

Identifying atmospheric bioaerosol Anne Perring

Bacteria: ~1 um

Spores: 2-10 um

Pollen: >~10 um

- Atmospheric bioaerosol is composed of airborne bacteria, fungal spores and pollen
- There is currently high uncertainty as to the loadings, transport and effects of these particles in the atmosphere
- CSD research in this field began in 2013 with laboratory evaluations of new instrumentation and ambient measurements in various locations

Atmospheric bioaerosol

- Can have numerous cloud effects including
 - Temperature of glaciation via ice nucleation (IN) activity
 - Droplet size distribution
 - Onset of precipitation
- Feedback mechanism between the biosphere and atmosphere?
- Impacts for human health

➔ Existing measurements are so sparse that it is difficult to assess the true importance of bioaerosol on local, regional and global scales

Bioaerosol detection using autofluorescence

- New technique in atmospheric applications •
- WIBS counts and sizes particles > 0.8 um

Bacteria

100

80

40

20

Type manifestation (%)

- Working with DMT on improvements and evaluation of WIBS capabilities and limitations.
- Collaboration w/ CU-Boulder to build a reference library

\rightarrow CSD-developed classification scheme allows good discrimination between bacteria, fungi and pollen based on measured properties

Hernandez, Perring et al., in prep. 2015

CloudLab Study

- 1st published airborne WIBS measurements
- Wide longitudinal extent and numerous ecosystem types
- Strong trends observed in bioaerosol characteristics and loadings

Objectives

- Characterization of southern hemisphere and marine bioaerosol
- La Reunion is downwind of areas of high oceanic productivity
- Ground station with regular nighttime sampling of free tropospheric air
- First ambient comparison of WIBS observations with direct bacteria, spore and pollen counts

Measurements

ania

Madagasca

WIBS: real-time fluorescent aerosol Collection via impaction: optical microscopy, genetic and component analyses, sizesegregated ice nuclei concentrations

Reunion Island

French Southern

and Antarctic Lands 🕁 Indian

Ocean

In collaboration with CU-Boulder, University of Denver, DMT, Blaise-Pascal Clermont, Meteo France and Universite de la Reunion

Indonesia