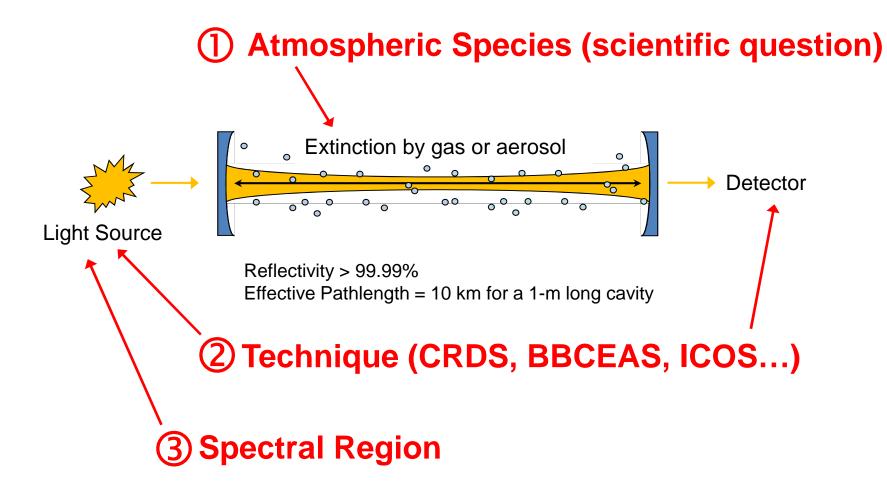
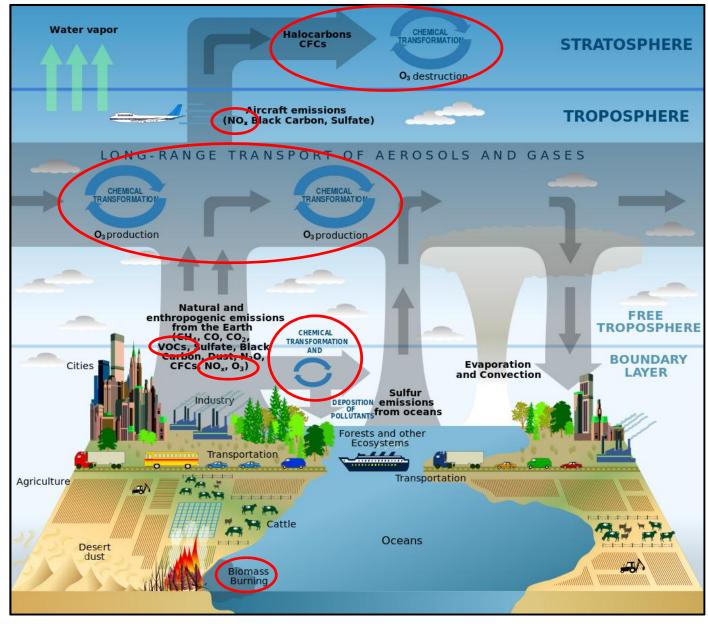

Atmospheric Field Measurements using Cavity Enhanced Spectroscopy

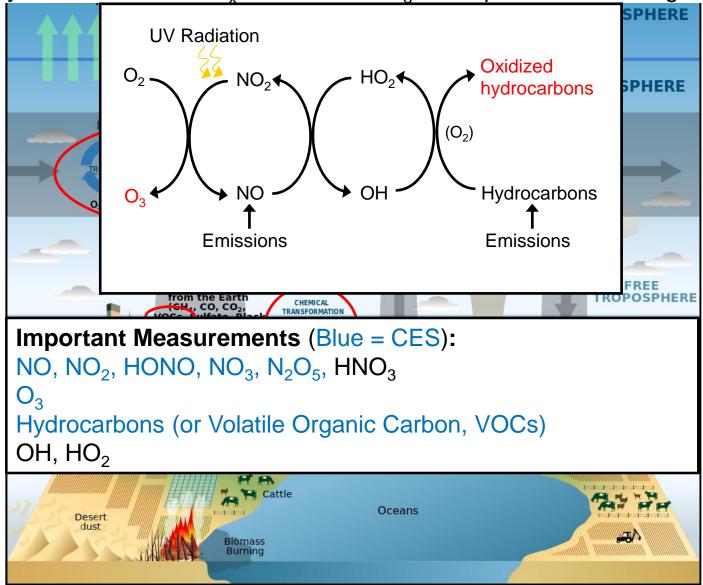
Rebecca Washenfelder NOAA / University of Colorado



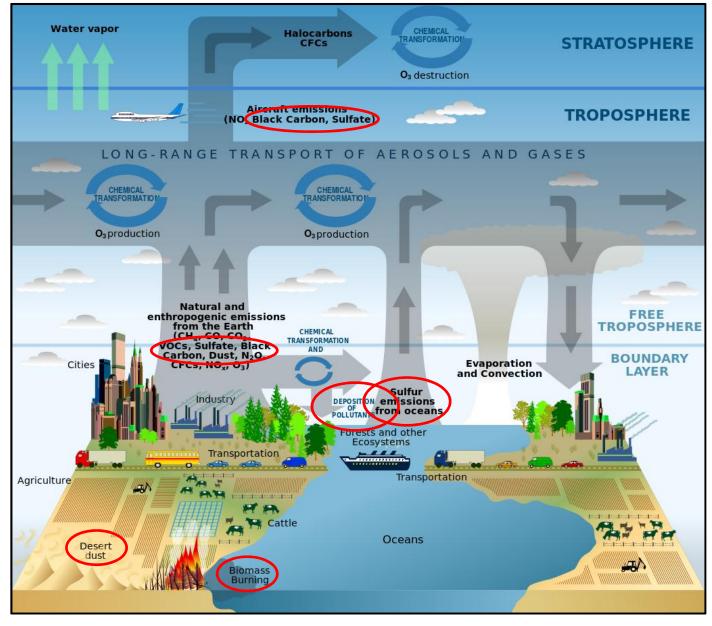
Field Measurements


rebecca.washenfelder@noaa.gov

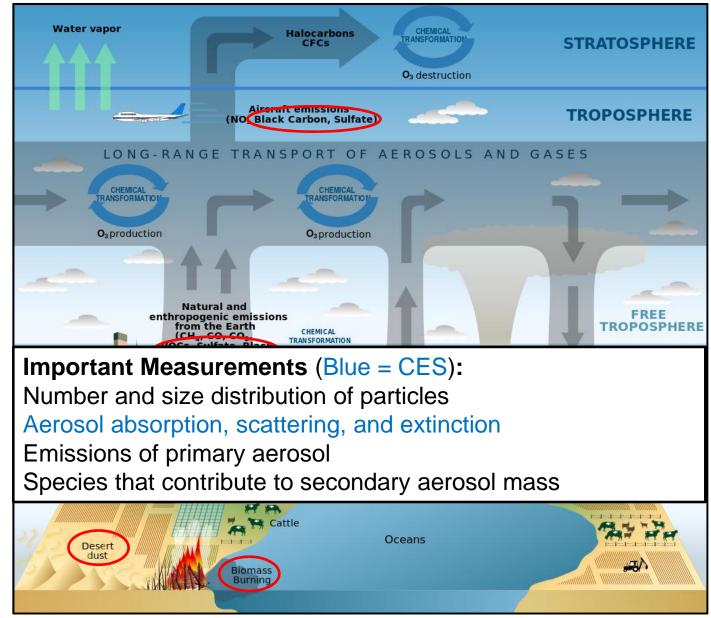
Four Ways to Describe CES Field Instruments

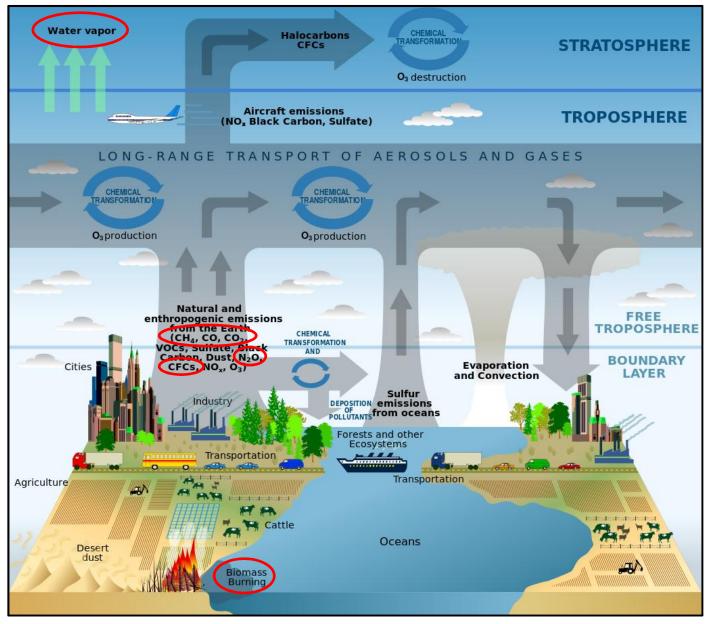

④ Measurement Platform (tower, van, ship, aircraft...)

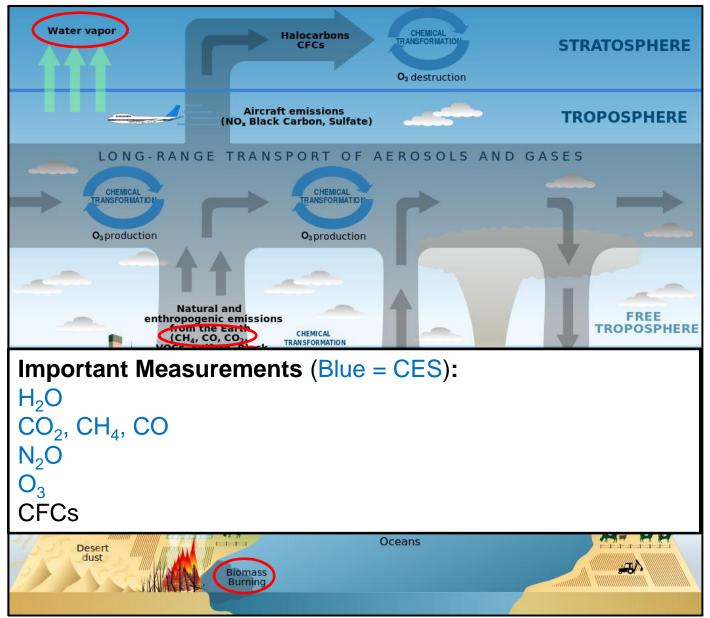
Photochemical Reactions:



Photochemical Reactions:


Hydrocarbons and NO_x react to form O_3 in the presence of sunlight.


Aerosol Concentration, Sources, and Properties:


Aerosol Concentration, Sources, and Properties:

Greenhouse Gases

Greenhouse Gases

Every atmospheric sample contains a mixture of species:

Non-Reactive Gases Reactive Gases Gas Gas Average Average **Mixing Ratio Mixing Ratio** (ppmv*) (ppmv*) Nitrogen (N_2) 780,840 Methane (CH_{4}) 1.8 209,460 0.6 Oxygen (O_2) Hydrogen (H_2) 0.31 Argon (Ar) 9,340 Nitrous oxide (N₂O) Carbon dioxide (CO_2) 397 Carbon monoxide (CO) 0.12 0.01 - 0.1Neon (Ne) 18 Ozone (O_3) Helium (He) 5.2 NO_{y} (NO and NO_{2}) 0.001 - 0.05Ammonia (NH_3) 0.0001 - 0.005**Particles** Sulfur dioxide (SO_2) 0.0001 - 0.001**Aerosol Mass** $5 - 30 \mu g m^{-3}$ Others: hydrocarbons, nitrogen compounds (HONO, NO_3 , N_2O_5), CFCs

At standard temperature and pressure, density is 2.4×10^{19} molecules cm⁻³. *1 part per million by volume (ppmv) = 2.4×10^{13} molecules cm⁻³.

	Narrowband	Broadband
Pulsed Light	Cavity Ringdown Spectroscopy (CRDS)	Broadband Cavity Ringdown Spectroscopy (BBCRDS)
Continuous Light	Integrated Cavity Output Spectroscopy (ICOS)	Broadband Cavity Enhanced Absorption Spectroscopy (BBCEAS)

All of these techniques are described by the same basic equation:

$$\frac{dI_{in}(\lambda)}{dt} = c\left(-\frac{1-R(\lambda)}{d} - \sum_{i} \alpha_{i}(\lambda)\right) I_{in}(\lambda) + ck_{s}I_{source}(\lambda)$$

where $I_{source}(\})$ = intensity of external source k_s = coupling efficiency of light into the cavity $I_{in}(\})$ = light intensity inside cavity c = speed of light R = mirror reflectivity d = distance between mirrors $r_i(\})$ = extinction by species *i*

Scherer et al., Chemical Reviews, 1997

	Narrowband	Broadband
Pulsed Light	Cavity Ringdown Spectroscopy (CRDS)	Broadband Cavity Ringdown Spectroscopy (BBCRDS)
Continuous Light	Integrated Cavity Output Spectroscopy (ICOS)	Broadband Cavity Enhanced Absorption Spectroscopy (BBCEAS)

All of these techniques are described by the same basic equation:

$$\frac{dI_{in}(\lambda)}{dt} = c \left(-\frac{1-R(\lambda)}{d} - \sum_{i} \alpha_{i}(\lambda) \right) I_{in}(\lambda) + ck_{s}I_{source}(\lambda)$$

where $I_{source}(\})$ = intensity of external source k_s = coupling efficiency of light into the cavity $I_{in}(\})$ = light intensity inside cavity c = speed of light R = mirror reflectivity d = distance between mirrors $r_i(\})$ = extinction by species *i*

	Narrowband Broadband	
Pulsed Light	Cavity Ringdown Spectroscopy (CRDS)	Broadband Cavity Ringdown Spectroscopy (BBCRDS)
Continuous Ligh	t Integrated Cavity Output Spectroscopy (ICOS)	Broadband Cavity Enhanced Absorption Spectroscopy (BBCEAS)

All of these techniques are described by the same basic equation:

$$\frac{dI_{in}(\lambda)}{dt} = c \left(-\frac{1-R(\lambda)}{d} - \sum_{i} \alpha_{i}(\lambda) \right) I_{in}(\lambda) + ck_{s} I_{source}(\lambda)$$

where $I_{source}(\})$ = intensity of external source k_s = coupling efficiency of light into the cavity $I_{in}(\})$ = light intensity inside cavity c = speed of light R = mirror reflectivity d = distance between mirrors $r_i(\})$ = extinction by species *i*

	Narrowband	Broadband
Pulsed Light	Cavity Ringdown Spectroscopy (CRDS)	Broadband Cavity Ringdown Spectroscopy (BBCRDS)
Continuous Light	Integrated Cavity Output Spectroscopy (ICOS)	Broadband Cavity Enhanced Absorption Spectroscopy (BBCEAS)

All of these techniques are described by the same basic equation:

Norroughand Techniques

$$\frac{dI_{in}(\lambda)}{dt} = c \left(-\frac{1 - R(\lambda)}{d} - \sum_{i} \alpha_{i}(\lambda) \right) I_{in}(\lambda) + ck_{s}I_{source}(\lambda)$$

where $I_{source}(\})$ = intensity of external source k_s = coupling efficiency of light into the cavity $I_{in}(\})$ = light intensity inside cavity c = speed of light R = mirror reflectivity d = distance between mirrors $r_i(\})$ = extinction by species *i*

	Narrowband	Broadband
Pulsed Light	Cavity Ringdown Spectroscopy (CRDS)	Broadband Cavity Ringdown Spectroscopy (BBCRDS)
Continuous Light	Integrated Cavity Output Spectroscopy (ICOS)	Broadband Cavity Enhanced Absorption Spectroscopy (BBCEAS)

All of these techniques are described by the same basic equation:

$$\frac{dI_{in}(\lambda)}{dt} = c \left(-\frac{1 - R(\lambda)}{d} - \sum_{i} \alpha_{i}(\lambda) \right) I_{in}(\lambda) + ck_{s}I_{source}(\lambda)$$

Aerosol measurements use extinction.

	Narrowband	Broadband
Pulsed Light	Cavity Ringdown Spectroscopy (CRDS)	Broadband Cavity Ringdown Spectroscopy (BBCRDS)
Continuous Light	Integrated Cavity Output Spectroscopy (ICOS)	Broadband Cavity Enhanced Absorption Spectroscopy (BBCEAS)

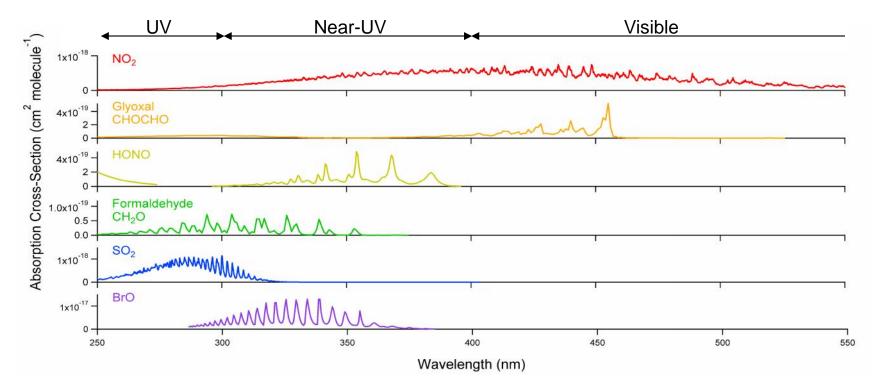
All of these techniques are described by the same basic equation:

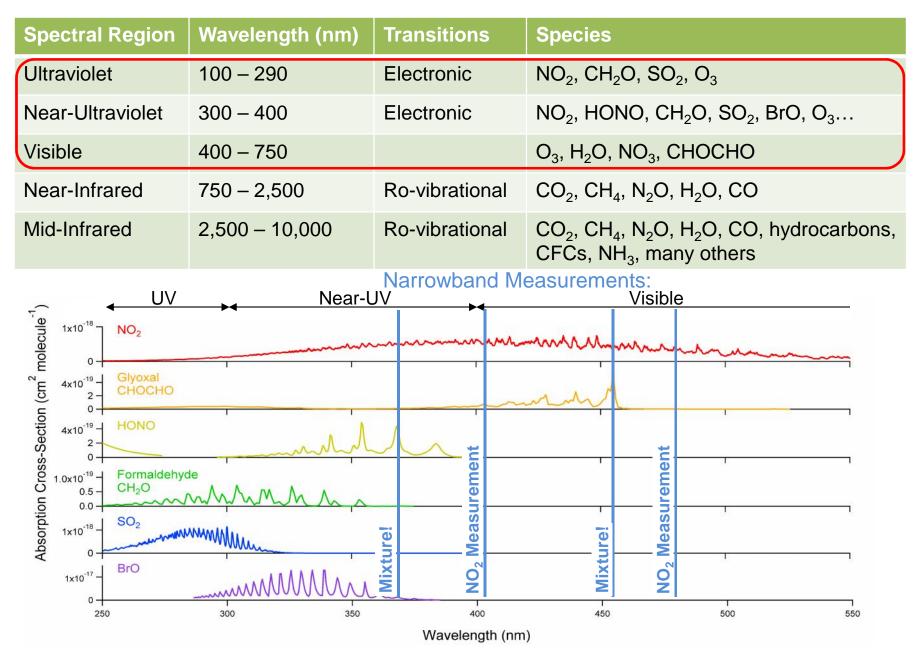
$$\frac{dI_{in}(\lambda)}{dt} = c \left(-\frac{1 - R(\lambda)}{d} - \sum_{i} \alpha_{i}(\lambda) \right) I_{in}(\lambda) + ck_{s}I_{source}(\lambda)$$

Gas-phase measurements use extinction to determine number density:

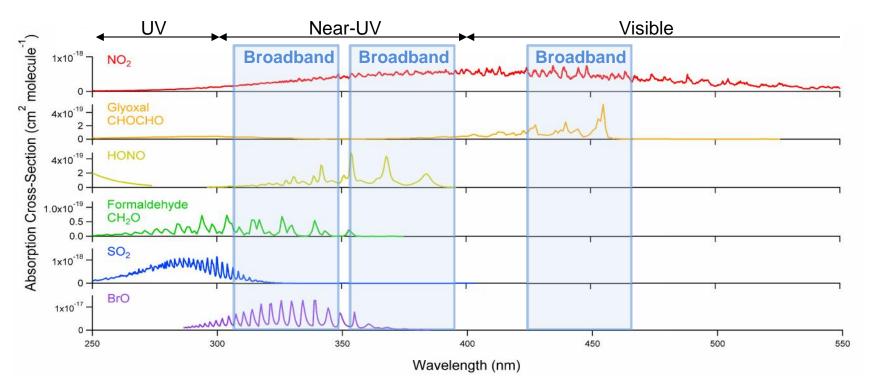
$$\underbrace{N_i}_{n_i} = \frac{\alpha_i(\lambda)}{\sigma_i(\lambda)}$$

where $r_i(\}) = \text{extinction by species } i \text{ (units of cm}^{-1})$ $\dagger_i(\}) = \text{absorption cross section of species } i \text{ (units of cm}^2 \text{ molecule}^{-1})$ $N_i = \text{number density of } i \text{ (units of molecules cm}^{-3})$

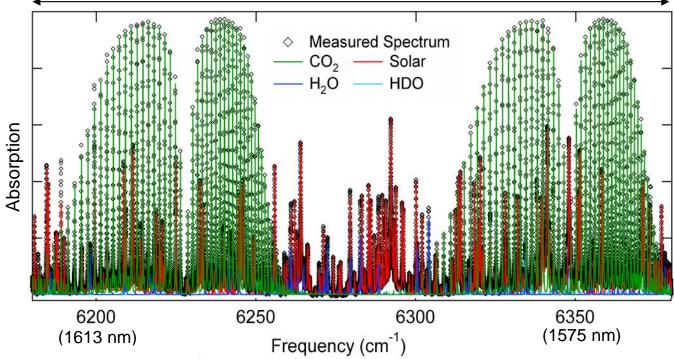

Light Sources


	Narrowband	Broadband
Pulsed Light	Nd:YAG laser, excimer laser, pulsed dye laser, optical parametric oscillator (OPO)	Nd:YAG-pumped dye laser, arc lamp, light emitting diode (LED)
Continuous Light	Diode laser, HeNe laser, Ar-ion laser, Nd:YAG laser	Arc lamp, LED

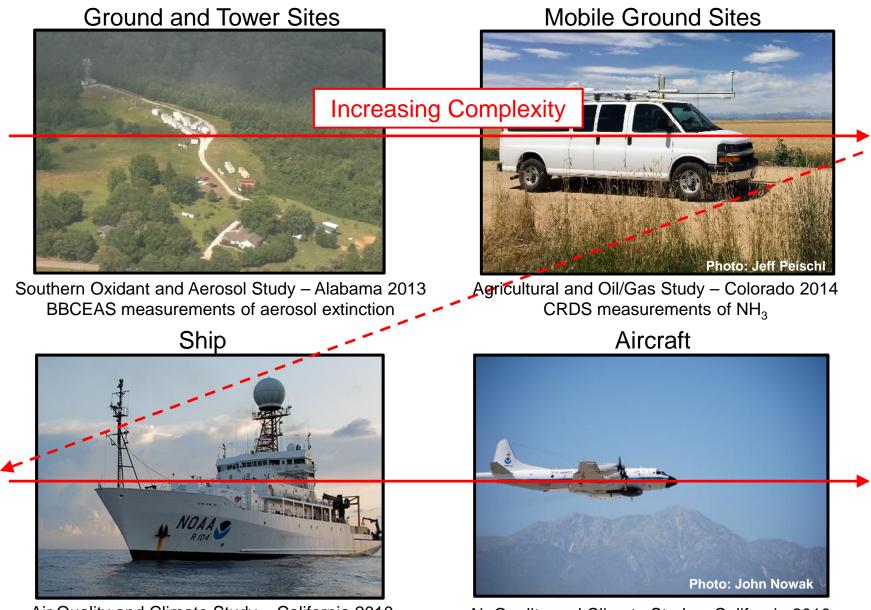
Detectors


	Narrowband Broadband	
Pulsed Light	Photomultiplier tube, avalanche photodiode	Grating spectrometer with array detector
Continuous Light	Photomultiplier tube, photodiode	Fourier transform spectrometer, Grating spectrometer with array detector

Spectral Region	Wavelength (nm)	Transitions	Selected Species
Ultraviolet	100 – 290	Electronic	NO ₂ , CH ₂ O, SO ₂ , O ₃
Near-Ultraviolet	300 - 400	Electronic	NO_2 , HONO, CH_2O , SO_2 , BrO , O_3
Visible	400 - 750		O ₃ , H ₂ O, NO ₃ , CHOCHO
Near-Infrared	750 – 2,500	Ro-vibrational	CO ₂ , CH ₄ , N ₂ O, H ₂ O, CO
Mid-Infrared	2,500 - 10,000	Ro-vibrational	CO_2 , CH_4 , N_2O , H_2O , CO , hydrocarbons, CFCs, NH_3 , many others



Spectral Region	Wavelength (nm)	Transitions	Selected Species
Ultraviolet	100 – 290	Electronic	NO_2 , CH_2O , SO_2 , O_3
Near-Ultraviolet	300 - 400	Electronic	NO_2 , HONO, CH_2O , SO_2 , BrO , O_3
Visible	400 - 750		O ₃ , H ₂ O, NO ₃ , CHOCHO
Near-Infrared	750 – 2,500	Ro-vibrational	CO ₂ , CH ₄ , N ₂ O, H ₂ O, CO
Mid-Infrared	2,500 - 10,000	Ro-vibrational	CO_2 , CH_4 , N_2O , H_2O , CO , hydrocarbons, CFCs, NH_3 , many others



Spectral Region	Wavelength (nm)	Transitions	Selected Species
Ultraviolet	100 – 290	Electronic	NO ₂ , CH ₂ O, SO ₂ , O ₃
Near-Ultraviolet	300 - 400	Electronic	NO_2 , HONO, CH_2O , SO_2 , BrO , O_3
Visible	400 - 750		O ₃ , H ₂ O, NO ₃ , CHOCHO
Near-Infrared	750 – 2,500	Ro-vibrational	CO ₂ , CH ₄ , N ₂ O, H ₂ O, CO
Mid-Infrared	2,500 - 10,000	Ro-vibrational	CO_2 , CH_4 , N_2O , H_2O , CO , hydrocarbons, CFCs, NH_3 , many others

Near-Infrared

④ Measurement Platform

Air Quality and Climate Study – California 2010 CRDS measurements of NO, NO_2 , and N_2O_5

Air Quality and Climate Study – California 2010 CRDS measurements of aerosol extinction

Other Considerations for a Field Instrument

Sampling time

Closely related

Precision and detection limit

Method for acquiring zeros (I_0)

Method for calibration or validation

Materials for sample handling

Optical stability and mirror cleanliness

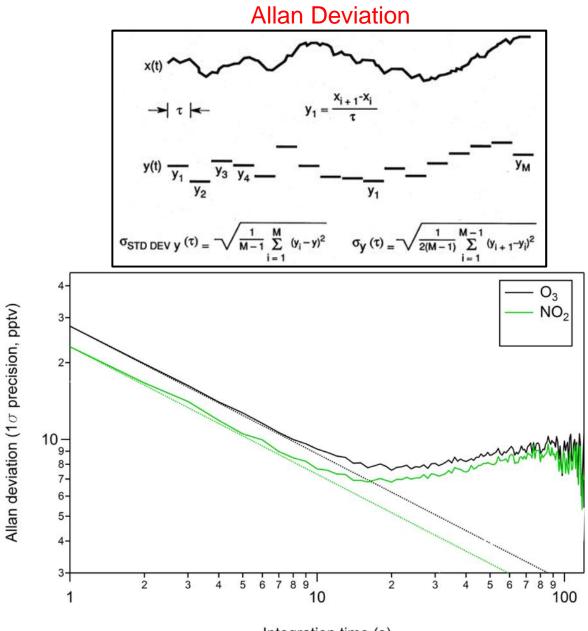
Engineering requirements: Size, weight, and portability

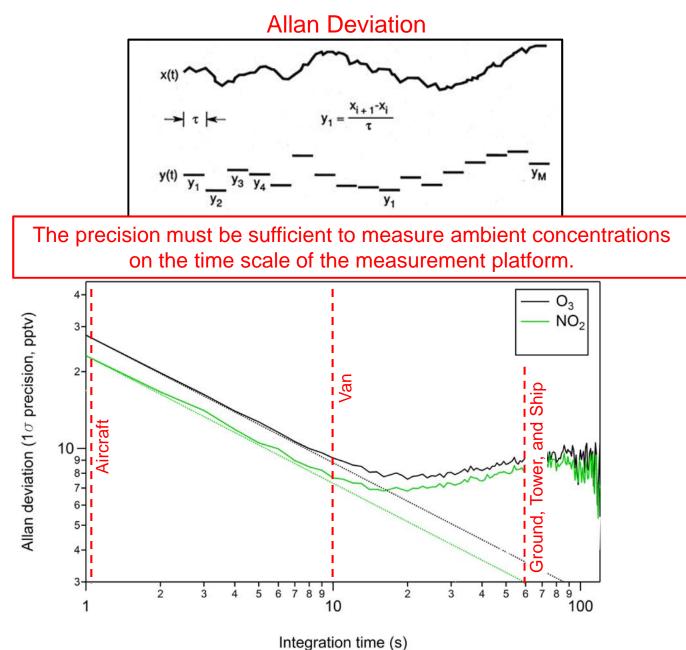
Automation and ease of use

Sampling Time Must Be Appropriate For Platform

Ground and Tower Sites

Mobile Ground Sites

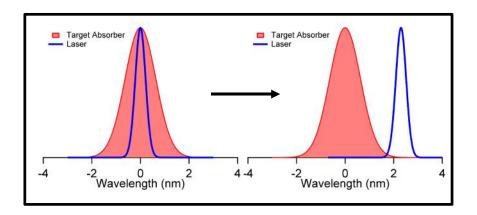




Detection Limit and Precision

Integration time (s)

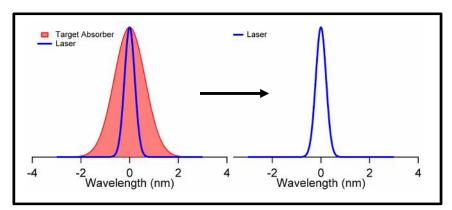
Detection Limit and Precision



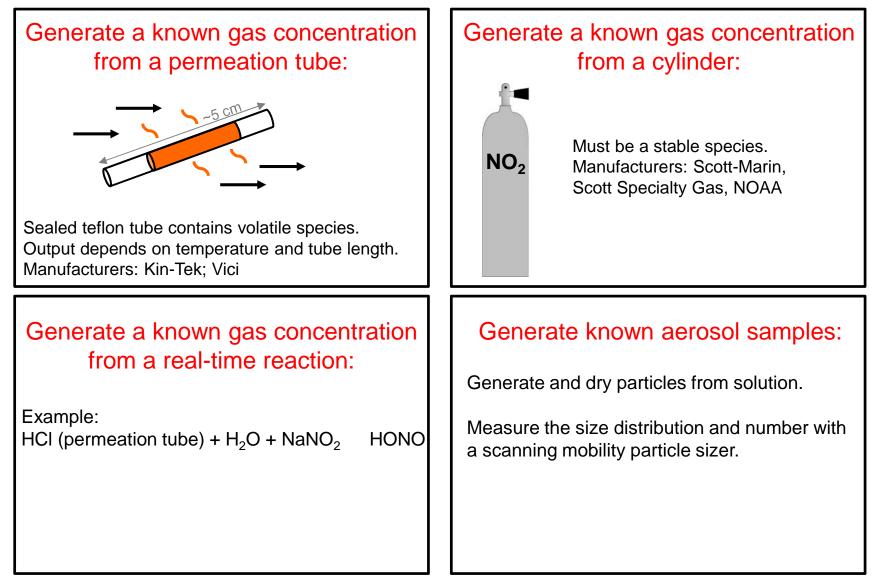
Methods for Determining I₀

All cavity enhanced spectroscopy techniques are described by light extinction that follows Beer's Law. It is necessary to measure a known reference extinction, I_0 .

Scan the wavelength.


Example: CO₂ measurement in the mid-IR

Fill the cavity with synthetic "zero air". Example: Most NOAA field instruments


Remove the target species. Example: NO₃ scrubbed with NO

Filter the sample. Example: Aerosol measurements

Methods for Calibration and Validation

CES instruments directly measure absolute extinction. However, they may be affected by sample losses, chemical interferences, or errors in I_0 .

Methods for Sample Handling

Two concerns:

- Contaminating the sample.
- Losing sample to surfaces.

GAS SPECIES

Reactive trace gases:

- Teflon is used for all parts in contact with sample air.

- For "sticky" trace gases (NH_3 , acids), minimize the inlet length, number density, and residence time.

Unreactive trace gases:

- Teflon or metal is used.

AEROSOL PARTICLES

- Plastics can easily accumulate a static charge that attracts particles. Only metal and electrically-conductive tubing can be used.

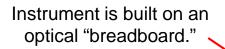
- Aerosol particles can be lost inertially. It is necessary to calculate and minimize the inertial losses from sharp bends in the flow path.

Case Study #1: Aerosol Extinction

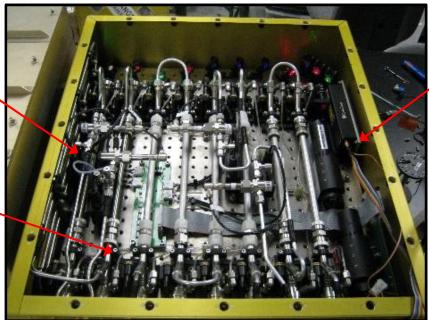
Scientific problem: Technique: Spectral region: Platform: Aerosol extinction Cavity ringdown spectroscopy (narrowband, pulsed) 405, 532, and 660 nm Aircraft

Case containing eight optical cavities

Eight PMTs are sampled by DAQ card


Laptop with Labview data acquisition software.

Rack-mounted for easy installation on aircraft


Nick Wagner, Justin Langridge, and Bernie Mason

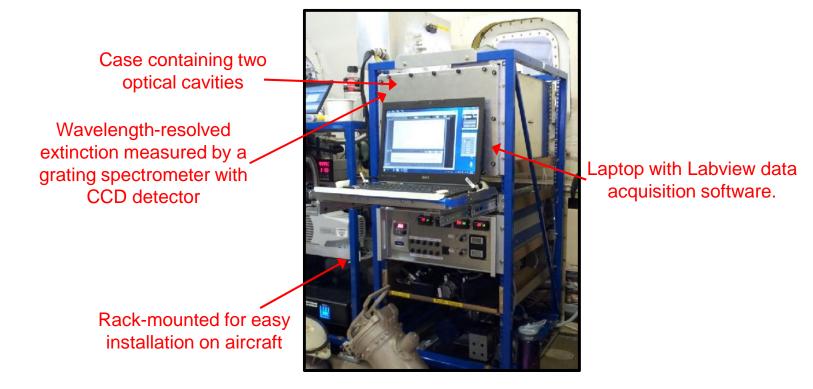
Case Study #1: Aerosol Extinction

Eight optical cavities

Each mirror has a small flow of filtered air to prevent particles from collecting on the mirrors.

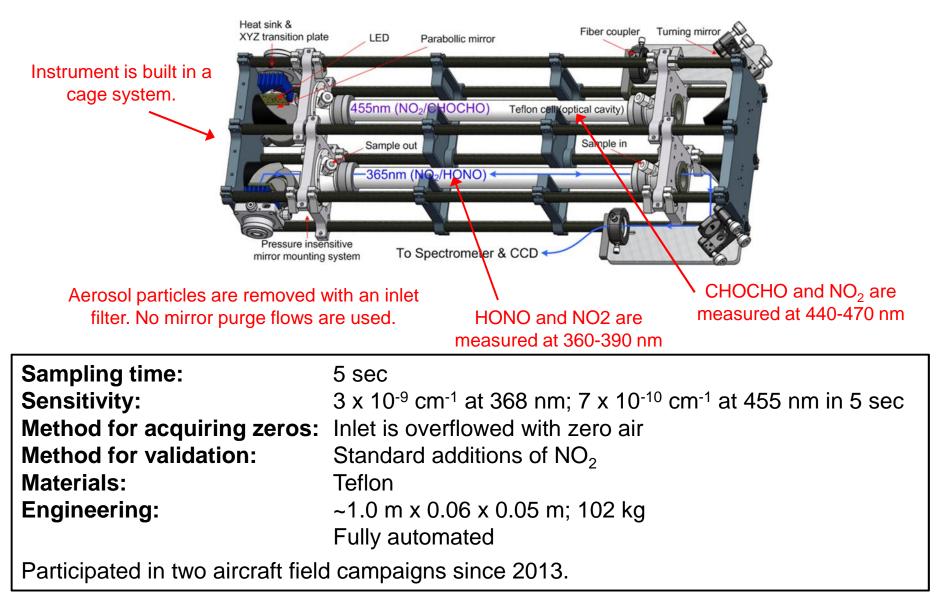
Three channels are humidified and one is denuded to remove volatile species.

NO₂ and O₃ (which absorb at 405 and 532 nm) are removed using activated charcoal.


Sampling time: Sensitivity: Method for acquiring zeros: Method for validation: Materials: Engineering: 1 second (1000 ringdowns) 0.1 $Mm^{-1} = 10^{-9} cm^{-1}$ in 1 second Ambient air is filtered Comparison with scattering instrument Metal cells with conductive tubing ~1.2 m x 0.05 x 0.05 m; 90 kg Fully automated

Participated in four aircraft field campaigns since 2010.

Nick Wagner, Justin Langridge, and Bernie Mason


Case Study #2: Glyoxal and Nitrous Acid

Scientific problem: Technique: Spectral region: Platform: Photochemical reactions; aerosol chemistry Broadband cavity enhanced spectroscopy 360 – 390 nm; 440 – 470 nm Aircraft

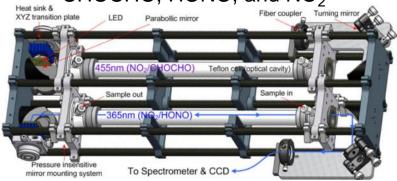
Kyung-Eun Min, Kyle Zarzana, Rebecca Washenfelder

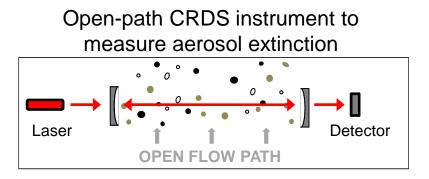
Case Study #2: Glyoxal and Nitrous Acid

Kyung-Eun Min, Kyle Zarzana, Rebecca Washenfelder

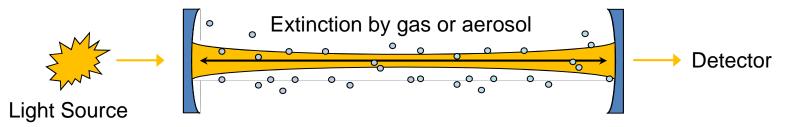
NOAA Tour – Wednesday 5 pm

CRDS and ICOS instruments to measure NH_3 , CO_2 , CH_4 , CO, H_2O , and N_2O installed in van


Broadband instrument to measure aerosol extinction at 360 – 420 nm



CRDS instrument to measure NO, NO₂, NO_y, and O₃



Broadband instrument to measure CHOCHO, HONO, and NO₂

Conclusions

The defining categories for an atmospheric field instrument are:

- ① Atmospheric species (scientific question)
- ② Analytical technique (CRDS, ICOS, BBCRDS, BBCEAS)
- **③** Spectral region
- ④ Measurement platform

Other important considerations are:

Sampling time Precision and detection limit Method for acquiring zeros (I_0) Method for calibration or validation Materials for sample handling Optical stability and mirror cleanliness Engineering requirements: Size, weight, and portability Automation and ease of use