
Next-generation supercomputers containing millions of processors will require weather

prediction models to be designed and developed by scientists and software experts to ensure

portability and efficiency on increasingly diverse HPC systems.

PARALLELIZATION AND
PERFORMANCE OF THE

NIM WEATHER MODEL ON CPU,
GPU, AND MIC PROCESSORS

Mark Govett, Jim Rosinski, Jacques Middlecoff, Tom Henderson, Jin Lee, Alexander MacDonald,
Ning Wang, Paul Madden, Julie Schramm, and Antonio Duarte

A	new generation of high-performance computing
	(HPC) has emerged called fine grain or massively
	parallel fine grain (MPFG). The term “massively

parallel” refers to large-scale HPC systems contain-
ing tens of thousands to millions of processing cores.
“Fine grain” refers to loop-level parallelism that must
be exposed in applications to permit thousands to
millions of arithmetic operations to be executed every
clock cycle. Two general classes of MPFG chips are
available: Many Integrated Core (MIC) from Intel and
graphics processing units (GPUs) from NVIDIA and
Advanced Micro Devices (AMD) (see “Many-core and
GPU computing explained” sidebar). In contrast to
up to 18 cores on the latest-generation Intel Broadwell
CPUs, these MPFG chips contain hundreds to thou-
sands of processing cores. They provide 10–20 times
greater peak performance than CPUs, and they appear
in systems that increasingly dominate the list of top
supercomputers in the world (Strohmaier et al. 2016).
Peak performance does not translate to real application
performance, however. Good performance can only
be achieved if fine-grain parallelism can be found and

exploited in the applications. Fortunately, most weather
and climate codes contain a high degree of parallelism,
making them good candidates for MPFG computing.

As a result, research groups worldwide have begun
parallelizing their weather and climate prediction
models for MPFG processors. The Swiss National
Supercomputing Center (CSCS) has done the most
comprehensive work so far. They parallelized the
dynamical core of the Consortium for Small-Scale
Modeling (COSMO) model for GPUs in 2013 (Fuhrer
et al. 2014). At that time, no viable commercial
FORTRAN GPU compilers were available, so the
code was rewritten in C++ to enhance performance
and portability. They reported the C++ version gave
a 2.9-times speedup over the original FORTRAN
code using same-generation dual-socket Intel Sandy
Bridge CPU and Kepler K20x GPU chips. Paralleliza-
tion of model physics in 2014 preserved the original
FORTRAN code by using industry standard open
accelerator (OpenACC) compiler directives for par-
allelization (Lapillonne and Fuhrer 2014). The entire
model, including data assimilation, is now running

1AMERICAN METEOROLOGICAL SOCIETY |OCTOBER 2017

operationally on GPUs at the Swiss Federal Office of
Meteorology and Climatology (MeteoSwiss).

Most atmospheric modeling groups exploring
MPFG focused on the parallelization of model dy-
namics. The German Weather Service (DWD) and
Max Planck Institute for Meteorology developed the
Icosahedral Nonhydrostatic (ICON) dynamical core,
which has been parallelized for GPUs. Early work by
Sawyer et al. (2011) converted the FORTRAN using
NVIDIA-specific Compute Unified Device Archi-
tecture (CUDA)-FORTRAN and open computing
language (OpenCL), demonstrated a 2-times speedup
over dual-socket CPU nodes. The invasive, platform-
specific code changes were unacceptable to domain
scientists, so current efforts are focused on minimal
changes to the original code using OpenACC for par-
allelization (Sawyer et al. 2014). Another dynamical
core, the Nonhydrostatic Icosahedral Atmospheric
Model (NICAM), has been parallelized for GPUs,
with a reported 7–8-times performance speedup
comparing two 2013-generation K20x GPUs to one
2011-generation, dual-socket Intel Westmere CPU
(Yashiro et al. 2014). Other dynamical cores parallel-
ized for the GPU, including the finite volume cubed
(FV3) model (Lin 2004) used in Goddard Earth
Observing System Model, version 5 (GEOS-5) (Put-
nam 2011), and the High-Order Method Modeling
Environment (HOMME) (Carpenter et al. 2013), have
shown some speedup versus the CPU.

Collectively, these experiences show that porting
codes to GPUs can be challenging, but most users
have reported speedups over CPUs. Over time, more

mature GPU compilers have simplified parallelization
and improved application performance. However,
reporting of results has not been uniform and can be
misleading. Ideally, comparisons should be made us-
ing the same source code, with optimizations applied
faithfully to the CPU and GPU, and run on same-
generation processors. When codes are rewritten, it
becomes harder to make fair comparisons as multiple
versions must be maintained and optimized. When
different-generation hardware is used (e.g., 2010 CPUs
vs 2013 GPUs), adjustments should be made to nor-
malize reported speedups. Similarly, when compari-
sons are made with multiple GPUs attached to a single
node, further adjustments should be made. Finally,
comparisons between a GPU and a single CPU core
give impressive speedups of 50–100 times, but such
results are not useful or fair and require adjustment
to factor in use of all cores available on the CPU.

When Intel released its MIC processor, called
Knights Corner (KNC), in 2013, a new influx of re-
searchers began exploring fine-grain computing. Re-
search teams from National Center for Atmospheric
Research (NCAR)’s Community Earth System Model
(CESM) (Kim et al. 2013), Weather Research and
Forecasting (WRF) Model (Michalakes et al. 2016),
and the FV3 (Nguyen et al. 2013) reported little to no
performance gain compared to the CPU. A more com-
prehensive parallelization for the MIC with National
Oceanic and Atmospheric Administration (NOAA)’s
Flow-Following Finite-Volume Icosahedral Model
(FIM) (Bleck et al. 2015) included dynamics and phys-
ics running on the MIC (Rosinski 2015). Execution
of the entire model on the KNC gave no performance
benefit compared to the CPU. A common sentiment
in these efforts is that porting applications to run on
the MIC is easy, but getting good performance with
KNC was difficult. This all changed with the release
of Intel’s Knights Landing (KNL) processor in early
2016. Research groups are now reporting 2-times or
more improvement in application performance for
KNL versus the CPU.

This paper describes the development of the non-
hydrostatic icosahedral model (NIM), a dynamical
core that was designed to exploit MPFG processors.
The NIM was initially designed for NVIDIA GPUs in
2009. Since commercial FORTRAN GPU compilers
were not available at that time, the FORTRAN-to-
CUDA accelerator (F2C-ACC) (Govett et al. 2010)
was codeveloped with NIM to convert FORTRAN
code into CUDA, a high-level programming language
used on NVIDIA GPUs (NVIDIA 2015). The F2C-
ACC compiler has been the primary compiler used
for execution of NIM on NVIDIA GPUs and has

served as a benchmark for evaluation of commercial
OpenACC compilers from Cray and The Portland
Group International (PGI). Using the same source
code, the NIM was ported to Intel MIC in 2013 when
these processors became available.

We believe NIM is currently the only weather
model that runs on CPU, GPU, and MIC processors
with a single-source code. The dynamics portion of
NIM uses open multiprocessing (OpenMP) (CPU and
MIC), OpenACC (GPU), and F2C-ACC (GPU) direc-
tives for parallelization. Scalable Modeling System
(SMS) directives and run-time library support MPI-
based distributed-memory parallelism, including do-
main decomposition, interprocess communications,
and input/output (I/O) operations (Govett et al. 2003).
Collectively, these directives allow a single-source
code to be maintained capable of running on CPU,
GPU, and MIC processors for serial or parallel execu-
tion. Further, the NIM demonstrates efficient parallel
performance and scalability to tens of thousands of
compute nodes and has been useful for comparisons
between CPU, GPU, and MIC processors (Govett et al.
2014, 2015, 2016).

MODEL DESIGN. NIM is a multiscale model,
which has been designed, developed, and run
globally at 3-km resolution with a goal to improve
medium-range weather forecasts. The model was de-
signed to explicitly permit convective cloud systems
without cumulus parameterizations typically used
in models run at coarser scales. In addition, NIM
has extended the conventional two-dimensional

finite-volume approach into three-dimensional
finite-volume solvers designed to improve pressure
gradient calculation and orographic precipitation
over complex terrain.

NIM uses the following innovations in the model
formulation:

•	 a local coordinate system that remaps a spherical
surface to a plane (Lee and MacDonald 2009),

•	 indirect addressing of grid cells to simplify the
code and improve performance (MacDonald et al.
2011),

•	 f lux-corrected transport formulated on finite-
volume operators to maintain conservative and
monotonic transport (Lee et al. 2010),

•	 all differentials evaluated as finite-volume inte
grals around the cells, and

•	 icosahedral–hexagonal grid optimization (Wang
and Lee 2011).

The icosahedral–hexagonal grid is a key part of the
model. This formulation approximates a sphere with
a varying number of hexagons but always includes 12
pentagons. (Sadourny et al. 1968; Williamson 1971).
The key advantage of this formulation is the nearly
uniform grid areas that are possible over a sphere as
illustrated in Fig. 1. This is in contrast to the latitude–
longitude models that have dominated global weather
and climate prediction for 30 years. The nearly uni-
form grid represents the poles without the notorious
“pole problem” inherent in latitude–longitude grids,
where meridians converge toward the poles.

Fig. 1. An illustration contrasting the converging grid points of a lat–lon grid vs the nearly uniform grid spacing
of an icosahedral–hexagonal grid.

AFFILIATIONS: Govett, Lee,* and MacDonald*—Global
Systems Division, NOAA/Earth System Research Laboratory,
Boulder, Colorado; Rosinski, Middlecoff, Henderson,* Wang, and
Schramm—Cooperative Institute of Research in the Atmosphere,
Colorado State University, Fort Collins, Colorado; Madden* and
Duarte*—Cooperative Institute for Research in Environmental
Sciences, University of Colorado Boulder, Boulder, Colorado
* CURRENT AFFILIATIONS: Henderson, Lee, MacDonald,
and Madden—Spire Global, Inc., Boulder, Colorado; Duarte—
Cheesecake Laboratories, Florianopolis, Brazil
CORRESPONDING AUTHOR: Mark Govett,
mark.w.govett@noaa.gov

The abstract for this article can be found in this issue, following the
table of contents.
DOI:10.1175/BAMS-D-15-00278.1

In final form 5 March 2017
©2017 American Meteorological Society
For information regarding reuse of this content and general copyright
information, consult the AMS Copyright Policy.

3AMERICAN METEOROLOGICAL SOCIETY |2 | OCTOBER 2017OCTOBER 2017

NIM uses a fully three-dimensional finite-volume
discretization scheme designed to improve pressure
gradient calculations over complex terrain. Three-
dimensional finite-volume operators also provide ac-
curate and efficient tracer transport essential for next-
generation global atmospheric models. Prognostic
variables are collocated at horizontal cell centers
(Arakawa and Lamb 1977). This simplifies looping
constructs and reduces data dependencies in the code.

The numerical scheme uses a local coordinate sys-
tem remapped from the spherical surface to a plane at
each grid cell. All differentials are evaluated as finite-
volume integrals around each grid cell. Passive tracers
are strictly conserved to the round-off limit of single-
precision floating-point operations. NIM governing
equations are cast in conservative flux forms with mass
flux to transport both momentum and tracer variables.

Computational design. NIM is a FORTRAN code
containing a mix of FORTRAN 77 and FORTRAN
90 language constructs. It does not use derived types,
pointers, or other constructs that can be challenging
for compilers to support or run efficiently.1 The SMS
library used by NIM for coarse-grain parallelism
employs the message passing interface (MPI) library
to handle domain decomposition, interprocess com-
munications, reductions, and other MPI operations.

NIM was designed from the outset to maximize
fine-grain or loop-level parallel computational

capability of both NVIDIA GPU and Intel MIC archi-
tectures. Primary model computations are organized as
simple dot products or vector operations and loops with
no data-dependent conditionals or branching. The NIM
dynamical core requires only single-precision floating-
point computations and runs well on the CPU, achiev-
ing 10% of peak performance on an Intel Haswell CPU.

Grid cells can be stored in any order because a
lookup table is used to indirectly access neighboring
grid cells and edges on the icosahedral–hexagonal
grid. The model’s loop and array structures are
organized with the vertical dimension innermost in
dynamics routines. This organization effectively am-
ortizes the cost of the indirect access of grid cells over
the 96 vertical levels. Testing during model develop-
ment verified there was a less than 1% performance
penalty using this approach (MacDonald et al. 2011).

NIM dynamics executes completely on the GPU.
Model state remains resident in GPU global memory.
Data are only copied between CPU and GPU for
model initialization, interprocess communications,
and output. GPU-to-GPU interprocess communica-
tions are handled via SMS directives and initiated by
the CPU. Since physical parameterizations have not
yet been ported to the GPU, data must also be moved
between the GPU and CPU every physics time step.
This constraint can be removed once the physics is
also running on the GPU.

Parallelization of NIM for the MIC was trivial
since the code had already been modified to run on
the CPU and GPU. As a result, few code changes and
optimizations were needed to run efficiently on the
MIC processor.

PARALLELIZATION. NIM uses standards-com-
pliant OpenMP (for CPU and MIC) and OpenACC (for
GPU) directives for parallelization. OpenMP is the de
facto standard for shared memory programming on
the CPU and MIC processors, with recent extensions
to support attached devices such as GPUs. OpenACC
was developed initially to support GPUs, with more re-
cent support for CPU (×86) and MIC processors. Both
standards are striving toward performance portabil-
ity, where a single set of directives is sufficient to run
efficiently on CPU, GPU, MIC, and other processors.

Until recently, F2C-ACC was the primary compiler
being used to parallelize and run NIM on NVIDIA
GPUs. F2C-ACC was an effective way to push for im-
provements in commercial FORTRAN GPU compilers.
Prior evaluation of OpenACC compilers and their pre-
decessors was done in 2011 [Compiler and Architecture
for Embedded and Superscalar Processors (CAPS),
PGI] (Henderson et al. 2011), 2013 (PGI, Cray) (Govett
2013), and 2014 (PGI, Cray) (Govett et al. 2014). These
evaluations exposed bugs and performance problems
in the compilers. The problems identified have been
corrected, making F2C-ACC no longer necessary.

OpenACC. GPU parallelization can be done in three
phases: 1) define GPU kernels and identifying loop-
level parallelism, 2) minimize data movement, and
3) optimize performance. GPU kernels are regions of
code, identified with the parallel or kernels directive,
that are executed on the GPU. Loop-level parallel-
ism is prescribed using the loop directive, with the
optional key words gang, worker, or vector, to identify
the type of parallelism desired. These directives are
generally sufficient to parallelize and run applica-
tions on GPUs. Further work involves optimization
to minimize data movement and improve parallel
performance.

Data movement between the CPU and GPU are
handled automatically by the run-time system.
However, copying data between the host (CPU) and
device (GPU) is slow, so minimizing data movement
is an important optimization needed to improve per-
formance. The data directive can be used to manage
data movement between the CPU and GPU explicitly.
Managing data movement explicitly is expected to
diminish with the introduction of unified memory
in Pascal-generation chips. Unified memory is a way
to programmatically treat CPU and GPU memory as
a single large memory on NVIDIA hardware. Using
NVIDIA’s proprietary hardware called NVLink, the
GPU can access CPU memory at the same speed as
the CPU would, further reducing the requirement to
manage data movement explicitly.

OpenMP. Parallelization for the CPU and MIC involves
two steps: 1) insert OpenMP directives to identify
thread-level parallelism and 2) optimize performance.
Loop calculations are organized in NIM with thread-
ing over the single horizontal dimension and vectoriza-
tion over the generally independent vertical dimension.

Threading of the horizontal loop is normally
outside of the vertical loops and, if applicable, loops
over cell edges. Most OpenMP loops in NIM contain
sufficient work to amortize the overhead of assigning
work to threads on loop start-up and thread synchro-
nization at the end of the threaded region. These
costs are generally higher on the MIC than the CPU
because there are more threads to manage.

Vectorization is an optimization where independent
calculations executed serially within a loop can be ex-
ecuted simultaneously in hardware by specially desig-
nated vector registers available to each processing core.
Intel compilers automatically attempt vectorization,
with compiler flags available for further optimization
on specific hardware. The number of operations that
can be executed simultaneously is based on the length
of the vector registers. On the CPU, vector registers are
currently 256 bits in length; the KNC MIC coprocessor
contains 512-bit vector registers. As a result, vectoriza-
tion provided some benefit on the host, but in most
cases, it provided a greater improvement on the MIC.

PERFORMANCE. The NIM has demonstrated
good performance and scaling on both CPUs and
GPUs on Titan,2 where it has run on more than
250,000 CPU cores and more than 15,000 GPUs. It
has also been run on up to 320 Intel MIC (Xeon Phi)
processors at the Texas Advanced Computing Center
(TACC).3 Optimizations targeting Xeon Phi and GPU
have also improved CPU performance.

Since NIM has been optimized for the CPU, GPU,
and MIC, it is a useful way to make comparisons
between chips.4 Every attempt was made to make fair
comparisons between same-generation hardware,
using identical source code optimized for all archi-
tectures. Given the increasing diversity of hardware
solutions, results are shown in terms of device, node,
and multinode performance.

1 The OpenACC specification only recently added support for
derived types; pointer abstractions may limit the ability of
compilers to fully analyze and optimize calculations.

2 Titan is an AMD-GPU-based system containing over
17,000 GPUs, managed by the U.S. Department of Energy’s
Oak Ridge National Laboratory (ORNL).

3 Runs were made on Stampede, an Intel CPU–MIC system
supported by the National Science Foundation (NSF).

4 GPU performance relied on the F2C-ACC compiler. Based
on our evaluations, we believe openACC compilers would
yield similar results.

MANY-CORE AND GPU COMPUTING EXPLAINED

Many core and GPUs represent a new
class of computing called MPFG.

In contrast to CPU chips with up to
18 cores, these fine-grain processors
contain hundreds to thousands of com-
putational cores. Each individual core is
slower than a traditional CPU core, but
there are many more of them available
to execute instructions simultaneously.
This has required model calculations to
become increasingly fine grained.

GPUs are designed for compute-in-
tensive, highly parallel execution. GPUs
contain up to 5,000 compute cores
that execute instructions simultaneous-
ly. As a coprocessor to the CPU, work
is given to the GPU in routines or

regions of code called kernels. Loop-
level calculations are typically executed
in parallel in kernels. The OpenACC
programming model designates three
levels of parallelism for loop calcula-
tions: gang, worker, and vector that are
mapped to execution threads and
blocks on the GPU. Gang parallelism is
for coarse-grain calculations. Worker-
level parallelism is fine grain, where each
gang will contain one or more workers.
Vector parallelism is for single instruc-
tion multiple data (SIMD) or vector
parallelism that is executed on the
hardware simultaneously.

MIC hardware from Intel also
provides the opportunity to exploit

more parallelism than traditional CPU
architectures. Like GPUs, the clock
rate of the chips is 2–3 times slower
than current-generation CPUs, with
higher peak performance provided
by additional processing cores, wider
vector processing units, and a fused
multiply–add (FMA) instruction. The
programming model used to ex-
press parallelism on MIC hardware is
traditional OpenMP threading along
with vectorization. User code can be
written to offload computationally
intensive calculations from the CPU to
the MIC (similar to GPU), run in MIC-
only mode, or shared between MIC
and CPU host.

5AMERICAN METEOROLOGICAL SOCIETY |4 | OCTOBER 2017OCTOBER 2017

communications path off node that is shared by the
eight attached accelerators. Alternative node configu-
rations are available, including ones with multiple
InfiniBand (IB) connections, nested PCIe architec-
tures, and solutions that avoid use of QPI because of
reported latency issues (Ellis 2014; Cirrascale 2015).
While such solutions can increase performance, test-
ing remains the best way to measure cost–benefit.

Scaling. To run efficiently on hundreds to thousands of
processors requires good scaling. Both strong and weak
scaling measures are useful for performance compari-
sons. Strong scaling is measured by applying increas-
ing numbers of compute resources to a fixed problem
size. This metric is particularly important for opera-
tional weather prediction where forecasts should run
in under 1% of real time. The requirement is normally

achieved by increasing the
number of processors until
the given time threshold is
met. For example, a 1-day
forecast that runs in 15 min
represents 1% of real time;
therefore, runs in 2% of real
time would take 30 min.

Figure 5 shows multi-
node scaling results for 20–
160 Haswell CPUs (2015),
N V IDI A Pasca l GPUs
(2016), and Intel KNL MIC
(2016) processors. Up to
2.5-times speedup for GPU
versus CPU is observed for

Fig. 3. Illustration of the Cray Storm node architecture containing eight accelerators per node. NVIDIA GPUs
are shown, but other PCIe-compatible devices can be used. IB refers to a type of node interconnect called
“InfiniBand”; others are also available.

Fig. 4. Communications scaling using 40 Pascal GPUs with 2–8 GPUs per
node. Computation times for each of the 15- and 30-km runs are not shown
but were consistently 28.6 and 7.5 s, respectively.

Device performance. Single-device performance is
the simplest and most direct comparison of chip
technologies. Figure 2 shows performance running
the entire NIM dynamical core on five generations
of CPU, GPU, and MIC hardware (see Table 1). CPU
results are based on standard two-socket node con-
figurations. A roughly 2-times performance benefit
favoring accelerators is observed for 2010–16-genera-
tion GPU chips. CPU performance has continued to
benefit from increasing cores per chip, improvements
in memory speeds, and the introduction of advanced
vector instructions. Both the KNC and KNL proces-
sors are faster than same-generation CPU chips, with
the 2016 KNL processor giving a 2-times performance
benefit versus the CPU. The NVIDIA Pascal proces-
sor is even better, giving a 2.5-times speedup over the
CPU, and 1.3 times faster than the KNL.

While device comparisons are useful, they do not in-
clude the cost of a CPU host that is required by the GPU
accelerator. This practical and economic consideration
motivates further examination and performance com-
parisons with up to eight GPUs attached to a single CPU.

Single-node performance (GPU only). Compute nodes
normally have two CPU sockets, memory, network

interconnect (NIC), peripheral component inter-
connect express (PCIe) bus, and a motherboard.
Deviations from this basic configuration are available
but more expensive since the volumes manufactured
are lower. Therefore, most computing centers use
standard, high-volume parts that offer the best price
performance. GPUs can be attached to these nodes
and communicate with the CPU host via the PCIe
bus.

When more than two GPUs are attached to
the host, they must share the PCIe bus, which can
impact performance. More specialized solutions
are available that improve communications perfor-
mance. Figure 3 illustrates the architecture of a Cray
Storm node, with eight attached accelerators (GPUs
are shown, but MIC processors can also be used),
and additional PCIe hardware. Communications
between sockets are handled with Intel’s QuickPath
Interconnect (QPI).

Figure 4 shows weak scaling performance as
the number of GPUs per CPU node increases from
two to eight on a Cray Storm system. These results
primarily indicate PCIe bandwidth limitations on
the Cray Storm system. An additional performance
bottleneck may be the limited bandwidth of the single

Fig. 2. Run times for the NIM running at 240-km resolution (10,242 horizontal points, 96 vertical levels) for 100
time steps using CPU, GPU, and MIC chips identified in Table 1.

Table 1. 2010–16-generation CPU, GPU, and MIC chips with corresponding numbers of pro-
cessing cores. The number of cores for the CPU chips is based on two sockets.

Year CPU: two sockets Cores GPU Cores MIC Cores

2010/11 Westmere 12 Fermi 448

2012 Sandy Bridge 16 Kepler K20x 2,688

2013 Ivy Bridge 20 Kepler K40 2,880 Knights Corner 61

2014 Haswell 24 Kepler K80 4,992

2016 Broadwell 30 Pascal 3,584 Knights Landing 68

7AMERICAN METEOROLOGICAL SOCIETY |6 | OCTOBER 2017OCTOBER 2017

the 10-node result when 65,536 columns of work are
given to each node or GPU. The decrease in scaling
efficiency is almost completely due to interprocess
communications overhead. For example, when com-
munications are removed from the 80-GPU run,
scaling efficiency increases from 63% to over 90%.
CPU and MIC scaling also show similar degrading
communications performance.

Weak scaling is a measure of how solution time
varies with increasing numbers of processors when
the problem size per processor and the number of
model time steps remains fixed. It is considered a
good way to determine how a model scales to high
numbers of processors and is particularly useful for
measuring communications overhead.

Table 2 gives performance results for a single node
with 20,284 columns per GPU for 120- and 60-km
resolution runs using two and eight GPUs. NVIDIA
K80s packaged with two GPUs were used for the runs.
Computation time was nearly identical for all runs,
with communications time increasing to 3.19 s for the
one-node, eight-GPU run. An additional run using

5 Each doubling in horizontal resolution requires 4 times
more compute power and a 2-times increase in the number
of model time steps. Assuming perfect scaling, a threefold
increase in model resolution from 30 to 3.75 km requires
64 times (43) more GPUs and an 8-times (23) increase in the
number of model time steps. Therefore, scaling to 3.75 km
is calculated as 8 × 0.20 = 1.6% of real time. Additional in-
creases in compute power and time to solution are expected
when physics calculations are included.

two nodes illustrates the substantial increase in off-
node communications time. Given communications
time within a node (3.19 s) is less than the off-node
time (7.23 s). The results show that more GPUs could
be added to each node without adversely affecting
model run times. This is because all processes must
wait for the slowest communication to complete be-
fore model execution can continue.

Spiral grid order. To run efficiently on hundreds to
thousands of nodes requires efficient interprocess
communications. For most models, communications
normally include gathering and packing data to be
sent to neighboring processes, MPI communications
of the data, and then unpacking and distributing the
received data. Analysis of NIM dynamics perfor-
mance showed that message packing and unpacking
accounted for 50% of inter-GPU communications
time (Middlecoff 2015). Since NIM relies on a lookup
table to reference horizontal grid points, data can
be reorganized to eliminate packing and unpack-
ing. This optimization, configured during model

initialization, is called “spiral grid order.” Figure 6
illustrates spiral grid ordering used in NIM. In the
figure, points are organized according to where
data must be sent (as interior points) or received (as
halo points). Each point in the figure represents an
icosahedral grid column that contains 96 vertical
levels. The section labeled “spiral grid ordering”
illustrates the method used to order points within
each MPI task. The “data storage layout” section il-
lustrates how grid points are organized in memory
for optimal communications and computation. Use
of the spiral grid order gave performance benefit on
all architectures, with a 20% improvement in model
run times on the GPU, 16% on the MIC, and 5% on
the CPU.

Cost–benefit. Cost–benefit is determined using list
prices as specified from Intel and NVIDIA in Table 3.
The CPU node estimate was based on a standard two-
socket, 24-core, Intel Haswell node, which includes
the processor, memory, network interconnect, and
warranty. The system interconnect was not included
in cost calculations, based on the assumption that the
cost for each system would be similar. While signifi-
cant discounts are normally offered to customers, it

would be impossible to fairly represent them in any
cost–benefit evaluation here.

Figure 7 shows a cost–benefit based on running
NIM dynamics at 30-km model resolution. Each of
the five system configurations shown produced a 3-h
forecast in 23 s or 0.20% of real time. The CPU-only
configuration (upper-left point) required 960 cores
or 40 Haswell nodes. The rightmost configurations
used 20 NVIDIA K80 GPUs that were attached to 20,
10, 8, and 5 CPUs, respectively. The execution time
of 23 s can be extrapolated to 1.6% of real time for a
3.75-km-resolution model when per-process work-
load remains fixed (weak scaling).5

Based on list prices in Table 3, a 40-node CPU
would cost $260,000. Systems configured with 1–4

Table 2. Weak scaling performance for a single node (not shaded) and multiple nodes (shaded) for
100 time steps on K80 GPUs. For a fixed computational workload (20,482 columns), single-node
communications time increases from 0.56 to 3.19 as the number of GPUs increase from two to
eight. A further increase to 7.23 s is observed when four nodes are used.

GPUs per
node

No. of
nodes

Model resolution
(km)

Columns per
GPU

Computation
time (s)

Communications
time (s)

Total run
time

2 1 120 20,482 25.13 0.56 25.71

8 1 60 20,482 25.16 3.19 28.35

2 4 60 20,482 25.22 7.23 33.45

Interior Points
MPI Task 5

Interior Points
MPI Task 6

Interior Points
MPI Task 4

MPI Task 2

Interior Points Halo Points (received)

Task4 Task6Task8 Task3MPI Task5

M
PI

 R
ec

ei
ve

M
PI Receive

M
PI

 S
en

d

SMS Inter-Process Communica�ons
- Spiral Grid Op�miza�on -

Data Storage Layout

Spiral
Data Layout Halo Points (received)

M
PI

 S
en

d

MPI Task 5

Fig. 6. An illustration of the spiral layout. The upper portion of the figure, titled “spiral data layout,” shows a
traversal of icosahedral grid cells (hexagons) for MPI tasks 4, 5, and 6. “Data storage layout” illustrates how
data are organized to be contiguous in memory. Line color indicates who owns the cells (e.g., task 5 is in black).
The orange, red, green, and blue lines in task 5 are halo cells, duplicated in task 5 memory but owned by tasks
4, 2, 6, and 8. Arrows indicate MPI interprocess communications to update these halo cells.

Fig. 5. NIM strong scaling comparison with dual-socket Haswell CPU, NVIDIA Pascal GPU, and Intel KNL
(MIC) processors. The horizontal axis gives the number of nodes used for a fixed problem size. The “cols/node”
numbers indicate computational workload per node. Speedup efficiency compared to the 10-node CPU and
GPU run times appear as numeric values in each performance bar. An MIC baseline run with 10 processors
could not be run because of insufficient memory.

9AMERICAN METEOROLOGICAL SOCIETY |8 | OCTOBER 2017OCTOBER 2017

NVIDIA K80s per CPU are
shown that lower the price
of the system from $230,000
to $132,500, respectively.
For these tests, 20 NVIDIA
K80s were used packaged
with two GPUs per K80.
No changes in run times
were observed for the four
CPU–GPU configurations.
Systems such as Cray Storm
support up to eight GPU per
node, which could give ad-
ditional cost benefit.

DISCUSSION. The NIM demonstrates that
weather prediction codes can be designed for high-
performance and portability-targeting CPU, GPU,
and MIC architectures. Inherent in the design of NIM
has been the simplicity of the code, use of basic FOR-
TRAN language constructs, and minimal branching
in loop calculations. Use of FORTRAN pointers,
derived types, and other constructs that are not well
supported or are challenging for compilers to analyze
and optimize were avoided. NIM’s icosahedral–hex-
agonal grid permits grid cells to be treated identically,
which minimizes branching in gridpoint calcula-
tions. Further, code design separated fine-grain and
coarse-grain (MPI) parallelism. This was primarily

due to limitations in F2C-ACC but had a benefit of
organizing calculations to avoid creation and execu-
tion of small parallel regions, where synchronization
and thread start-up (CPU, MIC) or kernel start-up
(GPU) time can be significant.

The choice to organize arrays and loop calcula-
tions with an innermost vertical dimension and
indirect addressing to access neighboring grid cells
simplified code design without sacrificing perfor-
mance. It also improved code portability and per-
formance in unanticipated ways. First, the innermost
vertical dimension of 96 levels was sufficient for CPU
and MIC vectorization but essential for the GPU’s
high-core-count devices. With few dependencies in
the vertical dimension, vectorization (CPU, MIC) and
thread parallelism (GPU) were consistently available
in dynamics routines. Second, indirect addressing
of grid cells gave flexibility and benefit in how they
could be organized. As a result, spiral grid reordering
eliminated MPI message packing and unpacking and
decreased run times by up to 20%.

Optimizations benefitting one architecture also
helped the others. In the rare event performance
degraded on one or more architecture, changes
were reformulated to give positive benefit on all.
OpenACC compilers continue to mature, benefiting
from F2C-ACC comparisons that exposed bugs and
performance issues that were corrected. Paralleliza-
tion is becoming simpler with OpenACC because data
movement between CPU and GPU is managed by the
run-time system. Unified memory on the GPU is ex-
pected to further simplify parallelization, narrowing
the ease-of-use gap versus OpenMP.

The scope of this paper primarily focused on
the dynamical core, largely because domain sci-
entists had not decided which physics suite to use
for high-resolution (<4 km) runs. Parallelization of
select microphysics and radiation routines improved

Table 3. List prices for Intel Haswell CPU, Intel MIC, and NVIDIA K80
GPU processors. The CPU node is based on the cost of a Dell R430 rack-
mounted system.

Chip Part Cores Power (W) OEM Price

Haswell E5–2690-V3 (2) 24 270 $4,180a

NVIDIA K80 K80 4,992 300 $5,000b

Intel MIC (KNC) 7120P 61 300 $4,129c

Haswell CPU Node Dell R430 24 — $6,500d

a http://ark.intel.com/products/81713/Intel-Xeon-Processor-E5-2690-v3-30M-Cache-2_60-GHz
b www.anandtech.com/show/8729/nvidia-launches-tesla-k80-gk210-gpu
c http://ark.intel.com/products/75799/Intel-Xeon-Phi-Coprocessor-7120P-16GB-1_238-GHz-61-core
d This price quote, from 2 Mar 2015, is for a rack-mounted Dell PowerEdge R430 server.

performance on all architectures, but lower speedups
over the CPU were observed than for the dynamics
routines (Henderson et al. 2015; Michalakes et al.
2016). This is likely due to more branching (i.e., if
statements) in the code and less available parallelism
in model physics than dynamics.

The paper gives a cost–benefit calculation for
NIM dynamics that shows increasing value as more
accelerators per node are used. However, there are
several limitations in the value of these results. First,
the comparison was only for model dynamics; when
physics is included, model performance and cost–
benefit favoring the GPU is expected to decrease.
Second, use of list price is naïve as vendors typically
offer significant discounts, particularly for large in-
stallations. Third, calculations did not include the
cost of the system interconnect. For small systems
with tens of nodes, this was deemed acceptable for
comparison as there would be little difference in price
or performance. However, comparisons with hun-
dreds to thousands of nodes would amplify the role
of the interconnect and would need to be included in
cost–benefit calculations.

CONCLUSIONS. The NIM is currently the only
weather model capable of running on CPU, GPU, and
MIC architectures with a single-source code. Perfor-
mance of the NIM dynamical core was described.
CPU, GPU, and MIC comparisons were made for
device, node, and multinode performance. Device
comparisons showed that NIM ran on the MIC and
GPU 2.0 and 2.5 times faster, respectively, than the
same-generation CPU hardware. The 2.0-times MIC
speedup for KNL versus a dual-socket Broadwell
CPU is a significant improvement over the previous-
generation KNC. Multinode scaling targeted a goal
of running NIM at 3-km resolution in 1% of real
time. The spiral grid ordering was described that
eliminated data packing and unpacking and gave
performance benefit on all architectures. Finally,
a cost–benefit analysis demonstrated increasing
benefits favoring the K80 GPUs when up to eight
accelerators are attached to each CPU host. Further
analysis of cost–benefit using the latest Pascal and
KNL chips is planned.

A critical element in achieving good performance
and portability was the design of NIM. The simplic-
ity of the code, looping, and array structures and the
indirect addressing of the icosahedral grid were all
chosen to expose the maximum parallelism to the un-
derlying hardware. The work reported here represents
a successful development effort by a team of domain
and computer scientists and software engineers

Fig. 7. Cost comparison for CPU-only and CPU–GPU
systems needed to run 100 time steps of NIM dynamics
in 23 s. Run times do not include model initialization
or I/O. Cost estimates are based on list prices for hard-
ware given in Table 3. The CPU-only system used 40
Haswell CPU nodes. Four CPU–GPU configurations
were used, where “numCPUs” indicates the total
number of CPUs used, and “K80s per CPU” indicates
the number of accelerators attached to each node.

working together during design and development.
Scientists wrote the code, computer scientists were
responsible for the directive-based parallelization and
optimization, and software engineers maintained the
software infrastructure capable of supporting devel-
opment, testing, and running the model on diverse
supercomputer systems.

The selection of the FV3 dynamical core to be part
of the Next Generation Global Prediction System
(NGGPS) run by NWS in 2020 has accelerated ef-
forts to port it to MPFG processors. Experience with
the NIM on achieving performance portability will
guide these efforts. Evaluation of FV3 performance
in 2015 indicated good scaling to 130,000 CPU cores
(Michalakes et al. 2015). While these results indicate
sufficient parallelism is available, significant work is
expected to adapt FV3 to run efficiently on GPU and
MIC processors (Govett and Rosinski 2016).

In the next decade, HPC is expected to become
increasingly fine grained, with systems containing
potentially hundreds of millions of processing cores.
To take advantage of these systems, new weather
prediction models will need to be codeveloped by
scientific and computational teams to incorporate
parallelism in model design, code structure, algo-
rithms, and underlying physical processes.

ACKNOWLEDGMENTS. Thanks to technical teams
at Intel, Cray, PGI, and NVIDIA who were responsible for
fixing bugs and providing access to the latest hardware and
compilers. Thanks also to the staff at ORNL and TACC for
providing system resources and helping to resolve system
issues. This work was also supported in part by the Disaster
Relief Appropriations Act of 2013 and the NOAA HPCC
program.

REFERENCES
Arakawa, A., and V. R. Lamb, 1977: Computational

design of the basic dynamical processes of the UCLA
general circulation model. General Circulation Mod-
els of the Atmosphere, J. Chang, Ed., Vol. 17, Methods
in Computational Physics: Advances in Research and
Applications, Academic Press, 173–265.

Bleck, R., and Coauthors, 2015: A vertically f low-
following icosahedral grid model for medium-range
and seasonal prediction. Part I: Model description.
Mon. Wea. Rev., 143, 2386–2403, doi:10.1175/MWR
-D-14-00300.1.

Carpenter, I., and Coauthors, 2013: Progress towards
accelerating HOMME on hybrid multi-core systems.
Int. J. High Perform. Comput. Appl., 27, 335–347,
doi:10.1177/1094342012462751.

11AMERICAN METEOROLOGICAL SOCIETY |10 | OCTOBER 2017OCTOBER 2017

Cirrascale, 2015: Scaling GPU compute performance.
Cirrascale Rep., 11 pp. [Available online at www
.cirrascale.com/documents/whitepapers/Cirrascale
_ScalingGPUCompute_WP_M987_REVA.pdf.]

Ellis, S., 2014: Exploring the PCIe bus routes. CirraScale.
[Available online at www.cirrascale.com/blog/index
.php/exploring-the-pcie-bus-routes/.]

Fuhrer, O., C. Osuna, X. Lapillone, T. Gysi, B. Cumming,
M. Bianco, A. Arteaga, and T. Schulthess, 2014: To-
wards a performance portable, architecture agnostic
implementation strategy for weather and climate
models. Supercomput. Front. Innovations, 1, 45–62,
doi:10.14529/jsfi140103.

Govett, M., 2013: Using OpenACC compilers to run
FIM and NIM on GPUs. Third NCAR Multi-Core
Workshop, Boulder, CO, NCAR, 6b. [Available on-
line at https://www2.cisl.ucar.edu/sites/default/files
/govett_6b.pdf.]

—, and J. Rosinski, 2016: Evaluation of the FV3
dynamical core. NGGPS Supplementary Rep., 10
pp. [Available online at www.esrl.noaa.gov/gsd/ato
/FV3_Analysis-final.pdf.]

—, L. Hart, T. Henderson, and D. Schaffer, 2003: The
scalable modeling system: Directive-based code par-
allelization for distributed and shared memory com-
puters. Parallel Comput., 29, 995–1020, doi:10.1016
/S0167-8191(03)00084-X.

—, J. Middlecoff, and T. Henderson, 2010: Running
the NIM next-generation weather model on GPUs.
10th IEEE/ACM Int. Conf. on Cluster, Cloud and
Grid Computing, Melbourne, Australia, Institute
of Electrical and Electronics Engineers/Association
for Computing Machinery, 792–796, doi:10.1109
/CCGRID.2010.106.

—, —, and —, 2014: Directive-based parallelization
of the NIM weather model for GPUs. First Workshop
on Accelerator Programming Using Directives, New
Orleans, LA, Institute of Electrical and Electronics
Engineers, 55–61, doi:10.1109/WACCPD.2014.9.

—, T. Henderson, J. Rosinski, J. Middlecoff, and
P. Madden, 2015: Parallelization and performance
of the NIM for CPU, GPU and MIC. First Symp. on
High Performance Computing for Weather, Water,
and Climate, Phoenix, AZ, Amer. Meteor. Soc.,
1.3. [Available online at https://ams.confex.com
/ams/95Annual/webprogram/Paper262515.html.]

—, —, J. Middlecoff, and J. Rosinski, 2016, A cost
benefit analysis of CPU, GPU and MIC chips us-
ing NIM performance as a guide. Second Symp. on
High Performance Computing for Weather, Water,
and Climate, New Orleans, LA, Amer. Meteor. Soc.,
1.3. [Available online at https://ams.confex.com
/ams/96Annual/webprogram/Paper286165.html.]

Henderson, T., M. Govett, and J. Middlecoff, 2011: Ap-
plying Fortran GPU compilers to numerical weather
prediction. 2011 Symp. on Application Accelerators in
High Performance Computing, Knoxville, TN, Insti-
tute of Electrical and Electronics Engineers, 34–41,
doi:10.1109/SAAHPC.2011.9.

—, J. Michalakes, I. Gokhale, and A. Jha, 2015: Opti-
mizing numerical weather prediction. Multicore and
Many-Core Programming Approaches, J. Reinders
and J. Jeffers, Eds., Vol. 2, High Performance Paral-
lelism Pearls, Morgan Kaufmann, 7–23, doi:10.1016
/B978-0-12-803819-2.00016-1.

Kim, Y., 2013: Performance tuning techniques for GPU
and MIC. Third NCAR Multi-Core Workshop, Boulder,
CO, NCAR, 1. [Available online at https://www2.cisl
.ucar.edu/sites/default/files/youngsung_1_2013.pdf.]

Lapillonne, X, and O. Fuhrer, 2014: Using compiler
directives to port large scientific applications to
GPUs: An example from atmospheric science.
Parallel Process. Lett., 24, 1450003, doi:10.1142
/S0129626414500030.

Lee, J.-L., and A. E. MacDonald, 2009: A f inite-
volume icosahedral shallow water model on lo-
cal coordinate. Mon. Wea. Rev., 137, 1422–1437,
doi:10.1175/2008MWR2639.1.

—, R. Bleck, and A. E. MacDonald, 2010: A multistep
flux-corrected transport scheme. J. Comput. Phys.,
229, 9284–9298, doi:10.1016/j.jcp.2010.08.039.

Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume
dynamical core for global models. Mon. Wea. Rev.,
132, 2293–2307, doi:10.1175/1520-0493(2004)132
<2293:AVLFDC>2.0.CO;2.

MacDonald, A. E., J. Middlecoff, T. Henderson, and
J. Lee, 2011: A general method for modeling on ir-
regular grids. Int. J. High Perform. Comput. Appl., 25,
392–403, doi:10.1177/1094342010385019.

Michalakes, J., M. Govett, R. Benson, T. Black, H. Juang,
A. Reinecke, and B. Skamarock, 2015: NGGPS
level-1 benchmarks and software evaluation. Ad-
vanced Computing Evaluation Committee Rep.,
22 pp. [Available online at www.nws.noaa.gov/ost
/nggps/DycoreTestingFiles/AVEC%20Level%201%20
Benchmarking%20Report%2008%2020150602.pdf.]

—, M. Iacono, and E. Jessup, 2016: Optimizing weath-
er model radiative transfer physics for Intel’s Many
Integrated Core (MIC) architecture. Parallel Process.
Lett., 26, 1650019, doi:10.1142/S0129626416500195.

Middlecoff, J., 2015: Optimization of MPI message
passing in a multi-core NWP dynamical core run-
ning on NVIDIA GPUs. Fifth NCAR Multi-Core
Workshop, Boulder, CO, NCAR, 4. [Available on-
line at https://www2.cisl.ucar.edu/sites/default/files
/Abstract_Middlecoff.pdf.]

Nguyen, H. V., C. Kerr, and Z. Liang, 2013: Performance
of the cubed-sphere atmospheric dynamical core
on Intel Xeon and Xeon Phi architectures. Third
NCAR Multi-Core Workshop, Boulder, CO, NCAR,
3a. [Available online at https://www2.cisl.ucar.edu
/sites/default/files/vu_3a.pdf.]

NVIDIA, 2015: CUDA C programming guide. NVIDIA.
[Available online at http://docs.nvidia.com/cuda
/cuda-c-programming-guide/.]

Putnam, B., 2011: Graphics processing unit (GPU) ac-
celeration of the Goddard Earth Observing System
atmospheric model. NASA Tech. Rep., 15 pp.

Rosinski, J., 2015: Porting and optimizing NCEP’s GFS
physics package for unstructured grids on Intel Xeon
and Xeon Phi. Fifth NCAR Multi-Core Workshop, Boul-
der, CO, NCAR, 4. [Available online at https://www2
.cisl.ucar.edu/sites/default/files/Rosinski_Slides.pdf.]

Sadourny, R., A. Arakawa, and Y. Mintz, 1968: Integra-
tion of non-divergent barotropic vorticity equation
with an icosahedral-hexagonal grid for the sphere.
Mon. Wea. Rev., 96, 351–356, doi:10.1175/1520-
0493(1968)096<0351:IOTNBV>2.0.CO;2.

Sawyer, W., C. Conti, and X.Lapillonne, 2011: Porting the
ICON non-hydrostatic dynamics and physics to GPUs.
First NCAR Multi-Core Workshop, Boulder, CO, NCAR,
19 pp. [Available online at https://www2.cisl.ucar.edu/
sites/default/files/2011_09_08_ICON_NH_GPU.pdf.]

—, G. Zaengl, and L. Linardakis, 2014: Towards
a multi-node OpenACC implementation of the
ICON model. European Geosciences Union Gen-
eral Assembly 2014, Vienna, Austria, European
Geosciences Union, ESSI2.1. [Available online at
http://meetingorganizer.copernicus.org/EGU2014
/EGU2014-15276.pdf.]

Strohmaier, E., J. Dongarra, H. Simon, and M. Meuer,
2016: Top 500 supercomputers. Top500, accessed 22
January 2017. [Available online at www.top500.org
/lists/2016/11/.]

Wang, N., and J. Lee, 2011: Geometric properties of the
icosahedral-hexagonal grid on the two-sphere. SIAM
J. Sci. Comput., 33, 2536–2559, doi:10.1137/090761355.

Williamson, D., 1971: A comparison of first- and
second-order difference approximations over a
spherical geodesic grid. J. Comput. Phys., 7, 301–309,
doi:10.1016/0021-9991(71)90091-X.

Yashiro, H., A. Naruse, R. Yoshida, and H. Tomita,
2014: A global atmosphere simulation on a GPU
supercomputer using OpenACC: Dry dynamical
cores tests. TSUBAME ESJ, Vol. 12, Tokyo Institute
of Technology Global Scientific Information and
Computing Center, Tokyo, Japan, 8–12. [Available
online at www.gsic.titech.ac.jp/sites/default/files
/TSUBAME_ESJ_12en_0.pdf.]

13AMERICAN METEOROLOGICAL SOCIETY |12 | OCTOBER 2017OCTOBER 2017

ABSTRACT
The design and performance of the nonhydrostatic icosahedral model (NIM) global weather prediction model

is described. NIM is a dynamical core designed to run on central processing unit (CPU), graphics processing unit
(GPU), and Many Integrated Core (MIC) processors. It demonstrates efficient parallel performance and scalability to
tens of thousands of compute nodes and has been an effective way to make comparisons between traditional CPU and
emerging fine-grain processors. The design of the NIM also serves as a useful guide in the fine-grain parallelization
of the finite volume cubed (FV3) model recently chosen by the National Weather Service (NWS) to become its next
operational global weather prediction model.

This paper describes the code structure and parallelization of NIM using standards-compliant open multiprocessing
(OpenMP) and open accelerator (OpenACC) directives. NIM uses the directives to support a single, performance-
portable code that runs on CPU, GPU, and MIC systems. Performance results are compared for five generations of
computer chips including the recently released Intel Knights Landing and NVIDIA Pascal chips. Single and multinode
performance and scalability is also shown, along with a cost–benefit comparison based on vendor list prices.

