
Next-generation supercomputers containing millions of processors will require weather 

prediction models to be designed and developed by scientists and software experts to ensure 

portability and efficiency on increasingly diverse HPC systems.
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A	new generation of high-performance computing  
	(HPC) has emerged called fine grain or massively  
	parallel fine grain (MPFG). The term “massively 

parallel” refers to large-scale HPC systems contain-
ing tens of thousands to millions of processing cores. 
“Fine grain” refers to loop-level parallelism that must 
be exposed in applications to permit thousands to 
millions of arithmetic operations to be executed every 
clock cycle. Two general classes of MPFG chips are 
available: Many Integrated Core (MIC) from Intel and 
graphics processing units (GPUs) from NVIDIA and 
Advanced Micro Devices (AMD) (see “Many-core and 
GPU computing explained” sidebar). In contrast to 
up to 18 cores on the latest-generation Intel Broadwell 
CPUs, these MPFG chips contain hundreds to thou-
sands of processing cores. They provide 10–20 times 
greater peak performance than CPUs, and they appear 
in systems that increasingly dominate the list of top 
supercomputers in the world (Strohmaier et al. 2016). 
Peak performance does not translate to real application 
performance, however. Good performance can only 
be achieved if fine-grain parallelism can be found and 

exploited in the applications. Fortunately, most weather 
and climate codes contain a high degree of parallelism, 
making them good candidates for MPFG computing.

As a result, research groups worldwide have begun 
parallelizing their weather and climate prediction 
models for MPFG processors. The Swiss National 
Supercomputing Center (CSCS) has done the most 
comprehensive work so far. They parallelized the 
dynamical core of the Consortium for Small-Scale 
Modeling (COSMO) model for GPUs in 2013 (Fuhrer 
et al. 2014). At that time, no viable commercial 
FORTRAN GPU compilers were available, so the 
code was rewritten in C++ to enhance performance 
and portability. They reported the C++ version gave 
a 2.9-times speedup over the original FORTRAN 
code using same-generation dual-socket Intel Sandy 
Bridge CPU and Kepler K20x GPU chips. Paralleliza-
tion of model physics in 2014 preserved the original 
FORTRAN code by using industry standard open 
accelerator (OpenACC) compiler directives for par-
allelization (Lapillonne and Fuhrer 2014). The entire 
model, including data assimilation, is now running 
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operationally on GPUs at the Swiss Federal Office of 
Meteorology and Climatology (MeteoSwiss).

Most atmospheric modeling groups exploring 
MPFG focused on the parallelization of model dy-
namics. The German Weather Service (DWD) and 
Max Planck Institute for Meteorology developed the 
Icosahedral Nonhydrostatic (ICON) dynamical core, 
which has been parallelized for GPUs. Early work by 
Sawyer et al. (2011) converted the FORTRAN using 
NVIDIA-specific Compute Unified Device Archi-
tecture (CUDA)-FORTRAN and open computing 
language (OpenCL), demonstrated a 2-times speedup 
over dual-socket CPU nodes. The invasive, platform-
specific code changes were unacceptable to domain 
scientists, so current efforts are focused on minimal 
changes to the original code using OpenACC for par-
allelization (Sawyer et al. 2014). Another dynamical 
core, the Nonhydrostatic Icosahedral Atmospheric 
Model (NICAM), has been parallelized for GPUs, 
with a reported 7–8-times performance speedup 
comparing two 2013-generation K20x GPUs to one 
2011-generation, dual-socket Intel Westmere CPU 
(Yashiro et al. 2014). Other dynamical cores parallel-
ized for the GPU, including the finite volume cubed 
(FV3) model (Lin 2004) used in Goddard Earth 
Observing System Model, version 5 (GEOS-5) (Put-
nam 2011), and the High-Order Method Modeling 
Environment (HOMME) (Carpenter et al. 2013), have 
shown some speedup versus the CPU.

Collectively, these experiences show that porting 
codes to GPUs can be challenging, but most users 
have reported speedups over CPUs. Over time, more 

mature GPU compilers have simplified parallelization 
and improved application performance. However, 
reporting of results has not been uniform and can be 
misleading. Ideally, comparisons should be made us-
ing the same source code, with optimizations applied 
faithfully to the CPU and GPU, and run on same-
generation processors. When codes are rewritten, it 
becomes harder to make fair comparisons as multiple 
versions must be maintained and optimized. When 
different-generation hardware is used (e.g., 2010 CPUs 
vs 2013 GPUs), adjustments should be made to nor-
malize reported speedups. Similarly, when compari-
sons are made with multiple GPUs attached to a single 
node, further adjustments should be made. Finally, 
comparisons between a GPU and a single CPU core 
give impressive speedups of 50–100 times, but such 
results are not useful or fair and require adjustment 
to factor in use of all cores available on the CPU.

When Intel released its MIC processor, called 
Knights Corner (KNC), in 2013, a new influx of re-
searchers began exploring fine-grain computing. Re-
search teams from National Center for Atmospheric 
Research (NCAR)’s Community Earth System Model 
(CESM) (Kim et al. 2013), Weather Research and 
Forecasting (WRF) Model (Michalakes et al. 2016), 
and the FV3 (Nguyen et al. 2013) reported little to no 
performance gain compared to the CPU. A more com-
prehensive parallelization for the MIC with National 
Oceanic and Atmospheric Administration (NOAA)’s 
Flow-Following Finite-Volume Icosahedral Model 
(FIM) (Bleck et al. 2015) included dynamics and phys-
ics running on the MIC (Rosinski 2015). Execution 
of the entire model on the KNC gave no performance 
benefit compared to the CPU. A common sentiment 
in these efforts is that porting applications to run on 
the MIC is easy, but getting good performance with 
KNC was difficult. This all changed with the release 
of Intel’s Knights Landing (KNL) processor in early 
2016. Research groups are now reporting 2-times or 
more improvement in application performance for 
KNL versus the CPU.

This paper describes the development of the non-
hydrostatic icosahedral model (NIM), a dynamical 
core that was designed to exploit MPFG processors. 
The NIM was initially designed for NVIDIA GPUs in 
2009. Since commercial FORTRAN GPU compilers 
were not available at that time, the FORTRAN-to-
CUDA accelerator (F2C-ACC) (Govett et al. 2010) 
was codeveloped with NIM to convert FORTRAN 
code into CUDA, a high-level programming language 
used on NVIDIA GPUs (NVIDIA 2015). The F2C-
ACC compiler has been the primary compiler used 
for execution of NIM on NVIDIA GPUs and has 

served as a benchmark for evaluation of commercial 
OpenACC compilers from Cray and The Portland 
Group International (PGI). Using the same source 
code, the NIM was ported to Intel MIC in 2013 when 
these processors became available.

We believe NIM is currently the only weather 
model that runs on CPU, GPU, and MIC processors 
with a single-source code. The dynamics portion of 
NIM uses open multiprocessing (OpenMP) (CPU and 
MIC), OpenACC (GPU), and F2C-ACC (GPU) direc-
tives for parallelization. Scalable Modeling System 
(SMS) directives and run-time library support MPI-
based distributed-memory parallelism, including do-
main decomposition, interprocess communications, 
and input/output (I/O) operations (Govett et al. 2003). 
Collectively, these directives allow a single-source 
code to be maintained capable of running on CPU, 
GPU, and MIC processors for serial or parallel execu-
tion. Further, the NIM demonstrates efficient parallel 
performance and scalability to tens of thousands of 
compute nodes and has been useful for comparisons 
between CPU, GPU, and MIC processors (Govett et al. 
2014, 2015, 2016).

MODEL DESIGN. NIM is a multiscale model, 
which has been designed, developed, and run 
globally at 3-km resolution with a goal to improve 
medium-range weather forecasts. The model was de-
signed to explicitly permit convective cloud systems 
without cumulus parameterizations typically used 
in models run at coarser scales. In addition, NIM 
has extended the conventional two-dimensional 

finite-volume approach into three-dimensional 
finite-volume solvers designed to improve pressure 
gradient calculation and orographic precipitation 
over complex terrain.

NIM uses the following innovations in the model 
formulation:

•	 a local coordinate system that remaps a spherical 
surface to a plane (Lee and MacDonald 2009),

•	 indirect addressing of grid cells to simplify the 
code and improve performance (MacDonald et al. 
2011),

•	 f lux-corrected transport formulated on finite-
volume operators to maintain conservative and 
monotonic transport (Lee et al. 2010),

•	 all differentials evaluated as finite-volume inte
grals around the cells, and

•	 icosahedral–hexagonal grid optimization (Wang 
and Lee 2011).

The icosahedral–hexagonal grid is a key part of the 
model. This formulation approximates a sphere with 
a varying number of hexagons but always includes 12 
pentagons. (Sadourny et al. 1968; Williamson 1971). 
The key advantage of this formulation is the nearly 
uniform grid areas that are possible over a sphere as 
illustrated in Fig. 1. This is in contrast to the latitude–
longitude models that have dominated global weather 
and climate prediction for 30 years. The nearly uni-
form grid represents the poles without the notorious 
“pole problem” inherent in latitude–longitude grids, 
where meridians converge toward the poles.

Fig. 1. An illustration contrasting the converging grid points of a lat–lon grid vs the nearly uniform grid spacing 
of an icosahedral–hexagonal grid.
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NIM uses a fully three-dimensional finite-volume 
discretization scheme designed to improve pressure 
gradient calculations over complex terrain. Three-
dimensional finite-volume operators also provide ac-
curate and efficient tracer transport essential for next-
generation global atmospheric models. Prognostic 
variables are collocated at horizontal cell centers 
(Arakawa and Lamb 1977). This simplifies looping 
constructs and reduces data dependencies in the code.

The numerical scheme uses a local coordinate sys-
tem remapped from the spherical surface to a plane at 
each grid cell. All differentials are evaluated as finite-
volume integrals around each grid cell. Passive tracers 
are strictly conserved to the round-off limit of single-
precision floating-point operations. NIM governing 
equations are cast in conservative flux forms with mass 
flux to transport both momentum and tracer variables.

Computational design. NIM is a FORTRAN code 
containing a mix of FORTRAN 77 and FORTRAN 
90 language constructs. It does not use derived types, 
pointers, or other constructs that can be challenging 
for compilers to support or run efficiently.1 The SMS 
library used by NIM for coarse-grain parallelism 
employs the message passing interface (MPI) library 
to handle domain decomposition, interprocess com-
munications, reductions, and other MPI operations.

NIM was designed from the outset to maximize 
fine-grain or loop-level parallel computational 

capability of both NVIDIA GPU and Intel MIC archi-
tectures. Primary model computations are organized as 
simple dot products or vector operations and loops with 
no data-dependent conditionals or branching. The NIM 
dynamical core requires only single-precision floating-
point computations and runs well on the CPU, achiev-
ing 10% of peak performance on an Intel Haswell CPU.

Grid cells can be stored in any order because a 
lookup table is used to indirectly access neighboring 
grid cells and edges on the icosahedral–hexagonal 
grid. The model’s loop and array structures are 
organized with the vertical dimension innermost in 
dynamics routines. This organization effectively am-
ortizes the cost of the indirect access of grid cells over 
the 96 vertical levels. Testing during model develop-
ment verified there was a less than 1% performance 
penalty using this approach (MacDonald et al. 2011).

NIM dynamics executes completely on the GPU. 
Model state remains resident in GPU global memory. 
Data are only copied between CPU and GPU for 
model initialization, interprocess communications, 
and output. GPU-to-GPU interprocess communica-
tions are handled via SMS directives and initiated by 
the CPU. Since physical parameterizations have not 
yet been ported to the GPU, data must also be moved 
between the GPU and CPU every physics time step. 
This constraint can be removed once the physics is 
also running on the GPU.

Parallelization of NIM for the MIC was trivial 
since the code had already been modified to run on 
the CPU and GPU. As a result, few code changes and 
optimizations were needed to run efficiently on the 
MIC processor.

PARALLELIZATION. NIM uses standards-com-
pliant OpenMP (for CPU and MIC) and OpenACC (for 
GPU) directives for parallelization. OpenMP is the de 
facto standard for shared memory programming on 
the CPU and MIC processors, with recent extensions 
to support attached devices such as GPUs. OpenACC 
was developed initially to support GPUs, with more re-
cent support for CPU (×86) and MIC processors. Both 
standards are striving toward performance portabil-
ity, where a single set of directives is sufficient to run 
efficiently on CPU, GPU, MIC, and other processors.

Until recently, F2C-ACC was the primary compiler 
being used to parallelize and run NIM on NVIDIA 
GPUs. F2C-ACC was an effective way to push for im-
provements in commercial FORTRAN GPU compilers. 
Prior evaluation of OpenACC compilers and their pre-
decessors was done in 2011 [Compiler and Architecture 
for Embedded and Superscalar Processors (CAPS), 
PGI] (Henderson et al. 2011), 2013 (PGI, Cray) (Govett 
2013), and 2014 (PGI, Cray) (Govett et al. 2014). These 
evaluations exposed bugs and performance problems 
in the compilers. The problems identified have been 
corrected, making F2C-ACC no longer necessary.

OpenACC. GPU parallelization can be done in three 
phases: 1) define GPU kernels and identifying loop-
level parallelism, 2) minimize data movement, and 
3) optimize performance. GPU kernels are regions of 
code, identified with the parallel or kernels directive, 
that are executed on the GPU. Loop-level parallel-
ism is prescribed using the loop directive, with the 
optional key words gang, worker, or vector, to identify 
the type of parallelism desired. These directives are 
generally sufficient to parallelize and run applica-
tions on GPUs. Further work involves optimization 
to minimize data movement and improve parallel 
performance.

Data movement between the CPU and GPU are 
handled automatically by the run-time system. 
However, copying data between the host (CPU) and 
device (GPU) is slow, so minimizing data movement 
is an important optimization needed to improve per-
formance. The data directive can be used to manage 
data movement between the CPU and GPU explicitly. 
Managing data movement explicitly is expected to 
diminish with the introduction of unified memory 
in Pascal-generation chips. Unified memory is a way 
to programmatically treat CPU and GPU memory as 
a single large memory on NVIDIA hardware. Using 
NVIDIA’s proprietary hardware called NVLink, the 
GPU can access CPU memory at the same speed as 
the CPU would, further reducing the requirement to 
manage data movement explicitly.

OpenMP. Parallelization for the CPU and MIC involves 
two steps: 1) insert OpenMP directives to identify 
thread-level parallelism and 2) optimize performance. 
Loop calculations are organized in NIM with thread-
ing over the single horizontal dimension and vectoriza-
tion over the generally independent vertical dimension.

Threading of the horizontal loop is normally 
outside of the vertical loops and, if applicable, loops 
over cell edges. Most OpenMP loops in NIM contain 
sufficient work to amortize the overhead of assigning 
work to threads on loop start-up and thread synchro-
nization at the end of the threaded region. These 
costs are generally higher on the MIC than the CPU 
because there are more threads to manage.

Vectorization is an optimization where independent 
calculations executed serially within a loop can be ex-
ecuted simultaneously in hardware by specially desig-
nated vector registers available to each processing core. 
Intel compilers automatically attempt vectorization, 
with compiler flags available for further optimization 
on specific hardware. The number of operations that 
can be executed simultaneously is based on the length 
of the vector registers. On the CPU, vector registers are 
currently 256 bits in length; the KNC MIC coprocessor 
contains 512-bit vector registers. As a result, vectoriza-
tion provided some benefit on the host, but in most 
cases, it provided a greater improvement on the MIC.

PERFORMANCE. The NIM has demonstrated 
good performance and scaling on both CPUs and 
GPUs on Titan,2 where it has run on more than 
250,000 CPU cores and more than 15,000 GPUs. It 
has also been run on up to 320 Intel MIC (Xeon Phi) 
processors at the Texas Advanced Computing Center 
(TACC).3 Optimizations targeting Xeon Phi and GPU 
have also improved CPU performance.

Since NIM has been optimized for the CPU, GPU, 
and MIC, it is a useful way to make comparisons 
between chips.4 Every attempt was made to make fair 
comparisons between same-generation hardware, 
using identical source code optimized for all archi-
tectures. Given the increasing diversity of hardware 
solutions, results are shown in terms of device, node, 
and multinode performance.

1 The OpenACC specification only recently added support for 
derived types; pointer abstractions may limit the ability of 
compilers to fully analyze and optimize calculations.

2 Titan is an AMD-GPU-based system containing over 
17,000 GPUs, managed by the U.S. Department of Energy’s 
Oak Ridge National Laboratory (ORNL).

3 Runs were made on Stampede, an Intel CPU–MIC system 
supported by the National Science Foundation (NSF).

4 GPU performance relied on the F2C-ACC compiler. Based 
on our evaluations, we believe openACC compilers would 
yield similar results.

MANY-CORE AND GPU COMPUTING EXPLAINED

Many core and GPUs represent a new 
class of computing called MPFG. 

In contrast to CPU chips with up to 
18 cores, these fine-grain processors 
contain hundreds to thousands of com-
putational cores. Each individual core is 
slower than a traditional CPU core, but 
there are many more of them available 
to execute instructions simultaneously. 
This has required model calculations to 
become increasingly fine grained.

GPUs are designed for compute-in-
tensive, highly parallel execution. GPUs 
contain up to 5,000 compute cores 
that execute instructions simultaneous-
ly. As a coprocessor to the CPU, work 
is given to the GPU in routines or 

regions of code called kernels. Loop-
level calculations are typically executed 
in parallel in kernels. The OpenACC 
programming model designates three 
levels of parallelism for loop calcula-
tions: gang, worker, and vector that are 
mapped to execution threads and 
blocks on the GPU. Gang parallelism is 
for coarse-grain calculations. Worker-
level parallelism is fine grain, where each 
gang will contain one or more workers. 
Vector parallelism is for single instruc-
tion multiple data (SIMD) or vector 
parallelism that is executed on the 
hardware simultaneously.

MIC hardware from Intel also 
provides the opportunity to exploit 

more parallelism than traditional CPU 
architectures. Like GPUs, the clock 
rate of the chips is 2–3 times slower 
than current-generation CPUs, with 
higher peak performance provided 
by additional processing cores, wider 
vector processing units, and a fused 
multiply–add (FMA) instruction. The 
programming model used to ex-
press parallelism on MIC hardware is 
traditional OpenMP threading along 
with vectorization. User code can be 
written to offload computationally 
intensive calculations from the CPU to 
the MIC (similar to GPU), run in MIC-
only mode, or shared between MIC 
and CPU host.
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communications path off node that is shared by the 
eight attached accelerators. Alternative node configu-
rations are available, including ones with multiple 
InfiniBand (IB) connections, nested PCIe architec-
tures, and solutions that avoid use of QPI because of 
reported latency issues (Ellis 2014; Cirrascale 2015). 
While such solutions can increase performance, test-
ing remains the best way to measure cost–benefit.

Scaling. To run efficiently on hundreds to thousands of 
processors requires good scaling. Both strong and weak 
scaling measures are useful for performance compari-
sons. Strong scaling is measured by applying increas-
ing numbers of compute resources to a fixed problem 
size. This metric is particularly important for opera-
tional weather prediction where forecasts should run 
in under 1% of real time. The requirement is normally 

achieved by increasing the 
number of processors until 
the given time threshold is 
met. For example, a 1-day 
forecast that runs in 15 min 
represents 1% of real time; 
therefore, runs in 2% of real 
time would take 30 min.

Figure 5 shows multi-
node scaling results for 20–
160 Haswell CPUs (2015), 
N V IDI A Pasca l  GPUs 
(2016), and Intel KNL MIC 
(2016) processors. Up to 
2.5-times speedup for GPU 
versus CPU is observed for 

Fig. 3. Illustration of the Cray Storm node architecture containing eight accelerators per node. NVIDIA GPUs 
are shown, but other PCIe-compatible devices can be used. IB refers to a type of node interconnect called 
“InfiniBand”; others are also available. 

Fig. 4. Communications scaling using 40 Pascal GPUs with 2–8 GPUs per 
node. Computation times for each of the 15- and 30-km runs are not shown 
but were consistently 28.6 and 7.5 s, respectively.

Device performance. Single-device performance is 
the simplest and most direct comparison of chip 
technologies. Figure 2 shows performance running 
the entire NIM dynamical core on five generations 
of CPU, GPU, and MIC hardware (see Table 1). CPU 
results are based on standard two-socket node con-
figurations. A roughly 2-times performance benefit 
favoring accelerators is observed for 2010–16-genera-
tion GPU chips. CPU performance has continued to 
benefit from increasing cores per chip, improvements 
in memory speeds, and the introduction of advanced 
vector instructions. Both the KNC and KNL proces-
sors are faster than same-generation CPU chips, with 
the 2016 KNL processor giving a 2-times performance 
benefit versus the CPU. The NVIDIA Pascal proces-
sor is even better, giving a 2.5-times speedup over the 
CPU, and 1.3 times faster than the KNL.

While device comparisons are useful, they do not in-
clude the cost of a CPU host that is required by the GPU 
accelerator. This practical and economic consideration 
motivates further examination and performance com-
parisons with up to eight GPUs attached to a single CPU.

Single-node performance (GPU only). Compute nodes 
normally have two CPU sockets, memory, network 

interconnect (NIC), peripheral component inter-
connect express (PCIe) bus, and a motherboard. 
Deviations from this basic configuration are available 
but more expensive since the volumes manufactured 
are lower. Therefore, most computing centers use 
standard, high-volume parts that offer the best price 
performance. GPUs can be attached to these nodes 
and communicate with the CPU host via the PCIe 
bus.

When more than two GPUs are attached to 
the host, they must share the PCIe bus, which can 
impact performance. More specialized solutions 
are available that improve communications perfor-
mance. Figure 3 illustrates the architecture of a Cray 
Storm node, with eight attached accelerators (GPUs 
are shown, but MIC processors can also be used), 
and additional PCIe hardware. Communications 
between sockets are handled with Intel’s QuickPath 
Interconnect (QPI).

Figure 4 shows weak scaling performance as 
the number of GPUs per CPU node increases from 
two to eight on a Cray Storm system. These results 
primarily indicate PCIe bandwidth limitations on 
the Cray Storm system. An additional performance 
bottleneck may be the limited bandwidth of the single 

Fig. 2. Run times for the NIM running at 240-km resolution (10,242 horizontal points, 96 vertical levels) for 100 
time steps using CPU, GPU, and MIC chips identified in Table 1.

Table 1. 2010–16-generation CPU, GPU, and MIC chips with corresponding numbers of pro-
cessing cores. The number of cores for the CPU chips is based on two sockets.

Year CPU: two sockets Cores GPU Cores MIC Cores

2010/11 Westmere 12 Fermi 448

2012 Sandy Bridge 16 Kepler K20x 2,688

2013 Ivy Bridge 20 Kepler K40 2,880 Knights Corner 61

2014 Haswell 24 Kepler K80 4,992

2016 Broadwell 30 Pascal 3,584 Knights Landing 68
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the 10-node result when 65,536 columns of work are 
given to each node or GPU. The decrease in scaling 
efficiency is almost completely due to interprocess 
communications overhead. For example, when com-
munications are removed from the 80-GPU run, 
scaling efficiency increases from 63% to over 90%. 
CPU and MIC scaling also show similar degrading 
communications performance.

Weak scaling is a measure of how solution time 
varies with increasing numbers of processors when 
the problem size per processor and the number of 
model time steps remains fixed. It is considered a 
good way to determine how a model scales to high 
numbers of processors and is particularly useful for 
measuring communications overhead.

Table 2 gives performance results for a single node 
with 20,284 columns per GPU for 120- and 60-km 
resolution runs using two and eight GPUs. NVIDIA 
K80s packaged with two GPUs were used for the runs. 
Computation time was nearly identical for all runs, 
with communications time increasing to 3.19 s for the 
one-node, eight-GPU run. An additional run using 

5 Each doubling in horizontal resolution requires 4 times 
more compute power and a 2-times increase in the number 
of model time steps. Assuming perfect scaling, a threefold 
increase in model resolution from 30 to 3.75 km requires 
64 times (43) more GPUs and an 8-times (23) increase in the 
number of model time steps. Therefore, scaling to 3.75 km 
is calculated as 8 × 0.20 = 1.6% of real time. Additional in-
creases in compute power and time to solution are expected 
when physics calculations are included.

two nodes illustrates the substantial increase in off-
node communications time. Given communications 
time within a node (3.19 s) is less than the off-node 
time (7.23 s). The results show that more GPUs could 
be added to each node without adversely affecting 
model run times. This is because all processes must 
wait for the slowest communication to complete be-
fore model execution can continue.

Spiral grid order. To run efficiently on hundreds to 
thousands of nodes requires efficient interprocess 
communications. For most models, communications 
normally include gathering and packing data to be 
sent to neighboring processes, MPI communications 
of the data, and then unpacking and distributing the 
received data. Analysis of NIM dynamics perfor-
mance showed that message packing and unpacking 
accounted for 50% of inter-GPU communications 
time (Middlecoff 2015). Since NIM relies on a lookup 
table to reference horizontal grid points, data can 
be reorganized to eliminate packing and unpack-
ing. This optimization, configured during model 

initialization, is called “spiral grid order.” Figure 6 
illustrates spiral grid ordering used in NIM. In the 
figure, points are organized according to where 
data must be sent (as interior points) or received (as 
halo points). Each point in the figure represents an 
icosahedral grid column that contains 96 vertical 
levels. The section labeled “spiral grid ordering” 
illustrates the method used to order points within 
each MPI task. The “data storage layout” section il-
lustrates how grid points are organized in memory 
for optimal communications and computation. Use 
of the spiral grid order gave performance benefit on 
all architectures, with a 20% improvement in model 
run times on the GPU, 16% on the MIC, and 5% on 
the CPU.

Cost–benefit. Cost–benefit is determined using list 
prices as specified from Intel and NVIDIA in Table 3. 
The CPU node estimate was based on a standard two-
socket, 24-core, Intel Haswell node, which includes 
the processor, memory, network interconnect, and 
warranty. The system interconnect was not included 
in cost calculations, based on the assumption that the 
cost for each system would be similar. While signifi-
cant discounts are normally offered to customers, it 

would be impossible to fairly represent them in any 
cost–benefit evaluation here.

Figure 7 shows a cost–benefit based on running 
NIM dynamics at 30-km model resolution. Each of 
the five system configurations shown produced a 3-h 
forecast in 23 s or 0.20% of real time. The CPU-only 
configuration (upper-left point) required 960 cores 
or 40 Haswell nodes. The rightmost configurations 
used 20 NVIDIA K80 GPUs that were attached to 20, 
10, 8, and 5 CPUs, respectively. The execution time 
of 23 s can be extrapolated to 1.6% of real time for a 
3.75-km-resolution model when per-process work-
load remains fixed (weak scaling).5

Based on list prices in Table 3, a 40-node CPU 
would cost $260,000. Systems configured with 1–4 

Table 2. Weak scaling performance for a single node (not shaded) and multiple nodes (shaded) for 
100 time steps on K80 GPUs. For a fixed computational workload (20,482 columns), single-node 
communications time increases from 0.56 to 3.19 as the number of GPUs increase from two to 
eight. A further increase to 7.23 s is observed when four nodes are used.

GPUs per 
node

No. of 
nodes

Model resolution 
(km)

Columns per 
GPU

Computation 
time (s)

Communications 
time (s)

Total run 
time

2 1 120 20,482 25.13 0.56 25.71

8 1 60 20,482 25.16 3.19 28.35

2 4 60 20,482 25.22 7.23 33.45
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Fig. 6. An illustration of the spiral layout. The upper portion of the figure, titled “spiral data layout,” shows a 
traversal of icosahedral grid cells (hexagons) for MPI tasks 4, 5, and 6. “Data storage layout” illustrates how 
data are organized to be contiguous in memory. Line color indicates who owns the cells (e.g., task 5 is in black). 
The orange, red, green, and blue lines in task 5 are halo cells, duplicated in task 5 memory but owned by tasks 
4, 2, 6, and 8. Arrows indicate MPI interprocess communications to update these halo cells.

Fig. 5. NIM strong scaling comparison with dual-socket Haswell CPU, NVIDIA Pascal GPU, and Intel KNL 
(MIC) processors. The horizontal axis gives the number of nodes used for a fixed problem size. The “cols/node” 
numbers indicate computational workload per node. Speedup efficiency compared to the 10-node CPU and 
GPU run times appear as numeric values in each performance bar. An MIC baseline run with 10 processors 
could not be run because of insufficient memory.
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NVIDIA K80s per CPU are 
shown that lower the price 
of the system from $230,000 
to $132,500, respectively. 
For these tests, 20 NVIDIA 
K80s were used packaged 
with two GPUs per K80. 
No changes in run times 
were observed for the four 
CPU–GPU configurations. 
Systems such as Cray Storm 
support up to eight GPU per 
node, which could give ad-
ditional cost benefit.

DISCUSSION.  The NIM demonstrates that 
weather prediction codes can be designed for high-
performance and portability-targeting CPU, GPU, 
and MIC architectures. Inherent in the design of NIM 
has been the simplicity of the code, use of basic FOR-
TRAN language constructs, and minimal branching 
in loop calculations. Use of FORTRAN pointers, 
derived types, and other constructs that are not well 
supported or are challenging for compilers to analyze 
and optimize were avoided. NIM’s icosahedral–hex-
agonal grid permits grid cells to be treated identically, 
which minimizes branching in gridpoint calcula-
tions. Further, code design separated fine-grain and 
coarse-grain (MPI) parallelism. This was primarily 

due to limitations in F2C-ACC but had a benefit of 
organizing calculations to avoid creation and execu-
tion of small parallel regions, where synchronization 
and thread start-up (CPU, MIC) or kernel start-up 
(GPU) time can be significant.

The choice to organize arrays and loop calcula-
tions with an innermost vertical dimension and 
indirect addressing to access neighboring grid cells 
simplified code design without sacrificing perfor-
mance. It also improved code portability and per-
formance in unanticipated ways. First, the innermost 
vertical dimension of 96 levels was sufficient for CPU 
and MIC vectorization but essential for the GPU’s 
high-core-count devices. With few dependencies in 
the vertical dimension, vectorization (CPU, MIC) and 
thread parallelism (GPU) were consistently available 
in dynamics routines. Second, indirect addressing 
of grid cells gave flexibility and benefit in how they 
could be organized. As a result, spiral grid reordering 
eliminated MPI message packing and unpacking and 
decreased run times by up to 20%.

Optimizations benefitting one architecture also 
helped the others. In the rare event performance 
degraded on one or more architecture, changes 
were reformulated to give positive benefit on all. 
OpenACC compilers continue to mature, benefiting 
from F2C-ACC comparisons that exposed bugs and 
performance issues that were corrected. Paralleliza-
tion is becoming simpler with OpenACC because data 
movement between CPU and GPU is managed by the 
run-time system. Unified memory on the GPU is ex-
pected to further simplify parallelization, narrowing 
the ease-of-use gap versus OpenMP.

The scope of this paper primarily focused on 
the dynamical core, largely because domain sci-
entists had not decided which physics suite to use 
for high-resolution (<4 km) runs. Parallelization of 
select microphysics and radiation routines improved 

Table 3. List prices for Intel Haswell CPU, Intel MIC, and NVIDIA K80 
GPU processors. The CPU node is based on the cost of a Dell R430 rack-
mounted system.

Chip Part Cores Power (W) OEM Price

Haswell E5–2690-V3 (2) 24 270 $4,180a

NVIDIA K80 K80 4,992 300 $5,000b

Intel MIC (KNC) 7120P 61 300 $4,129c

Haswell CPU Node Dell R430 24 — $6,500d

a http://ark.intel.com/products/81713/Intel-Xeon-Processor-E5-2690-v3-30M-Cache-2_60-GHz
b www.anandtech.com/show/8729/nvidia-launches-tesla-k80-gk210-gpu
c http://ark.intel.com/products/75799/Intel-Xeon-Phi-Coprocessor-7120P-16GB-1_238-GHz-61-core
d This price quote, from 2 Mar 2015, is for a rack-mounted Dell PowerEdge R430 server.

performance on all architectures, but lower speedups 
over the CPU were observed than for the dynamics 
routines (Henderson et al. 2015; Michalakes et al. 
2016). This is likely due to more branching (i.e., if 
statements) in the code and less available parallelism 
in model physics than dynamics.

The paper gives a cost–benefit calculation for 
NIM dynamics that shows increasing value as more 
accelerators per node are used. However, there are 
several limitations in the value of these results. First, 
the comparison was only for model dynamics; when 
physics is included, model performance and cost–
benefit favoring the GPU is expected to decrease. 
Second, use of list price is naïve as vendors typically 
offer significant discounts, particularly for large in-
stallations. Third, calculations did not include the 
cost of the system interconnect. For small systems 
with tens of nodes, this was deemed acceptable for 
comparison as there would be little difference in price 
or performance. However, comparisons with hun-
dreds to thousands of nodes would amplify the role 
of the interconnect and would need to be included in 
cost–benefit calculations.

CONCLUSIONS. The NIM is currently the only 
weather model capable of running on CPU, GPU, and 
MIC architectures with a single-source code. Perfor-
mance of the NIM dynamical core was described. 
CPU, GPU, and MIC comparisons were made for 
device, node, and multinode performance. Device 
comparisons showed that NIM ran on the MIC and 
GPU 2.0 and 2.5 times faster, respectively, than the 
same-generation CPU hardware. The 2.0-times MIC 
speedup for KNL versus a dual-socket Broadwell 
CPU is a significant improvement over the previous-
generation KNC. Multinode scaling targeted a goal 
of running NIM at 3-km resolution in 1% of real 
time. The spiral grid ordering was described that 
eliminated data packing and unpacking and gave 
performance benefit on all architectures. Finally, 
a cost–benefit analysis demonstrated increasing 
benefits favoring the K80 GPUs when up to eight 
accelerators are attached to each CPU host. Further 
analysis of cost–benefit using the latest Pascal and 
KNL chips is planned.

A critical element in achieving good performance 
and portability was the design of NIM. The simplic-
ity of the code, looping, and array structures and the 
indirect addressing of the icosahedral grid were all 
chosen to expose the maximum parallelism to the un-
derlying hardware. The work reported here represents 
a successful development effort by a team of domain 
and computer scientists and software engineers 

Fig. 7. Cost comparison for CPU-only and CPU–GPU 
systems needed to run 100 time steps of NIM dynamics 
in 23 s. Run times do not include model initialization 
or I/O. Cost estimates are based on list prices for hard-
ware given in Table 3. The CPU-only system used 40 
Haswell CPU nodes. Four CPU–GPU configurations 
were used, where “numCPUs” indicates the total 
number of CPUs used, and “K80s per CPU” indicates 
the number of accelerators attached to each node.

working together during design and development. 
Scientists wrote the code, computer scientists were 
responsible for the directive-based parallelization and 
optimization, and software engineers maintained the 
software infrastructure capable of supporting devel-
opment, testing, and running the model on diverse 
supercomputer systems.

The selection of the FV3 dynamical core to be part 
of the Next Generation Global Prediction System 
(NGGPS) run by NWS in 2020 has accelerated ef-
forts to port it to MPFG processors. Experience with 
the NIM on achieving performance portability will 
guide these efforts. Evaluation of FV3 performance 
in 2015 indicated good scaling to 130,000 CPU cores 
(Michalakes et al. 2015). While these results indicate 
sufficient parallelism is available, significant work is 
expected to adapt FV3 to run efficiently on GPU and 
MIC processors (Govett and Rosinski 2016).

In the next decade, HPC is expected to become 
increasingly fine grained, with systems containing 
potentially hundreds of millions of processing cores. 
To take advantage of these systems, new weather 
prediction models will need to be codeveloped by 
scientific and computational teams to incorporate 
parallelism in model design, code structure, algo-
rithms, and underlying physical processes.
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ABSTRACT
The design and performance of the nonhydrostatic icosahedral model (NIM) global weather prediction model 

is described. NIM is a dynamical core designed to run on central processing unit (CPU), graphics processing unit 
(GPU), and Many Integrated Core (MIC) processors. It demonstrates efficient parallel performance and scalability to 
tens of thousands of compute nodes and has been an effective way to make comparisons between traditional CPU and 
emerging fine-grain processors. The design of the NIM also serves as a useful guide in the fine-grain parallelization 
of the finite volume cubed (FV3) model recently chosen by the National Weather Service (NWS) to become its next 
operational global weather prediction model.

This paper describes the code structure and parallelization of NIM using standards-compliant open multiprocessing 
(OpenMP) and open accelerator (OpenACC) directives. NIM uses the directives to support a single, performance-
portable code that runs on CPU, GPU, and MIC systems. Performance results are compared for five generations of 
computer chips including the recently released Intel Knights Landing and NVIDIA Pascal chips. Single and multinode 
performance and scalability is also shown, along with a cost–benefit comparison based on vendor list prices.


