

FIREX-AQ Chem Otter Science Meeting

1. Updates: AGU December 1-17 AMS January 10-15 Anything else?

2. Zach Decker

3. Felipe Rivera

Have you looked at the flights that Felipe and Zach are analyzing? Do you have information or measurements that could help their analyses?

26 October 2020

Box Model Analysis of Wildfire smoke at sunset- when all oxidants are at play

Zachary C.J. Decker

Thanks to

Michael Robinson, Kelley C. Barsanti, Ilann Bourgeois, Matt Coggon, Frank Flocke, Ale Franchin, Carley Fredrickson, Alan Fried, Jessica Gliman, Samuel Hall, Christopher Holmes, Aaron Lamplugh, DeeDee Montzka, Richard Moore, Andy Neuman, Brett Palm, Jeff Peischl, Dirk Richter, Claire Robinson, Andrew Rollins, Tom Ryerson, Kevin Sanchez, Rebecca Schwantes, Lee Thornhill, Joel Thornton, Geoff Tyndall, Kirk Ullmann, Paul Van Rooy, Patrick R. Veres, James Walega, Petter Weibring, Andy Weinheimer, Elizabeth Wiggins, Edward Winstead, Caroline Womack, Steven S. Brown

Dark Smoke Plume Chemistry is an Open Science Question

- Nighttime smoke is difficult to study
- Nighttime smoke involves reactions with OH, O_3 and NO_3
 - NO₃ radical is produced within a plume
 - NO_x from the plume + background O_3
- Under sunlight NO_3 is rapidly destroyed by photolysis and NO (τ <10s)
- NO₃ is very reactive with biomass burning VOCs (BBVOCs)

Dark Smoke Chemistry is NO₃ and O₃ Chemistry

OH

Ponderosa Pine

NO₃

Decker et al.

ES&T 2019

0,

Fraction of mass oxidized by NO₃, O₃ and OH over a 10 hour night (box model)

of NO₃ Reactivity

%

 $P(NO_3)$ = instantaneous production rate for NO₃ from NO₂ and O₃.

2.8

We Use a Chemical Box Model to Tease Apart the Chemical Details of Overnight Evolution

- Using the Framework for 0-D Atmospheric Modeling (F0AMv4).
- Using a new "NOAA BB" mechanism (with the Master Chemical Mechanism)
 - Plus expanded reactions for phenolic compounds

- Using field observations for dilution and chemical emissions.
 - CO, NO_x, O_3 , HONO, and photolysis rates
- Using an aggregated biomass burning emissions and kinetics database of 300 BBVOCs

Decker et al. ES&T 2019. G. M. Wolfe, et al. Geoscientific Model Development, 2016.

Out Models are Constrained to Observations

We use an iterative 0-D box model to estimate initial emissions

We Model the Plumes Forward into the Night

- At sunset, all oxidants are present (NO₃, OH, and O₃), which oxidants are most important and when?
- What is the reactivity at emission and through the night for different BBVOC groups?
 - Phenolics, alkenes, and furans
- Understand NO_x lifetime throughout the night.

- How much and which BBVOCs remain at sunrise?
- What can we learn about overnight BrC formation?

OH Reactivity is Spread Over Many Groups

OH Reactivity

- Caveat: we don't include alkanes in our BBVOC emissions inventory
 - We undercount OH reactivity.

For Most Fires Reactivity Nears Zero by Sunrise

8

Age (hr)

12

8

Age (hr)

12

0

0

0

- Caveat: we don't include alkanes \bullet in our BBVOC emissions inventory
 - We undercount OH \bullet reactivity.

- OH reactivity is near 450 s⁻¹ at ۲ emission
 - Spread over many groups •
- NO₃ reactivity is mostly ulletoxygenated aromatics

OH Dominates Phenolic Oxidation Early

NO₃ and O₃ Dominate After Sunset

Total Oxidation Rate Drops Rapidly During Sunset

Overall NO₃ and OH dominate Phenolic Oxidation

About 8% of Phenolics Remain Unreacted by Sunrise

After Sunset NO_x Lifetime Increases Substantially

NO_x lifetime is 1-2 hr pre-sunset and ~10 hr post-sunset

Catechol reactions can form many products including nitrocatechol, which forms BrC.

Catechol reactions can form many products including nitrocatechol, which forms BrC.

High O_3 and low NO_x in the Castle fire reduce the nitrocatechol yield

Nitrocatechol yield

High O_3 and low NO_x in the Castle fire reduce the nitrocatechol yield

Nitrocatechol yield

High O_3 and low NO_x in the Castle fire reduce the nitrocatechol yield

Only a few points, but a good correlation exists ($R^2=0.8$)

NO₃ is responsible for 71-83% of nitrocatechol production

- Nitroaromatics form quickly in the Castle and Cow models
 - O_3 is abundant
- But slowly in the Williams Flats models.
 - Large emissions of NO depletes O₃

Nitroaromatic formation is dependent on how much O_3 is depleted at emission and how quickly it is regenerated.

NO₃ Heterogeneous Chemistry is Negligible

$$k_{NO_3 \text{ or } N_2O_5} = \frac{\gamma \bar{c}SA}{4}$$
$$\gamma_{N_2O_5} = 10^{-2} (*)$$
$$\gamma_{NO_3} = 10^{-3} - 10^{0}$$

(*) McDuffie et al. 2018 JGR Decker et al. in prep

Models Suggest an Unknown Source of CINO₂

 $NO_{2} + O_{3} \rightarrow NO_{3}$ $NO_{2} + NO_{3} \rightarrow N_{2}O_{5}$ $N_{2}O_{5} + pCI \rightarrow CINO_{2}$

Models Suggest an Unknown Source of CINO₂

 $NO_2 + O_3 \rightarrow NO_3$ $NO_2 + NO_3 \rightarrow N_2O_5$ $N_2O_5 + pCI \rightarrow CINO_2$

- Model and Observations differ by ~20x
- No pCl or ClNO₂ outside of the plume
- AMS Shows elevated pCl (~2 μ g/m³)
 - But not greater than other flights
- No Structures burned
- No Chloride containing flame retardants
- Changes in $\gamma_{N_2O_5}$ (N_2O_5 uptake) are tiny
- CINO₂ calibration error shown here is 2x
 - Reported is 30%, confident this isn't the cause.
 Decker et al. in prep

Conclusions

- We use a detailed chemical box model and observations to study plume chemistry overnight
 - Using the Master Chemical Mechanism and an updated NOAA BB Mechanism
- OH dominates phenolic and furan oxidation within the first hour of emission.
 - NO_3 and O_3 take over oxidation as the sun sets.
 - Integrated oxidation of phenolics is split almost equally between NO₃ and OH.
- Reactivity of OH is spread across many BBVOC groups, while NO₃ is mostly phenolics and O₃ is mostly alkenes
 - Alkenes dominate OH and O₃ reactivity
 - Total OH reactivity reaches at least 400 s⁻¹ in the Willams Flats model.
 - NO₃ reactivity reaches 80 s⁻¹
- NO_x lifetime is 1-2 hrs pre-sunset and ~10 post-sunset
- Modeled nitrocatechol yields are \sim 40% or lower depending on the available NO_x and O₃
 - Nitrocatechol yield decreases with increasing NO_x / BBVOC ratio
 - Nitrocatechol yield is well correlated with NO₃ production rate (only 3 points)
 - NO₃ is responsible for 71-83% of produced nitrocatechol
- Aerosol reactivity is negligible in comparison to BBVOC reactivity
- Models suggest an unknown source of CINO₂

Zachary.Decker@NOAA.gov ZacharyCJDecker.com

Can we find trends in BBVOC evolution? Positive Matrix Factorization (PMF) is the right tool Use ~150 I- CIMS raw mass signals from FIREX-AQ Observations

We Find at Least Three Stages

We Find at Least Three Stages

Chemical Imaging of Biomass Burning Aerosols

Felipe Rivera-Adorno¹, Jay Tomlin¹, Kevin Jankowski¹, Rebecca Washenfelder², Ann M. Middlebrook², Swarup China³, Ryan Moffet⁴, Lisa Azzarello⁵, Alessandro Franchin⁶, Jian Wang⁷, Alexander Laskin¹

¹Purdue University-Department of Chemistry, ²National Oceanic and Atmospheric Administration-Chemical Sciences Division, ³Pacific Northwest National Laboratory-Environmental Molecular Sciences Laboratory, ⁴Sonoma Technology, ⁵York University-Department of Chemistry, ⁶National Center for Atmospheric Research, ⁷Canadian Light Source

Time-resolved Aerosol Collector (TRAC)

Top-view of metal disc

Carbon

https://www.chem.purdue.edu/jafci/projects/trac.html

Particle Collection and Sample Selection for Analysis:08/28 Flights

*Data provided by R. Washenfelder (NOAA)

Particle Collection and Sample Selection

*Data provided by R. Washenfelder (NOAA)

Particle-type Population and External Mixing

Pacific Northwest

Emitted X-rays

X-ray microanalysis

of particles

Primary electron beam

FIREX-AQ Sample

Laskin et al, AST , 37, 246-260. © 2003, Taylor and Francis

Laskin et al. JGR, 117, D15302, © 2012, AGU

Secondary electrons (SE)

SEM imaging

K-means Cluster Analysis:

Particle-type Population: Day vs Night

Main Findings:

Ν

P

- ➤ K-means cluster analysis suggests slightly higher contribution of inorganics in the nighttime sample compared with daytime (3.8% vs 0.9%).
- Overall, daytime and nighttime seem to be very similar in elemental composition.

Particle Size Distribution: External Mixing

K-containing **Elemental Carbon** Organics

Main Findings:

Normalized PSD and fractions of clusters show dominance of components in organic both daytime and nighttime.

External Mixing Along the Plume: Day

External Mixing Along the Plume: Night

Particle Chemical Heterogeneity and Internal Mixing

STXM/NEXAFS: Stacks

STXM/NEXAFS: Stacks

~50-100 particles/stack

STXM/NEXAFS: Maps

STXM particle-type grouping based on <u>carbon speciation</u>

illustrates *internal mixing* of individual particles: mixtures of organic carbon (green) and elemental carbon (red) are dominating on both daytime and nighttime samples; there is little inorganic (blue) material

Organic Volume Fractions

Total Carbon Absorption: Organic Carbon

