Nitrous Oxide (N₂O) Emissions form California based on Airborne Measurements during CalNex

Bin Xiang, Scot Miller, Gregory Santoni, Eric Kort, Bruce Daube, Roisin Commane, Steve Wofsy

Harvard University, School of Engineering and Applied Science and Dept of Earth and Planetory Sciences **Wayne Angevine**, Chemical Science Division, NOAA Earth System Research Laboratory **Thomas Nehrkorn**, Atmospheric and Environmental Research

Atmospheric importance:

Third most important long-lived GHGs Top stratospheric ozone-depletion gas

Global emission:

2/3 natural, 1/3 anthropogenic

Annual increase rate: 0.2 – 0.3% steady

Budget uncertanty:

 $20\% \sim 30\%$ imbalance between sources and sinks

CalNex Agricultural N₂O Profiles

Question to Answer:

How can we improve the regional N₂O emission inventories for the state of California using CalNex observations?

Top-Down Method

- Transport model STILT (Stochastic Time-Inverted Lagrangian Transport)
 Meteorology (WRF v3.2 provided by Wayne Angevine, NOAA)
- Boundary condition (HIPPO3 data)
- A priori input (N₂O emission inventories, California land use maps)

$$\begin{split} N_2 O_{simulated} &= N_2 O_{boundary} + N_2 O_{enhancement} \\ &= N_2 O_{ocean} + N_2 O_{remote_land} + N_2 O_{local_land} \\ &= N_2 O_{ocean} + N_2 O_{remote_land} + (footprint \times surface_flux) \end{split}$$

Model-Data Assimilation

Multiple linear regression

STILT Transport Model

Northern Pacific N₂O Boundary

Fits 2 3 4 5 6

Model-Data Assimilation

Use existing emission inventories

Conclusions from Preliminary Results

 Existing emission inventories too low for California

Manure management and fertilizer application are the major contributors for N San Joaquin Valley N₂O emission

Need to explore point sources and other source categories to improve the model data assimilation.