigation	is	required.			
	

	

	 6	

Suitability for fine-grain architectures
	
In	 this	 section	 we	 describe	 results	 from	 porting	 both	 the	 full	 FV3	 dynamic	 core,	 and	 an	 extracted	
computationally	expensive	kernel,	to	fine-grain	architectures	from	NVIDIA	(GPU)	and	Intel	(MIC).	
	
A. Full dynamical core
	
In	early	work,	we	ported	the	FV3	model	to	the	“stampede”	system	at	the	Texas	Advanced	Computing	
Center	 (TACC).	This	machine	utilizes	previous-generation	 Intel	MIC	chips	 (KNC)	which	 require	a	CPU-
based	host.	Getting	 the	 full	 FV3	dycore	 compiled	 and	 running	was	 straightforward.	 Just	 a	matter	of	
building	 required	 libraries	 and	 adding	 the	 appropriate	 compiler	 flags.	 Performance	 (Figure	 2)	 was	
similar	 to	and	possibly	 somewhat	better	 than	 that	 achieved	with	other	atmospheric	models	 such	as	
WRF.	 Specifically,	 per-card	 performance	 on	 the	 MIC	 compared	 favorably	 to	 a	 single	 socket	 of	 the	
SandyBridge	(circa	2013)	host,	but	was	slower	than	a	full	(2-socket)	SandyBridge	node.	Communication	
time	(labeled	“COMM_TOTAL”	in	the	figure)	stands	out	as	a	major	performance	issue	on	the	KNC.	But	
MPI	 communication	 problems	 are	 a	 known	 issue	 on	 KNC	 devices,	 and	 Intel	 expects	 these	 to	 be	
addressed	in	the	next	release	of	MIC	hardware	(Knights	Landing	or	KNL),	expected	in	June	2016.	If	we	
don’t	consider	communication	performance,	on	the	MIC	(stampede	KNC)	FV3	runs	about	64%	as	fast	
per	card	as	on	the	SNB	host.		
	
In	April	2016,	Intel	announced	availability	of	its	newest	entry	in	the	MIC	series	of	fine-grain	machines,	
KNL	(for	“Knight’s	Landing”).	Intel	provided	us	access	to	an	early	version	of	this	processor,	which	had	
fewer	processor	cores	than	the	released	product	will	have	(64	instead	of	72).	This	machine	has	several	
advantages	 over	 its	 predecessor	 KNC	 architecture.	 Primary	 among	 the	 advantages	 is	 KNL	 is	 a	 self-
booting	Linux	system,	with	no	supporting	CPU	host	 required.	This	 simplifies	porting,	and	makes	MPI	
communication	 faster	 because	 messages	 no	 longer	 need	 to	 go	 through	 the	 host.	 Another	 exciting	
feature	 of	 KNL	 is	 the	 availability	 of	 so-called	MCDRAM,	 a	 form	 of	 main	 memory	 with	 much	 faster	
bandwidth	than	traditional	main	memory.	
	
Porting	the	 full	FV3	code	to	early	KNL	systems	was	trivial,	easier	 than	the	KNC	port	described	above	
mainly	 because	 a	 host	 compilation	 alongside	 the	 KNL	 compilation	 was	 not	 necessary.	 Overall	
performance	on	six	nodes	of	a	pre-release	system	containing	64	cores	per	node	was	roughly	equivalent	
to	 the	Haswell-based	performance	described	 in	Figure	1	above,	when	utilizing	 the	high-performance	
MCDRAM	memory.	A	figure	describing	the	breakdown	of	performance	by	routine	 is	not	shown	here,	
for	 the	 following	 reason.	 In	 the	other	 figures	we	enabled	artificial	MPI	barriers	at	 strategic	points	 in	
order	to	avoid	having	any	load	imbalance	misinterpreted	as	time	spent	in	another	region.	Adding	these	
barriers	did	not	have	a	significant	impact	on	CPU-based	machines	or	KNC.	But	for	some	as	yet	unknown	
reason	adding	the	artificial	barriers	did	have	a	significant	 impact	on	overall	performance	on	the	KNL.	
Further	study	is	needed.	
	
On	average,	FV3	executes	over	16	OpenMP	loops	each	model	time	step.	We	were	concerned	that	this	
many	 thread	 dispatches	 and	 synchronizations	 (“threading	 overhead”)	 each	 time	 step	 might	 cause	
performance	 problems,	 especially	 on	 fine-grain	 machines	 which	 have	 more,	 slower,	 cores	 than	

	

	 7	

traditional	CPU-based	systems.	So	we	used	the	GPTL	timing	library	to	measure	load-induced	imbalance	
as	 well	 as	 threading	 overhead	 in	 a	 few	 of	 the	 expensive	 OpenMP	 loops	 in	 FV3.	 We	 define	 “load-
induced	 imbalance”	as	 the	difference	 in	 computation	 cost	between	 slowest	and	 fastest	 thread	 for	a	
given	 loop.	This	 imbalance	 is	generally	unavoidable,	unless	the	number	of	available	hardware	thread	
contexts	happens	to	divide	evenly	into	the	loop	iteration	count,	and	the	work	per	iteration	is	the	same.	
We	measured	threading	overhead	by	timing	the	execution	of	the	entire	loop,	and	subtracting	the	cost	
of	 the	 slowest	 thread	 for	 the	 work	 done	 inside	 the	 loop.	 Surprisingly,	 even	 on	 the	 stampede	MIC	
system	the	 threading	overhead	cost	was	minimal.	Thus	we	conclude	 that	even	16	or	more	OpenMP	
loops	per	FV3	model	time	step	will	not	be	a	bottleneck	on	MIC	systems.	

Figure	2:	Comparison	of	FV3	6-node	run	times	on	stampede	machine	using	SandyBridge	CPU	processors	(SNB)	vs.	MIC	(KNC)	processors.	
Best	configuration	on	SNB	was	2	MPI	in	X	and	2	MPI	in	Y.	Best	configuration	on	MIC	was	4	MPI	in	X	and	4	MPI	in	Y	

We	 did	 find	 however,	 that	 load-induced	 imbalance	 can	 be	 significant	 on	 the	 MIC.	 In	 FV3	 most	
threading	is	done	over	the	vertical	index.	Also,	in	most	cases	dividing	the	MPI	domain	into	4	equal	sized	
squares	for	each	face	(2	in	X,	2	in	Y)	proved	optimal.	Running	1	node	per	face,	the	number	of	available	
thread	 contexts	 (240	 on	 stampede)	 does	 not	 divide	 evenly	 into	 the	 total	 number	 of	 vertical	 levels	
across	all	MPI	tasks	on	the	card	(2x2x127=508).	By	reducing	the	number	of	vertical	levels	to	120	so	that	

1.967	
9.863	4.035	

8.189	

0.619	

1.159	

3.616	

4.122	

12.925	

18.942	

3.568	

5.64	

4.298	

3.977	

2.019	

4.212	

1.988	

3.24	

3.876	

8.001	

0	

10	

20	

30	

40	

50	

60	

70	

80	

SNB	-	CPU	 KNC	-	MIC	

Ru
n	
im

e	
(s
ec
)	

6-node	FV3	run	imes	on	stampede:	SNB,	KNC	(MIC)	

COMM_TOTAL	 c_sw	 UPDATE_DZ_C	 Riem_Solver_C	 d_sw	

UPDATE_DZ_D	 Riem_Solver3	 PG_D	 tracer_2d	 Remapping	

	

	 8	

240	now	divides	evenly	into	the	total	number	of	vertical	levels	on	the	card	(2x2x120=480),	this	minor	
decrease	 in	number	of	 levels	 (5.5%)	resulted	 in	a	speedup	of	over	15%	in	model	run	time.	 It	 is	 likely	
suboptimal	 to	 choose	 vertical	 resolution	 based	 on	 the	 machine	 hardware.	 Thus	 a	 mechanism	 to	
mitigate	this	load	imbalance	problem	on	MIC	platforms	is	to	ensure	that	the	total	number	of	threaded	
iterations	 is	 sufficiently	 larger	 than	 the	 number	 of	 thread	 contexts	 to	 minimize	 the	 load-induced	
imbalance.		
	
B. Extracted Kernel
	
We	extracted	and	built	a	driver	around	a	computationally	expensive	portion	of	the	FV3	code	in	order	
to	 isolate	 and	 study	 its	 performance	 characteristics,	 and	 possible	 opportunities	 for	 data	 and	 coding	
rearrangement	for	execution	on	fine-grain	architectures	(GPU	and	MIC).	The	extracted	kernel	was	for	a	
full	192x192	horizontal	domain	of	a	single	face	of	the	cubed	sphere,	with	127	vertical	levels	just	as	in	
the	full	model	runs	described	earlier.	The	routine	chosen	was	c_sw,	whose	performance	profile	within	
the	 full	 model	 context	 is	 shown	 above	 in	 Figure	 2.	 OpenMP	 parallelism	 in	 this	 routine	 is	 over	 the	
vertical	(k)	index.	Two	variants	of	the	c_sw	kernel	were	constructed.	The	first	retained	the	existing	i-j-k	
data	ordering,	but	in	order	to	accommodate	the	GPU	compiler,	the	vertical	“k”	index	was	pushed	down	
into	 the	 routine	 being	 threaded	 rather	 than	 kept	 outside	 the	 routine	 as	 in	 the	 original	 code.	 This	
modification	had	little	impact	on	CPU	run-times,	so	comparisons	between	CPU	and	GPU	and	MIC	are	
still	valid.	The	second	variant	of	the	c_sw	kernel	swapped	the	data	ordering	from	i-j-k	to	k-i-j.	Using	the	
Intel	compiler	 to	build	and	run,	we	were	able	 to	demonstrate	bitwise	exact	 results	compared	to	 the	
original	code	for	both	the	i-j-k	and	k-i-j	variants.	
	
Fine-grain	 assessment	 has	 focused	 on	 using	 i-j-k	 and	 k-i-j	 variants	 of	 c_sw	 extracted	 from	 FV3	 to	
compare	performance	between	CPU,	GPU	and	MIC	processors.	It	should	be	noted	that	the	k-i-j	variant	
required	significant	modifications	to	the	code,	including	changing	the	order	of	each	3-dimensional	(3D)	
array	 declaration,	 promoting	 2D	 arrays	 to	 3D,	 and	 reordering	 loops.	 This	 variant	 was	 intended	 to	
investigate	 reordering	 as	 an	 option	 to	 improve	 parallelism.	 A	 focus	was	 to	 improve	 performance	 of	
edge	 and	 corner	 calculations	 inherent	 in	 the	 cube-sphere	 grid,	 currently	 serialized	 in	 the	 i-j-k	 loop	
ordering.	
	
Successful	validation	of	model	output	was	followed	by	attempts	to	get	FV3	running	on	the	CPU	with	
the	PGI	compiler,	as	a	first	step	toward	performance	assessments	on	the	GPU.	Unfortunately,	the	PGI	
compiler	 was	 not	 able	 to	 run	 FV3	 on	 the	 CPU,	 due	 to	 what	 appears	 to	 be	 a	 bug	 in	 the	 compiler.	
Working	with	PGI	engineers,	 the	bug	was	 traced	to	a	namelist	 read	 in	one	of	FV3’s	support	 libraries	
(called	 “mpp”).	 PGI’s	 Dave	 Norton	 indicates	 the	 bug	 will	 be	 fixed	 in	 a	 future	 release.	 As	 a	 result,	
continued	work	on	the	full	model	has	been	postponed	until	either	the	bug	is	fixed,	or	the	FV3	code	is	
modified.	We	also	plan	to	try	using	the	Cray	and	IBM	GPU	compilers	on	the	full	model.		
	
1) GPU
	
The	NVIDIA	PSG	cluster	was	used	to	run	select	portions	of	the	FV3	model	on	NVIDIA	GPUs.		This	cluster	
was	used	because	it	has	three	generations	of	GPU	chips:	K20x	(2012),	K40	(2013)	and	K80	(2014).	PSG	

	

	 9	

also	has	 the	 latest	Fortran	GPU	compilers	 from	PGI	used	 for	GPU	parallelization	and	optimization.	A	
Fortran	 GPU	 compiler	 from	 Cray	 is	 also	 available	 but	 was	 not	 used	 for	 this	 study.	 Both	 compilers	
adhere	 to	 the	 openACC	 specification,	 a	 directive-based	 parallelization	 standard	 for	 fine-grain	
processors	(CPU,	GPU,	MIC).	OpenACC	compilers	are	an	alternative	to	OpenMP	based	compilers.	IBM	is	
developing	an	OpenMP	based	Fortran	GPU	compiler	that	will	be	available	in	a	few	months.	
	
With	 standalone	 kernels	 generated,	 OpenACC	 directives	 were	 added	 to	 the	 code.	 There	 are	 two	
general	 approaches	 to	 GPU	 parallelization	 using	 the	 !$acc	 kernels	 and	 !$acc	 parallel	 directives.	 The	
kernels	 directive	 gives	 the	 compiler	 maximum	 flexibility	 to	 parallelize	 the	 calculations.	 	 The	 PGI	
compiler	was	able	to	generate	coarse	grain	(block)	parallelism	over	the	k-loop,	and	fine-grain	(thread)	
parallelism	on	 the	 inner-most	 i-loop.	 The	 PGI	 compiler	was	 not	 able	 to	 utilize	 the	 j-loop	 for	 further	
parallelism.	Use	of	!$acc	 loop	collapse	 to	combine	the	“k”	and	“j”	 loops	 into	a	single	 larger	 loop	was	
tried,	 but	 did	 not	 improve	 performance	 in	 most	 cases.	 We	 have	 not	 tried	 using	 the	 !$acc	 parallel	
directive.	GPU	parallelism	using	the	parallel	directive	is	more	restrictive	because	the	standard	does	not	
allow	multi-dimensional	block	parallelism	even	though	the	GPU	device	supports	it.			
	
Using	 kernels,	 a	 few	 changes	 to	 the	 kernels	 were	 made	 to	 work	 around	 PGI	 compiler	 bugs	 that	
surfaced	when	compiling	and	running	on	the	GPU.	Parallelization	was	quite	easy,	with	 insertion	of	a	
single	 “!$acc	 kernels”	 directives	 at	 the	 top	 of	 each	 subroutine	 (identical	 placement	 as	 the	 openMP	
directives).	 Diagnostic	 output	 generated	 by	 the	 PGI	 compiler	 showed	what	 the	 compiler	 was	 doing	
including	 identifying	 data	 movement,	 loops	 that	 would	 be	 parallelized,	 variable	 dependencies,	 and	
loops	 that	 could	 not	 be	 parallelized	 due	 to	 dependencies	 in	 the	 code.	 This	 information	 guided	
parallelization	and	optimization.	

	
Figure	 3:	 Comparison	 of	 performance	 on	 a	 dual-socket	 IvyBridge	 CPU	 and	 NVIDIA	 K40	 GPU	 for	 three	 variants	 of	 the	 FV3	 subourinte	
“c_sw”.		The	main	sub-routines	are	shown,	with	“c_sw	partial”	representing	the	time	needed	to	run	“c_sw”	minus	“divergence_corner”	
and	“d2a2c_vect”.	

Figure	3	compares	performance	for	the	three	variants	of	“c_sw”	on	a	dual-socket	20	core	IvyBridge	CPU	
and	the	same	2013	generation	NVIDIA	K40	GPU.	Execution	times	(in	milliseconds)	had	little	run-to-run	

45	 42	
29	

67	

18	

13	
7	

4	

10	

3	

20	
21	

9	

32	

50	

0	

20	

40	

60	

80	

100	

120	

CPU	baseline	 CPU	i-j-k	 GPU	i-j-k	 CPU	k-i-j	 GPU	k-i-j	

Ru
n	
,m

e	
(m

s)
	

c_sw-parial	 divergence_corner	 d2a2c_vect	

	

	 10	

variability,	increasing	our	confidence	in	the	performance	results.	Execution	time	for	the	main	routines	
are	shown,	with	“c_sw-partial”	representing	the	total	“c_sw”	runtime	minus	the	two	main	subroutines	
it	calls:	divergence_corner	and	d2a2c_vect.	
	
Performance	results	for	the	i-j-k	variant	show	the	NVIDIA	K40	processor	was	60%	faster	than	the	Intel	
IvyBridge	(70	versus	42	ms).	This	is	significantly	better	than	early	work	by	NVIDIA	on	a	similarly	coded	
kernel	 from	FV3	 (subroutine	d_sw).	Additional	performance	 improvement	may	be	possible	using	 the	
parallel	 directive	 instead	 of	kernels.	 The	 CPU	 results	 relied	 on	 direct	 pinning	 of	OpenMP	 execution	
threads	 to	 the	CPU	cores.	Comparing	CPU	performance,	 it	 is	not	 clear	 the	 reason	 the	 i-j-k	 variant	 is	
faster	than	the	k-i-j	variant;	further	investigation	is	needed.	Given	that	significant	code	changes	were	
required	for	the	k-i-j	variant	and	it	gave	no	performance	benefit	on	the	GPU,	most	of	the	optimization	
work	focused	on	the	i-j-k	variant.		
	
1) MIC
	
Figure	4	profiles	 the	same	c_sw	kernel	described	above	 (i-j-k	version)	on	a	24-core	Haswell	CPU	and	
pre-release	64-core	KNL	system	(courtesy	of	Intel	Corp.).	We	note	that	production	versions	of	the	KNL	
architecture	are	scheduled	to	contain	72	cores,	but	none	were	available	as	of	this	writing.	Most	striking	
in	 the	 comparison	 is	 how	much	 value	 is	 added	 by	 utilizing	 the	 high-bandwidth	memory	 (MCDRAM)	
available	on	the	KNL.	Other	weather	models	and	kernels	(e.g.	NIM,	MPAS)	show	similar	2-3X	speedup	
when	 employing	 MCDRAM	 vs.	 standard	 DDR	 memory.	 Though	 without	 MCDRAM	 the	 KNL	 is	 a	 bit	
slower	than	its	CPU-based	Haswell	brother.	
	

	
Figure	4:	 c_sw	kernel	performance	on	CPU	 (Haswell-LHS),	KNL	with	MCDRAM	 (center),	 and	KNL	without	MCDRAM	 (right).	Compare	 to	
Figure	3	for	GPU	and	earlier	generation	CPU	results.	

31	

15	

41	

5.11	

3.25	

7.93	
11	

3.32	

9.76	

0	

10	

20	

30	

40	

50	

60	

70	

CPU	i-j-k	(HSW)	 KNL+MCDRAM	 KNL	(no	MCDRAM)	

Ru
n	
,m

e	
(m

s)
	

c_sw-parial	 divergence_corner	 d2a2c_vect	

