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Box Model Analysis of Wildfire smoke at 
sunset- when all oxidants are at play 
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• Nighttime smoke is difficult to study
• Nighttime smoke involves reactions with OH, O3 and NO3

• NO3 radical is produced within a plume
• NOx from the plume + background O3

• Under sunlight NO3 is rapidly destroyed by photolysis and NO 
(𝜏𝜏<10s)

• NO3 is very reactive with biomass burning VOCs (BBVOCs)

Dark Smoke Plume 
Chemistry is an Open 

Science Question



Decker et al. 
ES&T 2019

Dark Smoke Chemistry is NO3 and O3 Chemistry
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We Investigate Five Plumes
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All Plumes Have Potential for Dark Chemistry
Castle Fire 204 Cow FireWilliams Flats Fire (x2)
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We Use a Chemical Box Model to Tease Apart the 
Chemical Details of Overnight Evolution 

• Using the Framework for 0-D Atmospheric Modeling (F0AMv4).
• Using a new “NOAA BB” mechanism (with the Master Chemical Mechanism)

• Plus expanded reactions for phenolic compounds

• Using field observations for dilution and 
chemical emissions.
• CO, NOx, O3, HONO, and photolysis rates
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G. M. Wolfe, et al. Geoscientific Model Development, 2016.
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Out Models are Constrained to Observations
We use an iterative 0-D box model to estimate initial emissions
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We Model the Plumes Forward into the Night

• At sunset, all oxidants are present 
(NO3, OH, and O3), which oxidants are most 
important and when?

• What is the reactivity at emission and 
through the night for different BBVOC 
groups?
• Phenolics, alkenes, and furans

• Understand NOx lifetime throughout the 
night.

• How much and which BBVOCs remain at sunrise?
• What can we learn about overnight BrC

formation?



OH Reactivity is Spread Over Many Groups

• Caveat: we don’t include alkanes 
in our BBVOC emissions inventory

• We undercount OH 
reactivity.

OH Reactivity

Decker et al. in prep



NO3 Reactivity is Dominated by Oxy. Aromatics

• Caveat: we don’t include alkanes 
in our BBVOC emissions inventory

• We undercount OH 
reactivity.

OH Reactivity NO3 Reactivity

Decker et al. in prep



For Most Fires Reactivity Nears Zero by Sunrise

• Caveat: we don’t include alkanes 
in our BBVOC emissions inventory

• We undercount OH 
reactivity.

• OH reactivity is near 450 s-1 at 
emission

• Spread over many groups
• NO3 reactivity is mostly 

oxygenated aromatics

OH Reactivity NO3 Reactivity

Decker et al. in prep



OH Dominates Phenolic Oxidation Early

Sample

OH dominates phenolic 
oxidation early

Decker et al. in prep



NO3 and O3 Dominate After Sunset

OH dominates phenolic 
oxidation early

NO3 and O3 dominate after sunset

Decker et al. in prep



Total Oxidation Rate Drops Rapidly During Sunset

OH dominates phenolic 
oxidation early

NO3 and O3 dominate after sunset
Total rate of phenolic oxidation drops 
rapidly (~10x) until sunset

Decker et al. in prep



Overall NO3 and OH dominate Phenolic Oxidation

OH dominates phenolic 
oxidation early

NO3 and O3 dominate after sunset
Total rate of phenolic oxidation drops 
rapidly (~10x) until sunset

From emission to sunrise 
38% of emitted phenolics 
reacted with NO3

Decker et al. in prep



About 8% of Phenolics Remain Unreacted by Sunrise

OH dominates phenolic 
oxidation early

NO3 and O3 dominate after sunset
Total rate of phenolic oxidation drops 
rapidly (~10x) until sunset

From emission to sunrise 
38% of emitted phenolics 
reacted with NO3

40% reacted with OH

14% reacted with O3

8% remain at sunrise

Decker et al. in prep



After Sunset NOx Lifetime Increases Substantially

Sunset 
(Solar Zenith Angle = 90°)

Decker et al. in prep

NOx lifetime is 1-2 hr
pre-sunset and ~10 hr
post-sunset



What Does This Tell Us About Potential BrC Formation?
Catechol reactions can form many products 

including nitrocatechol, which forms BrC.

Finewax et al. ES&T 2018

Decker et al. in prep
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What Does This Tell Us About Potential BrC Formation?
Catechol reactions can form many products 

including nitrocatechol, which forms BrC.
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What Does This Tell Us About Potential BrC Formation?

• Nitroaromatics form quickly in the 
Castle and Cow models
• O3 is abundant 

• But slowly in the Williams Flats models.
• Large emissions of NO depletes O3

Nitroaromatic formation is dependent on how much O3 is 
depleted at emission and how quickly it is regenerated. 

Decker et al. in prep



NO3 Heterogeneous Chemistry is Negligible

kNO3 or N2O5 =
γ�cSA

4

γN2O5 = 10−2 (∗)

γNO3 = 10−3 − 100

(*) McDuffie et al. 2018 JGR
Decker et al. in prep



Models Suggest an Unknown Source of ClNO2

Decker et al. in prep

NO2 + O3 → NO3
NO2 + NO3 → N2O5
N2O5 + pCl → ClNO2



Models Suggest an Unknown Source of ClNO2

Decker et al. in prep

• Model and Observations differ by ~20x

• No pCl or ClNO2 outside of the plume
• AMS Shows elevated pCl (~2 μg/m3)

• But not greater than other flights
• No Structures burned
• No Chloride containing flame retardants

• Changes in γN2O5 (N2O5 uptake) are tiny
• ClNO2 calibration error shown here is 2x

• Reported is 30%, confident this isn’t 
the cause. 

NO2 + O3 → NO3
NO2 + NO3 → N2O5
N2O5 + pCl → ClNO2



Conclusions
• We use a detailed chemical box model and observations to study plume chemistry overnight

• Using the Master Chemical Mechanism and an updated NOAA BB Mechanism
• OH dominates phenolic and furan oxidation within the first hour of emission. 

• NO3 and O3 take over oxidation as the sun sets. 
• Integrated oxidation of phenolics is split almost equally between NO3 and OH. 

• Reactivity of OH is spread across many BBVOC groups, while NO3 is mostly phenolics and O3
is mostly alkenes

• Alkenes dominate OH and O3 reactivity
• Total OH reactivity reaches at least 400 s-1 in the Willams Flats model.
• NO3 reactivity reaches 80 s-1

• NOx lifetime is 1-2 hrs pre-sunset and ~10 post-sunset
• Modeled nitrocatechol yields are ~40% or lower depending on the available NOx and O3

• Nitrocatechol yield decreases with increasing NOx / BBVOC ratio
• Nitrocatechol yield is well correlated with NO3 production rate (only 3 points)
• NO3 is responsible for 71-83% of produced nitrocatechol

• Aerosol reactivity is negligible in comparison to BBVOC reactivity
• Models suggest an unknown source of ClNO2 Contact

Zachary.Decker@NOAA.gov
ZacharyCJDecker.com



Can we find trends in BBVOC evolution?
Positive Matrix Factorization (PMF) is the right tool

Use ~150 I- CIMS raw mass signals from FIREX-AQ Observations 

Ti
m

e 
se

rie
s

Masses 

V
(n x m)

An input 
matrix

W
(n x p)

A matrix 
of trends

=
H

(p x m)

A matrix of 
weights for 
each trend

PMF calculates W and H
PMF outputs “Factors” or 
groups of compounds that 
correlate in time

1. Ranked “tracers” for 
each factor

2. Factor time series 



We Find at Least Three Stages

Decker et al. in prep
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Chemical Imaging of Biomass 
Burning Aerosols

Felipe Rivera-Adorno1 , Jay Tomlin1 , Kevin Jankowski1 , Rebecca 
Washenfelder2 , Ann M. Middlebrook2 , Swarup China3 , Ryan Moffet4 , 
Lisa Azzarello5 , Alessandro Franchin6 , Jian Wang7 , Alexander Laskin1

1Purdue University-Department of Chemistry, 2National Oceanic and Atmospheric Administration-Chemical Sciences Division, 3Pacific 
Northwest National Laboratory-Environmental Molecular Sciences Laboratory, 4Sonoma Technology, 5York University-Department of 

Chemistry, 6National Center for Atmospheric Research, 7Canadian Light Source



Time-resolved Aerosol Collector (TRAC)
Top-view of metal disc

https://www.chem.purdue.edu/jafci/projects/trac.html https://emresolutions.com/product/carbon-film-on-nickel-300-mesh-50/



Particle Collection and Sample Selection for Analysis:08/28 Flights 

*Data provided by R. Washenfelder (NOAA) 
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Particle Collection and Sample Selection 

*Data provided by R. Washenfelder (NOAA) 

Selected TRAC 
Samples

L2 Flight L3 Flight



Particle-type Population and External Mixing

Laskin et al, AST , 37, 246–260. © 2003, Taylor and Francis

Laskin et al. JGR, 117, D15302, © 2012, AGU

FIREX-AQ Sample



K-means Cluster Analysis:
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https://aws.amazon.com/blogs/machine-learning/k-means-clustering-with-amazon-sagemaker/



Particle-type Population: Day vs Night
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Main Findings:
 K-means cluster analysis suggests

slightly higher contribution of
inorganics in the nighttime sample
compared with daytime (3.8% vs
0.9%).

 Overall, daytime and nighttime
seem to be very similar in elemental
composition.



Particle Size Distribution: External Mixing
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Main Findings:
 Normalized PSD and

fractions of clusters
show dominance of
organic components in
both daytime and
nighttime.



External Mixing Along the Plume: Day
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External Mixing Along the Plume: Night
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Particle Chemical Heterogeneity and Internal Mixing

Maser et al. 
Journal of Microscopy 197, 68–79.

© 2000,  Elsevier
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STXM/NEXAFS: Stacks
Daytime Nighttime

C*=C

R(C*=O)OH

R(C*-OH)

96 energy settings
40-60 min/stack
~5 particles/stack
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STXM/NEXAFS: Stacks
Daytime Nighttime

map

4 energy settings
10-15 min/stack
~50-100 particles/stack

NighttimeDaytime

C*=C

R(C*=O)OH

R(C*-OH) 3x Real Values

Map



STXM/NEXAFS: Maps

STXM particle-type grouping based on carbon speciation
illustrates internal mixing of individual particles: mixtures of organic carbon (green) and elemental carbon 
(red) are dominating on both daytime and nighttime samples; there is little inorganic (blue) material



Organic Volume Fractions
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Total Carbon Absorption: Organic Carbon
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