S
Stephens, B. B., K. R. Gurney, Pieter P. Tans, Colm Sweeney, W. Peters, Lori M. P. Bruhwiler, P. Ciais, M. Ramonet, P. Bousquet, T. Nakazawa, S. Aoki, T. Machida, G. Inoue, N. Vinnichenko, J. Lloyd, A. Jordan, M. Heimann, O. Shibistova, R. Langenfelds, L. P. Steele, R. J. Francey and A. S. Denning, (2007), Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2, Science, 316, 5832, 1732-1735, 10.1126/science.1137004

Abstract

Measurements of midday vertical atmospheric CO2 distributions reveal annual-mean vertical CO2 gradients that are inconsistent with atmospheric models that estimate a large transfer of terrestrial carbon from tropical to northern latitudes. The three models that most closely reproduce the observed annual-mean vertical CO2 gradients estimate weaker northern uptake of -1.5 petagrams of carbon per year (Pg C year-1) and weaker tropical emission of +0.1 Pg C year-1 compared with previous consensus estimates of -2.4 and +1.8 Pg C year-1, respectively. This suggests that northern terrestrial uptake of industrial CO2 emissions plays a smaller role than previously thought and that, after subtracting land-use emissions, tropical ecosystems may currently be strong sinks for CO2.