Two decades of water vapor measurements with FISH: A review with special emphasis on TTL water vapor

J. Meyer1, C. Roll2, C. Schiller1, S. Rohs1, N. Spelten1, A. Afchine1, M. Zöger1, N. Sitnikov4, T. D. Thornberry5,6, A. W. Rollins5,6, Z. Bozóki7,4, D. Tatrati1, V. Ebert7, B. Kühnreich1,8, P. Mackrodt3, O. Möhler1, H. Saathoff1, K. H. Rosenlof9, and M. Krämer1

1 Institut für Energie und Klimaforschung T, Forschungszentrum Jülich, 52425 Jülich, Germany; 2 Institut für Energie und Klimaforschung B, Forschungszentrum Jülich, 52425 Jülich, Germany; 3 Deutsches Zentrum für Luft und Raumfahrt, DFVLR, 82234 Oberpfaffenhofen, Germany; 4 Central Aerological Observation, Dorogov, Russia; 5 NOAA ESRL, Chemical Sciences Division, Boulder, USA; 6 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA; 7 Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary; 8 MTA-SZTE Research Group on Photons and Spectroscopy, Szeged, Hungary; 9 Physikalisch-Technische Bundesanstalt, PTB, 38116 Braunschweig, Germany; 10 Reactive Strömungen und Massenströmung, Technische Universität Darmstadt, 64277 Darmstadt, Germany; 11 Institute for Meteorology and Climate Research (IMK-IAF), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany; now at: Institute of Energy and Environmental Technology (IUTA), 47229 Duisburg, Germany; deceased

(1) Motivation
- Water vapor in the upper troposphere and lower stratosphere (UTLS) plays an important role in the climate of the Earth (affects radiation directly as a gas and indirectly in cloud formation processes)
- Accurate measurements of water vapor in the UTLS are required to understand the underlying processes
- Difficulties in measuring water vapor in the UTLS caused by the low water vapor concentration
 - larger systematic discrepancies between hygrometers have been reported (Fahey et al., 2014; Rollins et al., 2014)
- More than two decades of the FISH hygrometer:
 - >100 publications including FISH measurements
 - a comprehensive review of the measurement principle, calibration procedure and data evaluation is performed
- Overview of TTL total water meas. with FISH

(2) FISH instrument & operation
- Fast In-situ Stratospheric Hygrometer (FISH) airborne Hygrometer for accurate and precise measurement of total water mixing ratios (WVMR) (gas phase + evaporated ice) in the UTLS
- Measurement quality based on regular calibration to a water vapor reference (MBW DP30)
- From 348 FISH aircraft flights in tropics, mid-latitudes and the polar region a unique set of UTLS water vapor data is compiled
- Cirrus ice water content (e.g. Schiller et al. 2008, Krämer et al. 2009, Luebke et al. 2013)
- Water vapor transport (e.g. Kunz et al. 2008)
- Process Studies (e.g. Rolf et al., 2015)

(3) FISH principle
- Lyman-α photo-fragment fluorescence hygrometer
- Ng: fluorescence signal
- Nu: background lifetime
- lamp intensity
- Lyman-α source: flow lamp with RF field (Ar + 1% Hz)
- FISH formula to derive WVMR with calibration factors (ck, fu)

(4) Calibration setup
- Calibration performed normally before and after each research flight to ensure high data quality
- Calibration bench consists of:
 - Dry syn. air supply
 - Humidifier
 - Pressure regulator
 - Reference Instrument (MBW DP30)
- Left: normal calibration run; Right: calibration run with extended formula + better agreement at all pressures

(5) FISH intercomparisons
- Aircraft:
 - FISH vs.: FLASH <30% (Geophysics); WASUL 13.1%, SHARC 3.7% (HALO)
- Laboratory:
 - FISH <10% against others (AquaVit 1,6%, NOAA-TDL 0.9% (AquaVit 2)
- MLS - Satellite:
 - Excellent agreement between FISH and MLS: differences are between ±2 ppmv;
 - Mean differences range from -0.2 to -0.5 ppmv
 - Agreement of FISH with other hygrometers has improved over time

(6) WVMR in the TTL
- TROCCINOX (Brazil Feb. 2005)
 - SCOUT-O3 (Australia Nov-Dec 2005)
 - Lowest WVMR 1.3 ppmv during SCOUT and 1.6 ppmv during TROCCINOX; in contrast 4-6 ppmv at cold point during AMMA
- Highest RH> and cloud occurrence during SCOUT (ongoing dehydration) cloud formation and high saturation at cold point; not frequent during AMMA and TROCCINOX
- Convective injections with RH>100% most in sub-saturated environment in the TTL up to 420 K
- Head of tape recorder at tropopause (380 K): minimum H2O in NH winter; maximum during AMMA
- Hygropause at tropopause for NH winter campaign; hygropause at 19-20 km during AMMA
- H2O at hygropause during AMMA higher than NH H2O of other campaigns (inter-annual variability, NHSH difference)

(7) Cirrus clouds in the TTL
- TTL campaigns with cirrus:
 - APE-THESEO 1999
 - TROCCINOX 2005
 - SCOUT-O3 2005
- Cirrus clouds are found up to 420 K in the TTL
- Ice water content (IWC) of TTL cirrus has a wide range (0.01-550 ppmv) in contrast to Arctic / Mid-latitudes
- IWC can reach fractions of total WVMR up to 100% in the TTL
 - Indication for strong dehydration at bottom of the TTL
 - NH/SH difference in ice more relevant (Krämer et al. 2008)
 - Convective injections with IWC moisten sub-saturated environment in the TTL up to 420 K

(8) Conclusion
- Total accuracy of FISH is 6% in the range 4-1000 ppmv (as stated also in previous publications; reference Instrument DP30 2.4%)
- Precision of FISH: 0.15 - 0.4 ppmv depending on instrument performance
- Modified FISH calibration evaluation for special AIDA conditions (low WVMR at high pressures) improves agreement to better than 10%
- Four campaigns with FISH in the TTL showing dehydration, convective injection of ice crystals, H2O tape recorder
- Agreement of FISH with other hygrometers has improved over time from up to 30% more to about 5-20% at 10 ppmv and to 0-15% at 10 ppmv
- In the last two decades, the position of FISH has established as one of the core instruments for in-situ observations of water vapor in the UTLS

More information under exps-15-7735-2015:

TTL campaigns

- Stability of calibration factors within one campaign (better 1.5%)