An assessment of the CAM5/CARMA model: TTL cirrus cloud representation through comparisons with ATTREX 3 and CALIPSO observations

Authors: Christopher Maloney, Brian Toon, Charles Bardeen, Eric Jensen
The CAM5/CARMA model resolves ice particle size distribution

Figure from Bardeen et al., 2014
The size distribution compares well between model and observations for the mission.
CAM5/CARMA grid box averaged RH_{ice} is generally drier than all sky RH_{ice} seen during ATTREX 3.
CPL reveals two persistent cloud layers throughout ATTREX 3 between 12-14 km 16-17 km
CPL reveals two persistent cloud layers throughout ATTREX 3 between 12-14 km 16-17 km
The two observed cloud layers fall into the warm and cold cloud regimes described in Krämer et al., 2009.
The two observed cloud layers fall into the warm and cold cloud regimes described in Krämer et al., 2009.
For cold clouds, 0.005 – 0.2 cm$^{-3}$ ice number range and 1 – 10 µm sizes have been previously observed.
Higher ice concentrations and larger particles expected in warm clouds

2DS

CAM5/CARMA
Tropics cloud fraction is too low in CAM5/CARMA in the ATTREX 3 timeframe
COSP simulator shows CAM5/CARMA under predicts high cloud fraction.
CAM5/CARMA under predicts total cloud fraction

GOCCP-CALIPSO

CAM5/CARMA w/ COSP
Conclusions

ATTREX 3 Comparison:
- CAM5/CARMA represents clouds along ATTREX 3 flight track, but has too many large particles
- Resolution limitation causes the model to struggle with finer features

CALIPSO Comparison:
- At 1x1 degree resolution, CAM5/CARMA underestimates cloud fraction vertical profile above 8 km for the ATTREX 3 timeframe
- COSP simulator shows the model misses high cloud fraction around the equator
Future Work

- Perform a CAM5/Morrison & Gettleman COSP simulation to determine if CAM5/CARMA is improving on CAM5’s cloud representation
- Continue to evaluate the model with COSP simulator against CALIPSO observations
- A combined CARMA aerosol and CARMA cloud model??
Thanks to...

- My advisor, Brian Toon, Charles Bardeen, and Eric Jensen for their guidance on this project
- Melody Avery and the CALIPSO team
- Jen Kay for assistance with COSP
- Sarah Woods, Paul Lawson, and the SPEC science team
- Glenn Diskin and the DLH science team
- NCAR, LASP, the University of Colorado

....and NASA for allowing me to participate in the awesome ATTREX 3 mission!
Extra Slides
Low Cloud Fraction

GOCCP-CALIPSO Annual Avg Low Cloud Fraction

CARMA/COSP Annual Avg Low Cloud Fraction
Mid Cloud Fraction
COSP Flow Chart

CFMIP Observation Simulator Package

What would a satellite see if the atmosphere had the clouds of a climate model?

Climate Model Clouds

Pseudo-Satellite Observations

COSP Flow Chart

gridbox mean profiles

gridbox mean profiles

“down-scaler”

forward models retrieval algorithms

CloudSat
CALIPSO
ISCCP
MISR
MODIS
RTTOV

Statistical aggregation

COSP outputs

Actual Satellite Observations

Figure credit: Jim Boyle, Alejandro Bodes-Salcedo and Stephen Klein

Image taken from NCAR’s Climate Data Userguide
Maximum/random overlap scheme from Hogan and Illingworth (2000)
CAM5/CARMA Overestimates Number and Mass For Cold Cirrus Clouds
CAM5/CARMA Does a Good Job Capturing Warm Cloud Ice Concentration and Mass

ATTREX3 mission average 205K

Ice Concentration

Ice Mass Density

Maximum Diameter (μm)

Maximum Diameter (μm)
CALIPSO Provides a Useful Tool to Evaluate GCM cloud representation

- Global coverage since 2006
- CALIOP lidar onboard capable of resolving high thin cirrus
- Few CARMA comparisons with CALIPSO
- COSP has not been used with CARMA

Image from NASA LaRC EPO site