Today’s carbon cycle as revealed by observed CO$_2$ records

Pieter P. Tans
NOAA Earth System Research Laboratory
CO₂ trend at Mauna Loa Observatory

Mole fraction (parts per million)

Year

Fossil fuel data: CDIAC and BP
DECADAL MASS BALANCE OF CARBON

Hamburg Ocean Carbon Cycle Model, E.Maier-Reimer, 1987

Pulse response:
\[\text{CO2}_{\text{ATM}} = 0.131 + 0.201 \exp\left(-t/363\right) + 0.321 \exp\left(-t/74\right) + \]
\[+ 0.249 \exp\left(-t/17\right) + 0.098 \exp\left(-t/1.9\right) \]
DECADAL MASS BALANCE OF CARBON

sources: David Etheridge, CSIRO, Australia; ESRL
DECADAL MASS BALANCE OF CARBON

Cumulative fossil fuel emissions (Jan. 2007) 331 ± 25
 (source: CDIAC)

Observed atmospheric increase (Jan. 2007) 214 ± 8
 (source: ESRL)

Observed ocean increase through 1994 118 ± 19
 (Sabine et al., Science 2004)

Oceans, extrapolated through 2006 148

fossil fuel emissions + terrestrial sources = atmospheric increase + ocean
Use of isotopic ratios to distinguish sources

\[
\frac{^{13}\text{C}/^{12}\text{C}}_{\text{sample}} - \frac{^{13}\text{C}/^{12}\text{C}}_{\text{reference}}}{^{13}\text{C}/^{12}\text{C}}_{\text{reference}}
\]

<table>
<thead>
<tr>
<th>Source</th>
<th>$\delta^{13}\text{C}$</th>
<th>$^{13}\text{C}/^{12}\text{C}$ ratio</th>
<th>$^{14}\text{C}/^{12}\text{C}$ ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmosphere</td>
<td>-8 ‰</td>
<td>0.011147</td>
<td>1.06</td>
</tr>
<tr>
<td>From oceans</td>
<td>-8 ‰</td>
<td>0.011147</td>
<td>1.08</td>
</tr>
<tr>
<td>Terrestrial biosphere</td>
<td>-26 ‰</td>
<td>0.010945</td>
<td>1.09</td>
</tr>
<tr>
<td>Coal</td>
<td>-24 ‰</td>
<td>0.010967</td>
<td>0</td>
</tr>
<tr>
<td>Oil</td>
<td>-28 ‰</td>
<td>0.010923</td>
<td>0</td>
</tr>
<tr>
<td>Natural gas</td>
<td>-45 ‰</td>
<td>0.010732</td>
<td>0</td>
</tr>
</tbody>
</table>
DECADAL MASS BALANCE OF CARBON

\[
\frac{^{13}C}{^{12}C} \text{ isotopic ratio of CO}_2
\]

Sources: Friedli (1986), Francey (1999), and ESRL & INSTAAR
DECADAL MASS BALANCE OF CARBON

rate of CO₂ injection into the atmosphere

- total
- 5-year smoothed
- fossil

net terrestrial emissions

billion metric ton carbon per year

1850 1900 1950 2000
Conclusion:

The observed increase in atmospheric carbon dioxide since pre-industrial times is entirely due to human activities.
CO2 GROWTH RATE and CLIMATE ANOMALIES

global CO₂ growth rate

- ppm/year
- 1995 - 2005

global rate of decrease of δ¹³C

- permil/year
- 1995 - 2005
CO2 GROWTH RATE and CLIMATE ANOMALIES

RECENT MONTHLY MEAN CO2 AT MAUNA LOA

www.esrl.noaa.gov/gmd/ccgg/trends/
CO2 GROWTH RATE and CLIMATE ANOMALIES
CO2 GROWTH RATE and CLIMATE ANOMALIES

global temperature anomalies (giss)

simulated global CO2 growth rate anomalies

response function

<table>
<thead>
<tr>
<th>year</th>
<th>1.0</th>
<th>-0.4</th>
<th>-0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.7</td>
<td>-0.3</td>
<td>-0.2</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>-0.3</td>
<td>-0.2</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>-0.3</td>
<td>-0.2</td>
</tr>
<tr>
<td></td>
<td>-0.4</td>
<td>-0.3</td>
<td>-0.2</td>
</tr>
<tr>
<td></td>
<td>-0.4</td>
<td>-0.3</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>-0.4</td>
<td>-0.3</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>-0.4</td>
<td>-0.2</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>-0.4</td>
<td>-0.2</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>-0.4</td>
<td>-0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>
CO2 GROWTHRATE and CLIMATE ANOMALIES

Global temperature anomalies (giss)

Simulated global CO2 growth rate anomalies

Response function

<table>
<thead>
<tr>
<th>Year</th>
<th>1.0</th>
<th>-0.4</th>
<th>-0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.7</td>
<td>-0.3</td>
<td>-0.2</td>
</tr>
<tr>
<td>1</td>
<td>0.7</td>
<td>-0.3</td>
<td>-0.2</td>
</tr>
<tr>
<td>2</td>
<td>-0.4</td>
<td>-0.3</td>
<td>-0.2</td>
</tr>
<tr>
<td>3</td>
<td>-0.4</td>
<td>-0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>-0.4</td>
<td>-0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>5</td>
<td>-0.4</td>
<td>-0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>
CO2 GROWTHRATE and CLIMATE ANOMALIES

\[
\frac{d[CO_2]}{dt} = \int dt' \ R(t-t') \ \Delta T(t')
\]
CO2 GROWTH RATE and CLIMATE ANOMALIES

Response to global temperature anomalies

YEAR

CO2 GROWTH RATE (ppm/year/°C)

-10
-5
0
5
10
15
20
CO2 GROWTH RATE and CLIMATE ANOMALIES

Response to monthly mean precip anom

CO2 growthrate (ppm/year^2 per mm/day)

YEAR

0.0 0.5 1.0 1.5 2.0

0 5

-10 -15

-5
CO2 GROWTH RATE and CLIMATE ANOMALIES

CO2 growth rate anomalies (trend removed)

ppm/year

unexplained variations

ppm/year
Conclusion:

2/3 of the interannual variance of the CO2 growth rate is explained by the delayed response of the terrestrial biosphere to interannual variations of temperature and precipitation.