III. REACTION RATE CONSTANTS

Evaluated Rate Constants for Selected HCFC's and HFC's with OH and $O(^{1}D)$

Robert F. Hampson and Michael J. Kurylo Center for Chemical Technology National Institute of Standards and Technology Gaithersburg, MD 20899

and

Stanley P. Sander Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109

PRECEDING PAGE BLANK NOT FILMED

EXECUTIVE SUMMARY

The chemistry of HCFC's and HFC's in the troposphere is controlled by reactions with OH in which a hydrogen atom is abstracted from the halocarbon to form water and a halo-alkyl radical. The halo-alkyl radical subsequently reacts with molecular oxygen to form a peroxy radical. The reactions of HCFC's and HFC's with $O(^{1}D)$ atoms are unimportant in the troposphere but may be important in producing active chlorine or OH in the stratosphere.

In this chapter, the rate constants for the reactions of OH and O(¹D) with many HFC's and HCFC's have been evaluated. Recommendations are given for the five HCFC's and three HFC's specified by AFEAS as primary alternatives as well as for all other isomers of C_1 and C_2 HCFC's and HFC's where rate data exist. In addition, recommendations are included for CH₃CCl₃, CH₂Cl₂, and CH₄.

The format used for the presentation of the recommended rate constant data is the same as that used by the NASA Panel for Data Evaluation (see DeMore et al., JPL Publication 87-41, September 15, 1987). The rate constant tabulation is given in Arrhenius form, $k(T) = A \exp(-E/RT)$, and contains the following information:

- 1. Reaction stoichiometry and products (if known).
- 2. Arrhenius A factor (in units of cm^3 molecule⁻¹ s⁻¹).
- 3. Temperature dependence ("activation temperature," E/R) and associated uncertainty ($\Delta E/R$).
- 4. Rate constant at 298 K (in units of cm³ molecule⁻¹ s⁻¹).
- 5. Uncertainty factor at 298 K.

All of the uncertainties are one standard deviation, 1σ . Hence, 95% confidence limits are given by 2σ . The uncertainty (1σ) at any temperature can be calculated from the expression:

$f(T) = f(298)\exp[\Delta E/R(1/T - 1/298)]$

For all of the OH reactions, the recommendations were derived from linear least squares Arrhenius fits of the selected data bases for temperatures below 400 K. This temperature restriction was made due to the observed Arrhenius curvature for several of the reactions over more extended temperature ranges. For some reactants, the necessary temperature dependent data do not exist, and the E/R values were estimated by comparison with other similar reactants and the A factor back-calculated using k_{298} . Reasonable values of E/R can be estimated from compounds appearing in a homologous series and by noting that most values of E/R for reactions of OH with halocarbons lie between 1000 and 2000 K. An alternative approach would have involved estimating, or calculating from transition state theory, the A factor and using k_{298} to obtain E/R. These two approaches yield similar results if the data are not extrapolated very far from room temperature and, thus, are nearly equivalent for the calculation of ozone depletion or greenhouse warming potentials. These two estimation procedures can result in significant differences when used for extrapolations over a wide temperature range. In addition, they can yield disparate predictions when there are no direct kinetic data for either the species of interest or for one of similar structure.

Rate constants for the $O(^1D)$ reactions are associated with actual chemical reaction (leading to chemical breakdown of the HCFC or HFC) and do not include contributions due to simple physical deactivation (quenching) of the excited oxygen atom. Temperature data do not exist for most of the $O(^1D)$ reactions and the estimated temperature independencies are taken from comparisons with the few HCFC's and CFC's for which such data do exist. The following two tables summarize the results of this evaluation.

Recommended rate constants and uncertainties for reactions of OH with selected HFC's and HCFC's.

Reaction	Fluorocarbon Number	A ¹	$E/R \pm \Delta E/R^2$	k ₂₉₈ 1	f(298)
$OH + CHFCl_2$	HCFC-21	1.2(-12)	1100 ± 150	3.0(-14)	1.1
$OH + CHF_2CI$	HCFC-22	1.2(-12)	1650 ± 150	4.7(-15)	1.1
$OH + CHF_3$	HFC-23	1.5(-12)	$2650~\pm~500$	2.1(-16)	1.5
$OH + CH_2Cl_2$	30	5.8(-12)	1100 ± 250	1.4(-13)	1.2
$OH + CH_2FCl$	HCFC-31	3.0(-12)	$1250~\pm~200$	4.5(-14)	1.15
$OH + CH_2F_2$	HFC-32	2.5(-12)	$1650~\pm~200$	1.0(-14)	1.2
$OH + CH_3F$	HFC-41	5.4(-12)	$1700~\pm~300$	1.8(-14)	1.2
OH + CH ₄	50	2.3(-12)	$1700~\pm~200$	7.7(-15)	1.2
$OH + CHCl_2CF_3$	HCFC-123	6.4(-13)	$850~\pm~250$	3.7(-14)	1.2
OH + CHFClCF ₃	HCFC-124	6.6(-13)	$1250~\pm~300$	1.0(-14)	1.2
$OH + CHF_2CF_3$	HFC-125	8.9(-13)	$1750~\pm~500$	2.5(-15)	2.0
$OH + CH_2ClCF_2Cl$	HCFC-132b	3.6(-12)	1600 ± 400	1.7(-14)	2.0
$OH + CH_2ClCF_3$	HCFC-133a	5.2(-13)	1100 ± 300	1.3(-14)	1.3
$OH + CHF_2CHF_2$	HFC-134	8.7(-13)	1500 ± 500	5.7(-15)	2.0
$OH + CH_2FCF_3$	HFC-134a	1.7(-12)	$1750~\pm~300$	4.8(-15)	1.2
OH + CH ₃ CCl ₃	140	5.0(-12)	$1800~\pm~300$	1.2(-14)	1.3
$OH + CH_3 CFCl_2$	HCFC-141b	4.2(-13)	$1200~\pm~300$	7.5(-15)	1.3
$OH + CH_3CF_2Cl$	HCFC-142b	9.6(-13)	$1650~\pm~250$	3.8(-15)	1.2
$OH + CH_2FCHF_2$	HFC-143	2.8(-12)	1500 ± 500	1.8(-14)	2.0
OH + CH ₃ CF ₃	HFC-143a	6.0(-13)	$1750~\pm~500$	1.7(-15)	2.0
$OH + CH_2FCH_2F$	HFC-152	1.7(-11)	1500 ± 500	1.1(-13)	2.0
$OH + CH_3 CHF_2$	HFC-152a	1.5(-12)	$1100~\pm~200$	3.7(-14)	1.1
$OH + CH_3CH_2F$	HFC-161	1.3(-11)	$1200~\pm~300$	2.3(-13)	2.0

1 units are cm³ molecule⁻¹ s⁻¹

2 units are K

Recommended rate constants and uncertainties for reactions of O(1D) with selected HFC's and HCFC's.

	Fluorocarbon				
Reaction	Number	A ¹	$E/R \pm \Delta E/R^2$	k ₂₉₈ 1	f(298)
$O(^{1}D) + CHFCl_{2}$	HCFC-21	1.9(-10)	0 ± 100	1.9(-10)	1.3
$O(^{1}D) + CHF_{2}Cl$	HCFC-22	1.0(-10)	0 ± 100	1.0(-10)	1.3
$O(^{1}D) + CHF_{3}$	HFC-23	1.9(-12)	0 ± 500	1.9(-12)	3.0
$O(^{1}D) + CH_{2}F_{2}$	HFC-32	5.0(-11)	0 ± 100	5.0(-11)	2.0
$O(^{1}D) + CH_{3}F$	HFC-41	1.0(-10)	0 ± 100	1.0(-10)	2.0
$O(^{1}D) + CHCl_{2}CF_{3}$	HCFC-123	2.3(-10)	0 ± 100	2-3(-10)	2.0
$O(^{1}D) + CHFClCF_{3}$	HCFC-124	1.0(-10)	0 ± 100	1.0(-10)	3.0
$O(^{1}D) + CHF_{2}CF_{3}$	HFC-125	5.0(-11)	0 ± 100	5.0(-11)	2.0
$O(^{1}D) + CH_{2}ClCF_{2}Cl$	HCFC-132b	1.7(-10)	0 ± 100	1.7(-10)	2.0
$O(^{1}D) + CH_{2}ClCF_{3}$	HCFC-133a	1.6(-10)	0 ± 100	1.6(-10)	2.0
$O(^{1}D) + CH_{2}FCF_{3}$	HFC-134a	5.0(-11)	0 ± 100	5.0(-11)	3.0
$O(^{1}D) + CH_{3}CFCl_{2}$	HCFC-141b	1.5(-10)	0 ± 100	1.5(-10)	3.0
$O(^{1}D) + CH_{3}CF_{2}Cl$	HCFC-142b	1.4(-10)	0 ± 100	1.4(-10)	2.0
$O(^{1}D) + CH_{3}CF_{3}$	HFC-143a	6.0(-11)	0 ± 100	6.0(-11)	2.0
$O(^{1}D) + CH_{3}CHF_{2}$	HFC-152a	1.0(-10)	0 ± 100	1.0(-10)	3.0

1 units are cm³ molecule⁻¹ s⁻¹

2 units are K

-----. •

.

N92-15437

EVALUATED RATE CONSTANTS FOR SELECTED HCFC'S AND HFC'S WITH OH AND O('D)

Robert F. Hampson and Michael J. Kurylo Center for Chemical Technology National Institute of Standards and Technology Gaithersburg, Maryland 20899

> Stanley P. Sander Jet Propulsion Laboratory California Institute of Technology Pasadena, California 91109

> > PRECEDING PAGE BLANK NOT FILMED

. •

...

INTRODUCTION

The anthropogenic release of chlorofluorocarbons (CFC's) can cause significant perturbations to the odd oxygen budget of the stratosphere through catalytic processes. The partially halogenated CFC's react much more quickly in the troposphere than their fully halogenated counterparts. The substitution of hydrofluorocarbons (HFC's) and hydrochlorofluorocarbons (HCFC's) for fully halogenated species in industrial applications may therefore lessen the problem of catalytic ozone destruction in the stratosphere. In order to evaluate the effects of HCFC releases we must achieve a reasonable understanding of the rates and mechanisms of the reactions of HCFC's and HFC's with other tropospheric constituents. The chemistry of HCFC's and HFC's in the troposphere is controlled by reactions with OH in which a hydrogen atom is abstracted from the halocarbon to form water and a halo-alkyl radical. The halo-alkyl radical subsequently reacts with molecular oxygen to form a peroxy radical. The reactions of HCFC's and HFC's with O('D) atoms are unimportant in the troposphere but may be important in producing active chlorine or OH in the stratosphere.

<u>Scope</u>

This paper is a critical evaluation of the available data on the reactions of OH and O(1D) with selected partially hydrogenated C1 and C2 haloalkanes. Of the 6 C1 and 36 C2 HFC's and HCFC's that exist, eight compounds have been identified as being of particular interest to the fluorocarbon industry as possible CFC substitutes. These include HCFC-22 (CHF₂Cl), HCFC-152a (CH₃-CHF₂), HFC-134a (CH₂F-CF₃), HFC-125 (CHF₂-CF₃), HCFC-142b (CH₃-CF₂Cl), HCFC-124 (CHFCl-CF₃), HCFC-141b (CH₃-CFCl₂) and HCFC-123 (CHCl2-CF3). Accordingly, the reactions of OH and O(1D) with these compounds were evaluated where data existed and estimated where experimental results were not available. In addition, all other C1 and C2 HCFC's and HFC's for which kinetic data existed were included. These are HFC-41 (CH₃F), HFC-32 (CH₂F₂), HFC-23 (CHF₃), HCFC-31 (CH₂FCl), HCFC-21 (CHFCl₂), HFC-161 (CH3-CH2F), HFC-152 (CH2F-CH2F), HFC-143 (CH2F-CHF2), HFC-143a (CH3-CF3), HFC-134 (CHF₂-CHF₂), HCFC-133a (CH₂Cl-CF₃) and HCFC-132b (CH₂Cl-CF₂Cl) for a total of 20 HFC and HCFC species being reviewed. There are currently temperature dependence OH reaction rate data for all the compounds in the first group. In the second group, there are room temperature OH kinetics data for all species, but temperature dependence data are lacking for HFC-161 and HFC-152. We have also included evaluations for CH₃CCl₃ and CH₂Cl₂ since these compounds play a role in most chlorine-ozone modeling scenarios. An evaluation for CH4 was included because of its important role in atmospheric HOx chemistry. The previous kinetics studies of the species of interest, including the temperature ranges and measurement techniques are summarized in Table 1.

Reactions of HFC's and HCFC's with OH

Several recent evaluations of OH reaction rate data for these species have been published including De-More et al. (1987) (hereafter called NASA (1987)), Atkinson et al. (1989) (hereafter called IUPAC (1989)), Atkinson (1989) and Cohen and Westberg (1988). The emphasis of all these evaluations with the exception of the last one has been on data relevant to atmospheric modelling. Because the Cohen and Westberg review is oriented toward high temperature combustion conditions, the recommendations from their evaluation are not included. No single review encompasses the data for all the reactions considered here. In addition, this review includes data from the recent, unpublished studies of Kurylo (1989) and Ravishankara (1989)

Reference	Fluorocarbon Number	Technique	Temp. Range (K)	
Atkinson et al. (1975)	22	FP/RF	297-434	
Davis et al. (1976)	30	FP/RF	245-375	
Howard and Evenson (1976a)	21,22,23,30,31,32,41	DF/LMR	296	
Howard and Evenson (1976b)	123,124,133a,140 142b,152a	DF/LMR	296	
Perry et al. (1976)	21,30	FP/RF	298-423	
Watson et al. (1977)	21,22,31,140,142b	FP/RF	250-350	
Chang and Kaufman (1977)	21,22	DF/RF	250-400	
Handwerk and Zellner (1978)	22,31,133a,142b,152a	FP/RA	260-370	
Ernst et al. (1978)	23	FP-ST/RA	1000-1500	
Clyne and Holt (1979a)	140	DF/RF	293-425	
Clyne and Holt (1979b)	21,22,23,32,123,125 133,134,134a,142b,143 143a,152a	DF/RF	293-425	
Jeong and Kaufman (1979)	140	DF/RF	250-480	
Kurylo et al. (1979)	140	FP/RF	222-363	
Nip et al. (1979)	23,32,41,152a,161	FP/RA	297	
Watson et al. (1979)	123,124,132b	FP/RF	250-375	
Singleton et al. (1980)	161	GC/MS	298	
Paraskevopoulos et al. (1981)	21,22,31,142b	FP/RA	297	
Jeong and Kaufman (1982a)	21,22,23,30,31,32,41	DF/RF	250-480	
Martin & Paraskevopoulos (1983)	125,134a,143,143a,152	FP/RA	298	
Jeong et al. (1984)	132b,134a	DF/RF	250-470	
Ravishankara (1989)	134a,141b,142b 152a,123	LP/FP/LIF & DF/LMR	235-425	
Kurylo (1989)	123,134a,141b,142b 152a	FP/RF	270-400	

Table 1. Laboratory studies of the reactions of OH with C_1 and C_2 HFC's and HCFC's.

¹DF - discharge flow, FP - flash photolysis, GC - gas chromatography, LMR - laser magnetic resonance, LP - laser photolysis, MS - mass spectrometry, RA - resonance absorption, RF - resonance fluorescence, ST - shock tube.

which are not included in the previous evaluations. Ten of the twenty reactions reviewed here were previously evaluated in NASA (1987). Of these ten, the new rate data encompass five of the ten reactions.

The format of this evaluation combines aspects of the NASA and IUPAC review formats. For each reaction, there is a set of data sheets listing the rate constants and measurement temperatures from every paper where data are presented. Also included are the Arrhenius parameters derived in the original study and in subsequent reviews. The recommended Arrhenius parameters from this evaluation are then listed with the uncertainties in k_{298} and E/R. The data sheet includes a note which discusses the studies and temperature ranges which were considered in the review. Finally a plot of ln k vs. 1/T is presented for each reaction showing the data from the original studies and the line derived from the recommended Arrhenius parameters. In all cases, the temperature limits for the recommended rate expression are 220 to 400 K. This temperature restriction was made due to the observed Arrhenius curvature for several of the reactions over more extended temperature ranges. The recommended rate expressions and uncertainties are summarized in Table 2. The data point symbols on the plots are identified in Table 4.

For virtually every reaction evaluated, the experimental data were obtained from studies which monitored the loss of OH in the presence of excess halocarbon. For relatively slow reactions, which proceed under conditions where the rate constant is 10^{-15} cm³ molecule⁻¹ s⁻¹ or less, this procedure can lead to an overestimation of the true rate constant due to the presence of trace reactive impurities or to secondary reactions involving the primary radical product. One of the early studies (Clyne and Holt, 1979a,b) may have suffered from such interferences. Because of these discrepancies the Clyne and Holt results were not considered in the evaluation.

For those reactions for which temperature dependence data did not exist or were available only from the Clyne and Holt study, we chose to estimate the value of E/R and back-calculate the A-factor using k_{298} . Reasonable values of E/R can be estimated from compounds appearing in a homologous series, and by noting that most values of E/R for reactions of OH with halocarbons lie between 1000 and 2000 K. An alternative approach would have involved estimating, or calculating from transition state theory, the A factor and using k_{298} to obtain E/R. These two approaches yield similar results if the data are not extrapolated very far from room temperature and, thus, are nearly equivalent for the calculation of ozone depletion or greenhouse warming potentials. These two estimation procedures can result in significant differences when used for extrapolations over a wide temperature range. In particular, they can yield disparate predictions when there are no direct kinetic data for either the species of interest or for one of similar structure. In addition, it should be noted that several OH + fluorocarbon reactions have experimentally derived A factors which are lower than expected for hydrogen abstraction (assumed to be the dominant pathway for these reactions). While this may be due to systematic experimental errors of the type mentioned earlier, it appears to be particularly characteristic of the highly fluorinated compounds.

Reactions of HFC's and HCFC's with O(1D)

Recommended rate constants for the reactions of HFC's and HCFC's with $O(^1D)$ are given in Table 3. Rate constant values for the $O(^1D)$ reactions are associated with actual chemical reaction (leading to chemical breakdown of the HCFC or HFC) and do not include contributions due to simple physical deactivation (quenching) of the excited oxygen atom. Force and Wiesenfeld (1981) determined that chemical reaction played a dominant role in the overall interaction with all halomethanes they studied except for

Reaction	Fluorocarbon Number	A ¹	$\mathbf{E}/\mathbf{R} \pm \Delta \mathbf{E}/\mathbf{R}^2$	k ₂₉₈ 1	f(298)
OH + CHFCl ₂	HCFC-21	1.2(-12)	1100 ± 150	3.0(-14)	1.1
$OH + CHF_2Cl$	HCFC-22	1.2(-12)	$1650~\pm~150$	4.7(-15)	1.1
$OH + CHF_3$	HFC-23	1.5(-12)	$2650~\pm~500$	2.1(-16)	1.5
$OH + CH_2Cl_2$	30	5.8(-12)	1100 ± 250	1.4(-13)	1.2
$OH + CH_2FCl$	HCFC-31	3.0(-12)	$1250~\pm~200$	4.5(-14)	1.15
$OH + CH_2F_2$	HFC-32	2.5(-12)	$1650~\pm~200$	1.0(-14)	1.2
OH + CH ₃ F	HFC-41	5.4(-12)	1700 ± 300	1.8(-14)	1.2
$OH + CH_4$	50	2.3(-12)	$1700~\pm~200$	7.7(-15)	1.2
$OH + CHCl_2CF_3$	HCFC-123	6.4(-13)	$850~\pm~250$	3.7(-14)	1.2
OH + CHFClCF ₃	HCFC-124	6.6(-13)	$1250~\pm~300$	1.0(-14)	1.2
$OH + CHF_2CF_3$	HFC-125	8.9(-13)	$1750~\pm~500$	2.5(-15)	2.0
$OH + CH_2ClCF_2Cl$	HCFC-132b	3.6(-12)	1600 ± 400	1.7(-14)	2.0
$OH + CH_2CICF_3$	HCFC-133a	5.2(-13)	1100 ± 300	1.3(-14)	1.3
$OH + CHF_2CHF_2$	HFC-134	8.7(-13)	1500 ± 500	5.7(-15)	2.0
$OH + CH_2FCF_3$	HFC-134a	1.7(-12)	1750 ± 300	4.8(-15)	1.2
$OH + CH_3CCI_3$	140	5.0(-12)	1800 ± 300	1.2(-14)	1.3
$OH + CH_3 CFCl_2$	HCFC-141b	4.2(-13)	1200 ± 300	7.5(-15)	1.3
$OH + CH_3CF_2Cl$	HCFC-142b	9.6(-13)	1650 ± 250	3.8(-15)	1.2
$OH + CH_2FCHF_2$	HFC-143	2.8(-12)	1500 ± 500	1.8(-14)	2.0
$OH + CH_3CF_3$	HFC-143a	6.0(-13)	$1750~\pm~500$	1.7(-15)	2.0
$OH + CH_2FCH_2F$	HFC-152	1.7(-11)	1500 ± 500	1.1(-13)	2.0
$OH + CH_3 CHF_2$	HFC-152a	1.5(-12)	1100 ± 200	3.7(-14)	1.1
$OH + CH_3CH_2F$	HFC-161	1.3(-11)	1200 ± 300	2.3(-13)	2.0

 Table 2. Recommended rate constants and uncertainties for reactions of OH with selected HFC's and HCFC's.

1 units are cm³ molecule⁻¹ s⁻¹

2 units are K

Table 3. Recommended rate	constants and uncertainties for	reactions of O(1D) with selected
HFC's and HCFC's.		

Reaction	Fluorocarbon Number	A ¹	$\mathbf{E}/\mathbf{R} \pm \Delta \mathbf{E}/\mathbf{R}^2$	k ₂₉₈ 1	f(298)
$O(^{1}D) + CHFCl_{2}$	HCFC-21	1.9(-10)	0 ± 100	1.9(-10)	1.3
$O(^{1}D) + CHF_{2}Cl$	HCFC-22	1.0(-10)	0 ± 100	1.0(-10)	1.3
$O(^{1}D) + CHF_{3}$	HFC-23	1.9(-12)	0 ± 500	1.9(-12)	3.0
$O(^{1}D) + CH_{2}F_{2}$	HFC-32	5.0(-11)	0 ± 100	5.0(-11)	2.0
$O(^{1}D) + CH_{3}F$	HFC-41	1.0(-10)	0 ± 100	1.0(-10)	2.0
$O(^{1}D) + CHCl_{2}CF_{3}$	HCFC-123	2.3(-10)	0 ± 100	2-3(-10)	2.0
$O(^{1}D) + CHFClCF_{3}$	HCFC-124	1.0(-10)	0 ± 100	1.0(-10)	3.0
$O(^{1}D) + CHF_{2}CF_{3}$	HFC-125	5.0(-11)	0 ± 100	5.0(-11)	2.0
$O(^{1}D) + CH_{2}ClCF_{2}Cl$	HCFC-132b	1.7(-10)	0 ± 100	1.7(-10)	2.0
$O(^{1}D) + CH_{2}CICF_{3}$	HCFC-133a	1.6(-10)	0 ± 100	1.6(-10)	2.0
$O(^{1}D) + CH_{2}FCF_{3}$	HFC-134a	5.0(-11)	0 ± 100	5.0(-11)	3.0
$O(^{1}D) + CH_{3}CFCl_{2}$	HCFC-141b	1.5(-10)	0 ± 100	1.5(-10)	3.0
$O(^{1}D) + CH_{3}CF_{2}Cl$	HCFC-142b	1.4(-10)	0 ± 100	1.4(-10)	2.0
$O(^{1}D) + CH_{3}CF_{3}$	HFC-143a	6.0(-11)	0 ± 100	6.0(-11)	2.0
$O(^{1}D) + CH_{3}CHF_{2}$	HFC-152a	1.0(-10)	0 ± 100	1.0(-10)	3.0

1 units are cm³ molecule⁻¹ s⁻¹

2 units are K

highly fluorinated species. Of the species considered here, only for CF₃H is physical deactivation important. For these species absolute rate constants have been reported in the following studies: Fletcher and Husain (1976) for HCFC-21 and HCFC-22; Davidson et al. (1978) for HCFC-21 and HCFC-22; and Force and Wiesenfeld (1981) for HFC-23 and HFC-41. In the first two studies overall rate constants for collisional deactivation were reported, while in the study by Force and Wiesenfeld both the overall rate constants and those for chemical reaction were determined. Green and Wayne (1976) conducted a competitive study in which the rate constants only for the chemical reactions were determined relative to the reaction with N₂O for HCFC-22, HFC-32, HCFC-123, HFC-125, HCFC-132b, HCFC-133a, HCFC-142b, and HFC-143a. The values given here are based upon a value of 1.2(-10) cm³ molecule⁻¹ s⁻¹ for the rate

Table 4. Symbols used in Data Plots for Reactions of OH with HFC's and HCFC's.

Symbol	Reference(s)
	Howard and Evenson (1976a), Howard and Evenson (1976b)
\bigtriangleup	Watson et al. (1977), Watson et al. (1979), Davis et al. (1976)
	Handwerk and Zellner (1978)
•	Nip et al. (1979), Paraskevopoulos et al. (1981), Martin and Paraskevopoulos (1983)
\diamond	Clyne and Holt (1979a,b)
\bigtriangledown	Jeong and Kaufman (1979, 1982a), Jeong et al. (1984)
▼	Chang and Kaufman (1977)
٠	Atkinson et al. (1975), Perry et al. (1976)
0	Ravishankara (1989)
	Kurylo et al. (1979), Kurylo (1989)

constant of the reference reaction of O(1D) with N2O. For HCFC-124, HFC-134a, HCFC-14lb, and HFC-152a no data have been reported. For the reactions with these species the values given here have been estimated by analogy with reactions of similar species for which data exist. In these cases an uncertainty factor of three was assigned. Only for HCFC-21 and HCFC-22 do data exist over a range of temperature. The temperature independencies recommended here for all O(1D) reactions are based upon the temperature independencies observed for reactions with these two species and with several CFC's.

Uncertainties

All of the uncertainties are one standard deviation, 1σ . Hence, 95% confidence limits are given by 2σ . The uncertainty (1σ) at any temperature can be calculated from the expression:

$$f(T) = f(298) \exp[(\Delta E/R)(1/T - 1/298)]$$

$OH + CHFCl_2 (HCFC-21) \rightarrow H_2O + CFCl_2$

Temp. K.	10 ¹⁵ ·k cm ³ molecule ⁻¹ s ⁻¹	Reference
296	26	Howard and Evenson (1976a)
298	27	Perry et al. (1976)
349	48	
422	91	
245	11.2	Watson et al. (1977)
273	20.9	
298	28.8	
375	66.8	
241	12.8	Chang and Kaufman (1977)
250	17.3	
288	27.0	
296	30.4	
380	71.7	
396	75.2	
293	35.4	Clyne and Holt (1979b)
330	65.7	
373	97.7	
413	152	
297	33.9	Paraskevopoulos et al. (1981)
250	18.8	Jeong and Kaufman (1982a)
295	33.7	
315	42.5	
354	58.5	
392	78.6	
433	105	
483	148	

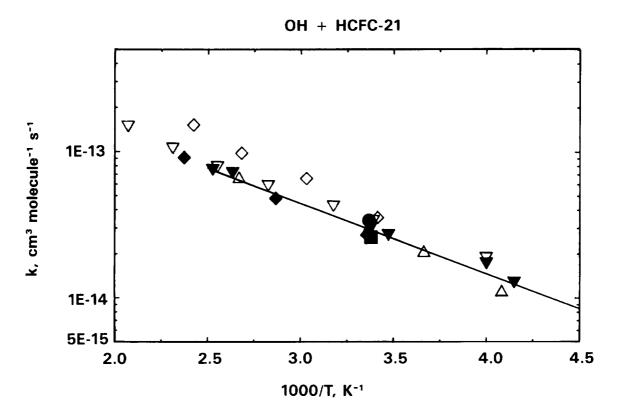
Rate Coefficient Data

$OH + CHFCl_2 (HCFC-21) \rightarrow H_2O + CFCl_2$

10 ¹² ·A cm ³ molecule ⁻¹ s ⁻¹	n	E/R K	Temp. K	Reference
1.75	-	1253	298-422	Perry et al. (1976)
1.87	-	1245	245-375	Watson et al. (1977)
1.16	-	1073	241-396	Chang and Kaufman (1977)
4.79	-	1400	293-413	Clyne and Holt (1979b)
1.19	-	1052	250-483	Jeong et al. (1984)
		Reviews an	d Evaluations	
0.86	-	1000	230-300	NASA (1987)
1.1	-	1070	240-350	IUPAC (1989)
1.7(-18)	2.0	479	241-483	Atkinson (1989)

Derived Arrhenius Parameters

Preferred Values


 $k = 1.2 \times 10^{-12} \exp[-(1100 \pm 150)/T] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ 220 < T < 400 K

 $k_{298} = 3.0 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

 $f_{298} = 1.1$

Comments on Preferred Values

The data base for this reaction is well established and there have been no new data recently. The preferred values are derived from a fit to all data below 400 K except the rate constants of Clyne and Holt (1979b) which have a significantly larger temperature dependence than all the other studies. The rate constants from the latter study are consistently larger than those obtained in all other studies. The expression given here agrees with the recommended expression from NASA (1987) to within about 15% over the stratospheric temperature range.

$OH + CHF_2Cl (HCFC-22) \rightarrow H_2O + CF_2Cl$

Тетр. К.	10 ¹⁵ ·k cm ³ molecule ⁻¹ s ⁻¹	Reference
297	4.75	Atkinson et al. (1975)
348	11.5	
434	27.1	
296	3.4	Howard and Evenson (1976a)
250	1.7	Watson et al. (1977)
273	2.77	
298	4.8	
350	10.1	
253	1.77	Chang and Kaufman (1977)
296	4.25	
358	12.0	
427	24.9	
263	2.0	Handwerk and Zellner (1978)
273	2.7	
283	5.1	
293	4.6	
373	17	
294	3.3	Clyne and Holt (1979b)
321	7.7	
343	12.8	
376	19.7	
391	27.7	
426	39.0	
297	4.58	Paraskevopoulos et al. (1981)
293	4.83	Jeong and Kaufman (1982a)
327	7.68	
360	10.8	
391	17.9	
436	27.5	
482	43.9	

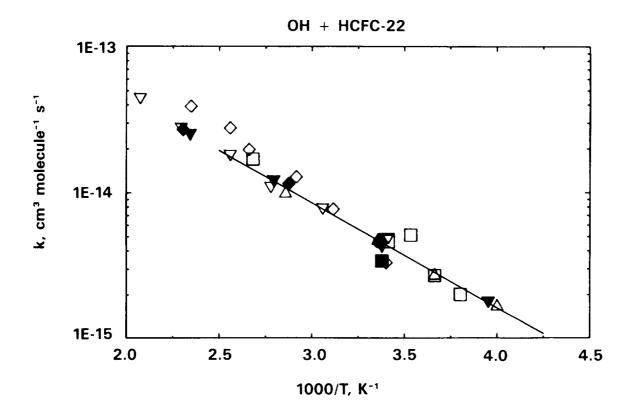
Rate Coefficient Data

$OH + CHF_2Cl (HCFC-22) \rightarrow H_2O + CF_2Cl$

10 ¹² •.A cm ³ molecule ⁻¹ s ⁻¹	n	E/R K	Temp. K	Reference
1.21	_	1636	297-434	Atkinson et al. (1975)
0.925	-	1575	250-350	Watson et al. (1977)
2.1	-	1780	263-373	Handwerk and Zellner (1978
9.5	-	2300	294-426	Clyne and Holt (1979b)
1.27	-	1660	293-482	Jeong et al. (1984)
		Reviews an	d Evaluations	
0.83	-	1550	230-300	NASA (1987)
1.1	-	1620	250-360	IUPAC (1989)
1.51(-18)	2.0	1000	250-482	Atkinson (1989)

Derived Arrhenius Parameters

Preferred Values


 $k = 1.2 \times 10^{-12} \exp[-(1650 \pm 150)/T] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ 220 < T < 400 K

 $k_{298} = 4.7 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

 $f_{298} = 1.1$

Comments on Preferred Values

The data base for this reaction is well established and there have been no new data recently. The preferred values are derived from a fit to all data below 400 K except the rate constants of Clyne and Holt (1979b), which have a significantly larger temperature dependence than all the other studies. The expression given here agrees with the recommended expression from NASA (1987) to within about 15% over the stratospheric temperature range.

$OH + CHF_3 (HFC-23) \rightarrow H_2O + CF_3$

Temp. K.	10 ¹⁵ ·k cm ³ molecule ⁻¹ s ⁻¹	Reference
296	0.2	Howard and Evenson (1976a)
296	1.3	Clyne and Holt (1979b)
430	1.4	-
297	0.35	Nip et al. (1979)
387	1.69	Jeong and Kaufman (1982a)
410	2.37	
428	3.31	
447	4.48	
465	5.64	
480	7.19	
1255	550	Ernst et al. (1978)
1320	600	
1345	830	
1395	700	
1400	550	
1445	930	

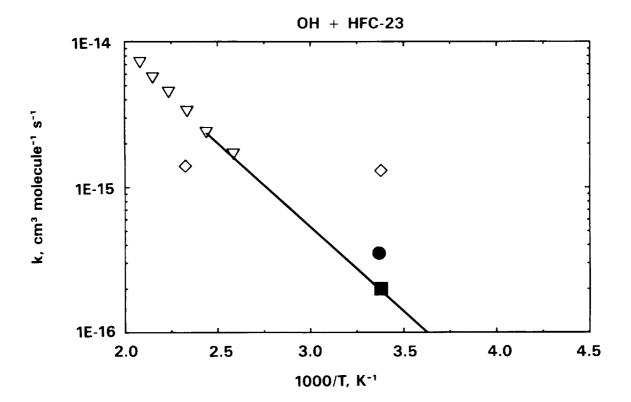
Rate Coefficient Data

Derived Arrhenius Parameters

······			
Temp K	E/R K	n	10 ¹² ·A cm ³ molecule ⁻¹ s ⁻¹
387-480	2910	-	2.98
d Evaluations	Reviews ar		
387-1445	1887	2.0	1.49(-18)
	387-480	KK2910387-480Reviews and Evaluations	KK-2910387-480Reviews and Evaluations

$OH + CHF_3$ (HFC-23) \rightarrow H₂O + CF₃

Preferred Values


 $k = 1.5 \times 10^{-12} \exp[-(2650 \pm 500)/T] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ 220 < T < 400 K

 $k_{298} = 2.1 \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

 $f_{298} = 1.5$

Comments on Preferred Values

The recommendation is based on three data points: the room temperature points of Howard and Evenson (1976a), and the 387 K and 410 K points of Jeong and Kaufman (1982a). The data of Clyne and Holt (1979b) were not considered because of the large disparity with other studies. Because of experimental complications associated with the measurement of rate constants near 10^{-16} cm³ molecule⁻¹ s⁻¹, the k₂₉₈ determinations of Howard and Evenson (1976a) and Nip et al. (1979) should be considered upper limits. The Howard and Evenson value, being the smaller of the two, was therefore used as the basis for the k₂₉₈ recommendation.

$OH + CH_2Cl_2$ (Halocarbon-30) $\rightarrow H_2O + CHCl_2$

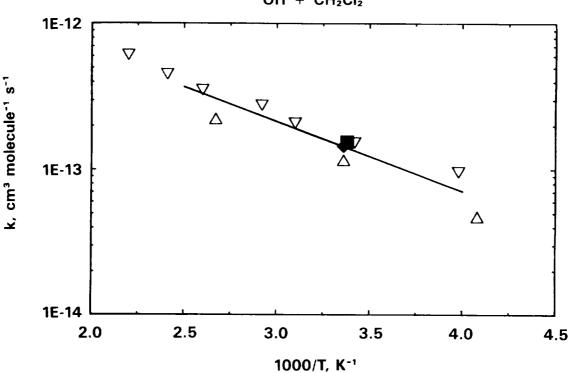
Temp. K.	10 ¹⁵ ·k cm ³ molecule ⁻¹ s ⁻¹	Reference
296	155	Howard and Evenson (1976a)
298	145	Perry et al. (1976)
245	47.5	Davis et al. (1976)
298	116	
375	223	
251	95.9	Jeong and Kaufman (1982)
292	153	
323	208	
342	276	
384	352	
415	450	
455	609	

Rate Coefficient Data

Derived Arrhenius Parameters

10 ¹² ·A m ³ molecule ⁻¹ s ⁻¹	n	E/R K	Temp. K	Reference
4.27	-	1094	245-375	Davis et al. (1976)
5.57	-	1042	251-455	Jeong et al. (1984)
		Reviews an	d Evaluations	
4.7	-	1050	245-455	NASA (1987)
4.4	-	1030	240-300	IUPAC (1989)
			245-455	Atkinson (1989)

$OH + CH_2Cl_2$ (Halocarbon-30) $\rightarrow H_2O + CHCl_2$


Preferred Values

 $k = 5.8 \times 10^{-12} \exp[-(1100 \pm 250)/T] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ 220 < T < 400 K

 $k_{298} = 1.4 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ $f_{298} = 1.2$

Comments on Preferred Values

The data of Howard and Evenson (1976a), Perry et al. (1976), Davis et al. (1976) and Jeong and Kaufman (1982) are in reasonable agreement. The temperature dependence data of Davis et al. tend to somewhat smaller values than Jeong and Kaufman but the resulting activation energies are in good agreement. The preferred Arrhenius expression was derived from a least squares fit to the data below 400 K. The recommended room temperature value was derived from the Arrhenius expression at 298 K.

 $OH + CH_2CI_2$

$OH + CH_2FCl (HCFC-31) \rightarrow H_2O + CHFCl$

Temp. K.	10 ¹⁵ ·k cm ³ molecule ⁻¹ s ⁻¹	Reference
296	37	Howard and Evenson (1976a)
245	16.5	Watson et al. (1977)
298	42.1	
375	98	
273	28	Handwerk and Zellner (1978)
293	35	
373	110	
297	44.5	Paraskevopoulos et al. (1981)
250	27.6	Jeong and Kaufman (1982a)
295	49.4	
323	66.0	
348	88.5	
399	140	
438	172	
486	254	

Rate Coefficient Data

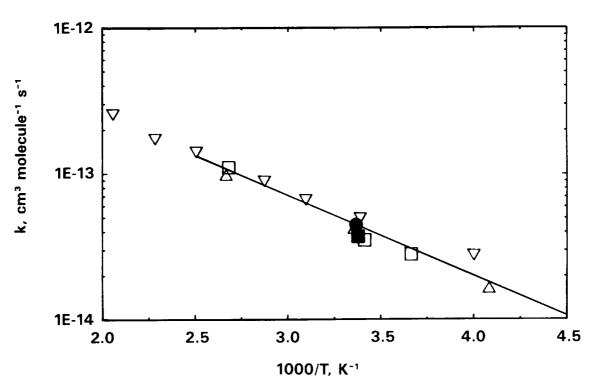
$OH + CH_2FCl (HCFC-31) \rightarrow H_2O + CHFCl$

10 ¹² ·A cm ³ molecule ⁻¹ s ⁻¹	n	E/R K	Temp. K	Reference
2.84	-	1259	245-375	Watson et al. (1977)
3.1	-	1320	273-373	Handwerk and Zellner (1978)
2.37	-	1137	250-486	Jeong et al. (1984)
		Reviews an	d Evaluations	
2.1	-	1150	230-300	NASA (1987)
2.6	-	1210	245-350	IUPAC (1989)
3.77(-18)	2.0	604	245-486	Atkinson (1989)

Derived Arrhenius Parameters

Preferred Values

 $k = 3.0 \times 10^{-12} \exp[-(1250 \pm 200)/T] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ 220 < T < 400 K


 $k_{298} = 4.5 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

 $f_{298} = 1.15$

Comments on Preferred Values

The data for this reaction are in excellent agreement. The recommended Arrhenius expression was derived from the room temperature data of Howard and Evenson (1976a) and Paraskevopoulos et al. (1981), and the temperature dependence data of Watson et al. (1977), Handwerk and Zellner (1978) and Jeong and Kaufman (1982a) below 400 K. The expression given here agrees with the recommended expression from NASA (1987) to within about 15% over the stratospheric temperature range.

$OH + CH_2F_2 (HFC-32) \rightarrow H_2O + CHF_2$

Reference	10 ¹⁵ ·k cm ³ molecule ⁻¹ s ⁻¹	Temp. K.
Howard and Evenson (1976a	7.8	296
Clyne and Holt (1979b)	5.8	293
	16.1	327
	24.1	368
	60.3	429
Nip et al. (1979)	11.7	297
Jeong and Kaufman (1982a)	4.29	250
	11.2	298
	21.0	336
	43.4	384
	72.7	432
	95.1	464
	141	492

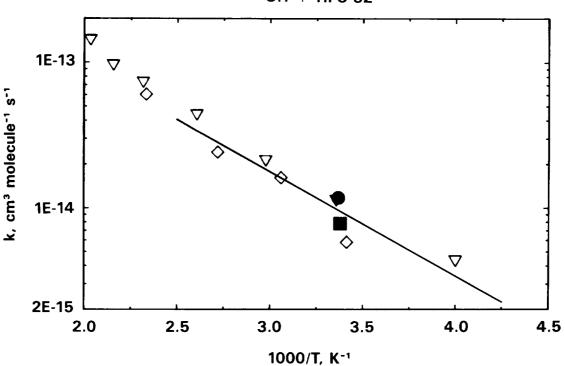
Rate Coefficient Data

Derived Arrhenius Parameters

10 ¹² ·A cm ³ molecule ⁻¹ s ⁻¹	n	E/R K	Temp. K	Reference
7.41	-	2100	293-429	Clyne and Holt (1979b)
4.37	-	1766	250-492	Jeong et al. (1984)
		Reviews an	d Evaluations	
5.06(-18)	2.0	1107	250-492	Atkinson (1989)

$OH + CH_2F_2$ (HFC-32) \rightarrow H₂O + CHF₂

Preferred Values


 $k = 2.5 \times 10^{-12} \exp[-(1650 \pm 200)/T] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ 220 < T < 400 K

 $k_{298} = 1.0 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

 $f_{298} = 1.2$

Comments on Preferred Values

The temperature dependence of the preferred rate expression is derived from the data of Jeong and Kaufman (1982a) below 400 K. The recommendation for k_{298} is derived from the average of the room temperature data of Jeong and Kaufman (1982a), Howard and Evenson (1976a) and Nip et al. (1979). Although the data of Clyne and Holt (1979b) are consistent with the data from the other studies, this study is not included in the least squares fit.

$OH + CH_3F (HFC-41) \rightarrow H_2O + CH_2F$

Temp. K.	10 ¹⁵ ·k cm ³ molecule ⁻¹ s ⁻¹	Reference
296	16	Howard and Evenson (1976a)
297	21.7	Nip et al. (1979)
292	14	Jeong and Kaufman (1982a)
330	25	
356	38.6	
368	47.6	
385	54.8	
416	85.6	
455	131	
480	171	

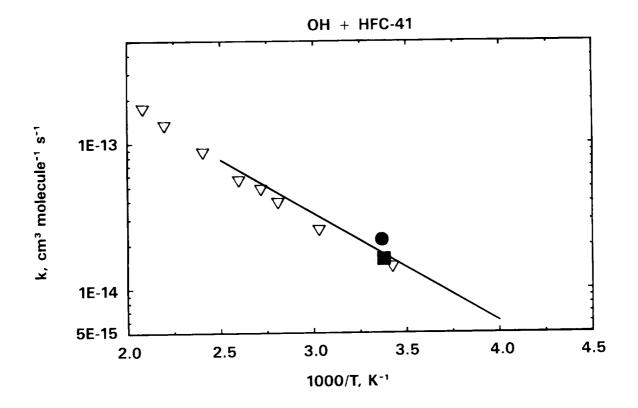
Rate Coefficient Data

Derived Arrhenius Parameters

10 ¹² ·A cm ³ molecule ⁻¹ s ⁻¹	n	E/R K	Temp. K	Reference
8.11	-	1887	292-480	Jeong et al. (1984)
		Reviews ar	d Evaluations	
5.51(-18)	2.0	1005	292-480	Atkinson (1989)

Preferred Values

 $k = 5.4 \times 10^{-12} \exp[-(1700 \pm 300)/T] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ 220 < T < 400 K


 $k_{298} = 1.8 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

 $f_{298} = 1.2$

$OH + CH_3F$ (HFC-41) $\rightarrow H_2O + CH_2F$

Comments on Preferred Values

The temperature dependence of the preferred rate expression is derived from the data of Jeong and Kaufman (1982a) below 400 K. The recommendation for k_{298} is derived from the average of the room temperature data of Jeong and Kaufman (1982a), Howard and Evenson (1976a) and Nip et al. (1979).

$OH + CHCl_2CF_3 (HCFC-123) \rightarrow H_2O + CCl_2CF_3$

Temp. K.	10 ¹⁵ ·k cm ³ molecule ⁻¹ s ⁻¹	Reference
296	28.4	Howard and Evenson (1976b
245	16.2	Watson et al. (1979)
298	36	
375	72	
293	38.6	Clyne and Holt (1979b)
329	58.6	-
366	80.1	
429	111	
223	15.9	Ravishankara (1989)
229	18.6	
251	22.0	
298	37.5	
322	47.2	
380	71.6	
468	134	
270	25.0	Kurylo (1989)
298	35.2	• • •
330	47.0	
350	49.9	
375	73.6	
400	88.4	

Rate Coefficient Data

Derived Arrhenius Parameters

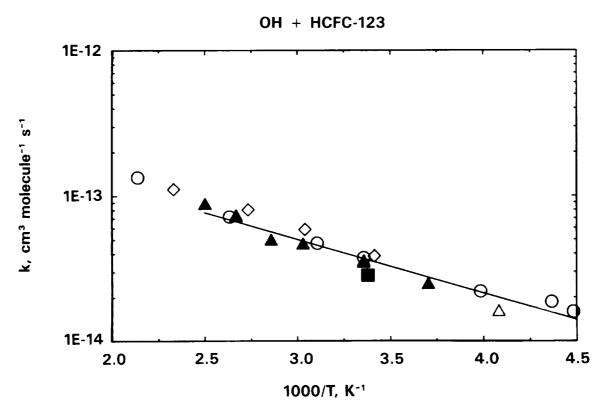
10 ¹² ·A cm ³ molecule ⁻¹ s ⁻¹	n	E/R K	Temp. K	Reference
1.4	-	1102		Watson et al. (1979)
1.12	-	1000		Clyne and Holt (1979b)

$OH + CHCl_2CF_3 (HCFC-123) \rightarrow H_2O + CCl_2CF_3$

10 ¹² ·A cm ³ molecule ⁻¹ s ⁻¹	n	E/R K	Temp. K	Reference
1.1	-	1050	245-375	NASA (1987)
1.2	-	1060	245-375	IUPAC (1989)
1.2	-	1060	245-375	Atkinson (1989)

Reviews and Evaluations

Preferred Values


 $k = 6.4 \times 10^{-13} \exp[-(850 \pm 250)/T] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ 220 < T < 400 K

 $k_{298} = 3.7 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

 $f_{298} = 1.2$

Comments on Preferred Values

The preferred rate expression is derived from the temperature dependence data below 400 K of Ravishankara (1989), Kurylo (1989), Watson et al. (1979), and the room temperature data of Howard and Evenson (1976b). The recommended value of k_{298} is derived from the temperature dependence expression. The data of Clyne and Holt (1979b) were not considered.

OH + CHFClCF₃ (HCFC-124) \rightarrow H₂O + CFClCF₃

Temp. K.	10 ¹⁵ ·k cm ³ molecule ⁻¹ s ⁻¹	Reference	
296	12.4	Howard and Evenson (1976b)	
250	4.33	Watson et al. (1979)	
301	9.4		
375	22.8		

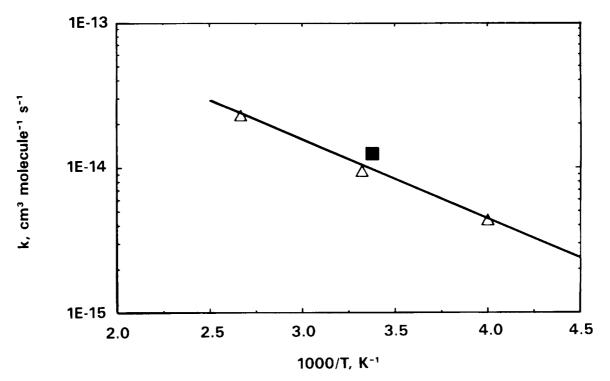
Rate Coefficient Data

Derived Arrhenius Parameters

10 ¹² ·A cm ³ molecule ⁻¹ s ⁻¹	n	E/R K	Temp. K	Reference
0.613	-	1244	298-422	Watson et al. (1979)
		Reviews ar	nd Evaluations	
0.72		1250	250-375	NASA (1987)
0.64		1240	250-375	IUPAC (1989)
0.64		1233	250-375	Atkinson (1989)

Preferred Values

 $k = 6.6 \times 10^{-13} \exp[-(1250 \pm 300)/T] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ 220 < T < 400 K


 $k_{298} = 1.0 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

 $f_{298} = 1.2$

OH + CHFCICF₃ (HCFC-124) \rightarrow H₂O + CFCICF₃

Comments on Preferred Values

The preferred rate expression is derived from the temperature dependence data of Watson et al. (1979), and the room temperature data of Howard and Evenson (1976b). The recommended value of k_{298} is derived from the temperature dependence expression.

OH + HCFC-124

$OH + CHF_2CF_3$ (HFC-125) \rightarrow H₂O + CF₂CF₃

Temp. K.	10 ¹⁵ ·k cm ³ molecule ⁻¹ s ⁻¹	Reference
294	5.0	Clyne and Holt (1979b)
294	4.9	
336	6.2	
378	11.3	
441	15.8	
298	2.5	Martin and Paraskevopoulos (1983)

Rate Coefficient Data

Derived Arrhenius Parameters

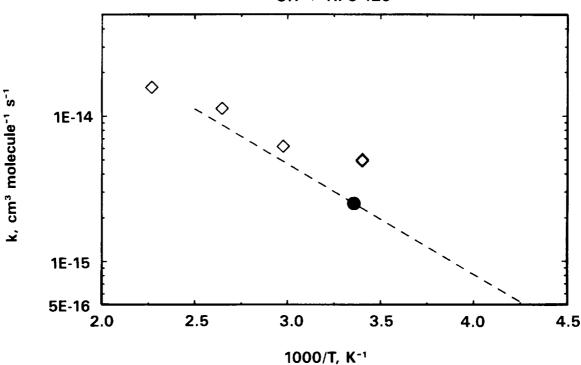
10 ¹² ·A cm ³ molecule ⁻¹ s ⁻¹	n	E/R K	Temp. K	Reference
0.17	-	1100	298-441	Clyne and Holt (1979b)

Reviews and Evaluations

- none -

Preferred Values

 $k = 8.9 \times 10^{-13} \exp[-(1750 \pm 500)/T] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ 220 < T < 400 K


 $k_{298} = 2.5 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

 $f_{298} = 2.0$

$OH + CHF_2CF_3$ (HFC-125) $\rightarrow H_2O + CF_2CF_3$

Comments on Preferred Values

The only temperature dependence data for this reaction are those of Clyne and Holt (1979b). Due to the large discrepancy between the room temperature rate constant of Clyne and Holt (1979b) and that measured by Martin and Paraskevopoulos (1983), and the generally poor agreeement between the Clyne and Holt data and that of other workers for many other halomethanes and haloethanes, the Clyne and Holt data were not used. The preferred value of k_{298} is taken from Martin and Paraskevopoulos (1983). The temperature dependence was estimated by analogy with HFC-134a.

OH + HFC-125

$OH + CH_2ClCF_2Cl (HCFC-132b) \rightarrow H_2O + CHClCF_2Cl$

Гетр. К.	10 ¹⁵ ·k cm ³ molecule ⁻¹ s ⁻¹	Reference
250	6.12	Watson et al. (1979)
298	16.7	
350	37.2	
249	14.2	Jeong et al. (1984)
253	16.0	
267	19.1	
295	27.2	
297	24.2	
333	43.1	
365	59.5	
383	80.6	
418	104	
473	160	

Rate Coefficient Data

Derived Arrhenius Parameters

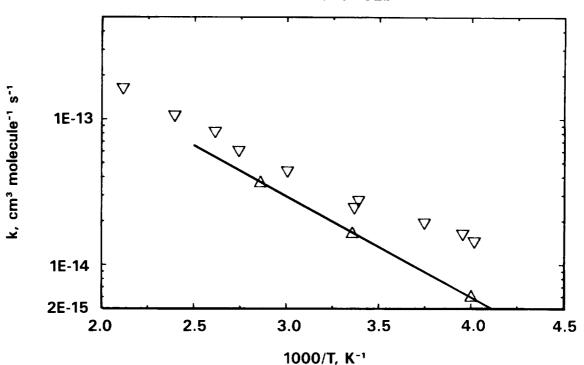
10 ¹² ·A cm ³ molecule ⁻¹ s ⁻¹	n	E/R K	Temp. K	Reference
3.0	_	1578	250-350	Watson et al. (1979)
2.02	-	1263	249-473	Jeong et al. (1984)

Reviews and Evaluations

3.4	-	1600	250-350	NASA (1987)
3.0	-	1580	250-350	IUPAC (1989)
2.8(-18)	2.0	672	250-470	Atkinson (1989)

$OH + CH_2ClCF_2Cl (HCFC-132b) \rightarrow H_2O + CHClCF_2Cl$

Preferred Values


 $k = 3.6 \times 10^{-12} \exp[-(1600 \pm 400)/T] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ 220 < T < 400 K

 $k_{298} = 1.7 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

 $f_{298} = 2.0$

Comments on Preferred Values

The recommended temperature dependence was derived from the data of Watson et al. (1979) which were corrected by these authors for the presence of alkene impurities. The data of Jeong et al. (1984), indicating substantially faster rate constants may have been affected by such impurities and hence were not included in deriving the recommendation. The preferred value of k_{298} was derived from the recommended Arrhenius expression. This recommendation is essentially identical to the one in NASA (1987).

OH + HCFC-132b

$OH + CH_2ClCF_3$ (HCFC-133a) \rightarrow H₂O + CHClCF₃

Temp. K.	-	
296	10.5	Howard and Evenson (1976b)
263	11	Handwerk and Zellner (1978)
268	12	
273	12	
283	15	
293	15	
337	28	
373	36	
294	10.3	Clyne and Holt (1979b)
322	38.3	
344	38.6	
358	69.4	
385	65.8	
407	130	
427	154	

Rate Coefficient Data

Derived Arrhenius Parameters

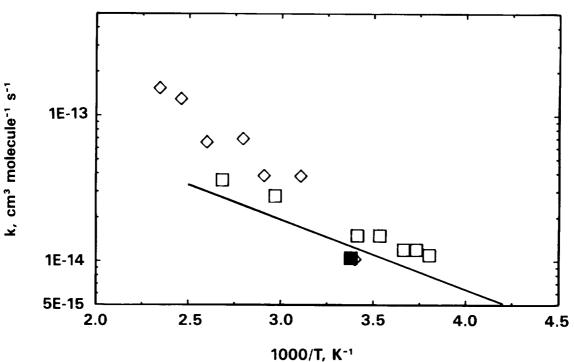
10 ¹² ·A cm ³ molecule ⁻¹ s ⁻¹	n	E/R K	Temp. K	Reference
1.1	-	1260	263-373	Handwerk and Zellner (1978)
38.9	-	2300	294-427	Clyne and Holt (1979b)

Reviews and Evaluations

-0.3(-17) 2.0 -750 205 575 Minison (1967)	8.5(-19)	2.0	458	263-373	Atkinson (1989)
---	----------	-----	-----	---------	-----------------

$OH + CH_2ClCF_3$ (HCFC-133a) \rightarrow H₂O + CHClCF₃

Preferred Values


 $k = 5.2 \times 10^{-13} \exp[-(1100 \pm 300)/T] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ 220 < T < 400 K

 $k_{298} = 1.3 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

 $f_{298} = 1.3$

Comments on Preferred Values

The temperature dependence of the preferred rate expression was derived from the data of Handwerk and Zellner (1978). The recommended value of k_{298} is the average of the values of Howard and Evenson (1976b) and Handwerk and Zellner (1978) adjusted to 298 K. The data of Clyne and Holt (1979b) were not used in deriving this recommendation..

$OH + CHF_2CHF_2$ (HFC-134) \rightarrow H₂O + CF₂CHF₂

Reference	10 ¹⁵ ·k cm ³ molecule ⁻¹ s ⁻¹	Temp. K.
Clyne and Holt (1979b)	5.3	294
	18.8	333
	21.2	389
	48.2	434

Rate Coefficient Data

Derived Arrhenius Parameters

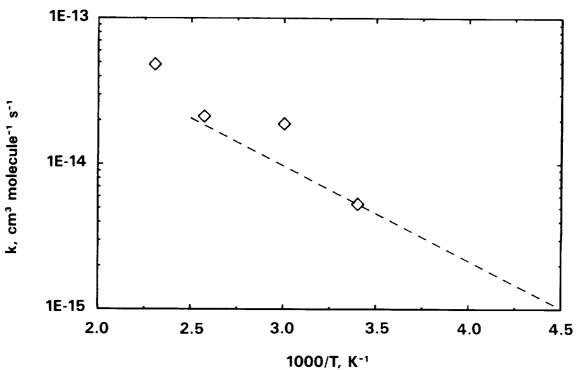
10 ¹² ·A cm ³ molecule ⁻¹ s ⁻¹	n	E/R K	Temp. K	Reference
2.75	-	1800	294-434	Clyne and Holt (1979b)

Reviews and Evaluations

- none -

Preferred Values

 $k = 8.7 \times 10^{-13} \exp[-(1500 \pm 500)/T] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ 220 < T < 400 K


 $k_{298} = 5.7 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

 $f_{298} = 2.0$

$OH + CHF_2CHF_2$ (HFC-134) \rightarrow H₂O + CF₂CHF₂

Comments on Preferred Values

For the preferred rate expression, the data of Clyne and Holt (1979b) were rejected in favor of an estimated temperature dependence. The recommended value of k_{298} was obtained by adjusting the 294 K value of Clyne and Holt (1979b) to 298 K.

OH + HFC-134

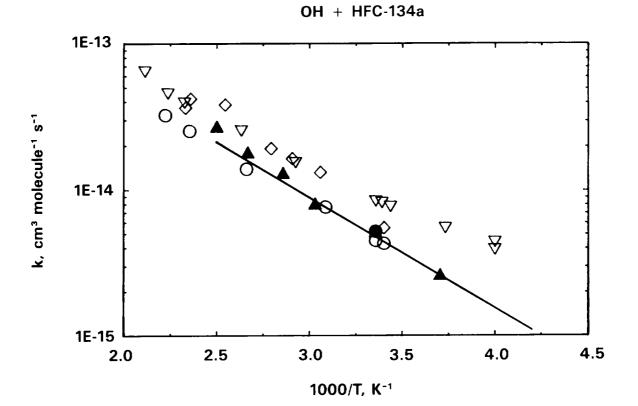
$OH + CH_2FCF_3$ (HFC-134a) \rightarrow $H_2O + CHFCF_3$

Temp. K.	10 ¹⁵ ·k cm ³ molecule ⁻¹ s ⁻¹	Reference
294	5.5	Clyne and Holt (1979b)
327	13.2	
344	16.4	
358	19.2	
393	38.3	
424	42.0	
429	36.4	
298	5.2	Martin and Paraskevopoulos (198
249	3.9	Jeong et al. (1984)
250	4.4	
268	5.5	
291	7.7	
295	8.2	
298	8.4	
342	15.4	
380	25.4	
430	39.4	
447	45.6	
473	64.4	
298	4.5	Ravishankara (1989)
298	4.3	
294	4.3	
324	7.65	
376	13.9	
425	25.3	
450	32.4	
270	2.63	Kurylo (1989)
298	5.18	
330	8.08	
350	13.1	
375	18.1	
400	27.2	

Rate Coefficient Data

$OH + CH_2FCF_3$ (HFC-134a) \rightarrow H₂O + CHFCF₃

10 ¹² ·A cm ³ molecule ⁻¹ s ⁻¹	n	E/R K	Temp. K	Reference
2.75	-	1800	294-429	Clyne and Holt (1979b)
1.10	-	1424	249-473	Jeong et al. (1984)
		Reviews an	d Evaluations	
0.66	-	1300	250-440	NASA (1987)
0.66	-	1300	250-440	IUPAC (1989)
1.27(-18)	2.0	769	250-470	Atkinson (1989)


Derived Arrhenius Parameters

Preferred Values

 $k = 1.7x10^{-12} \exp[-(1750 \pm 300)/T] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \qquad 220 < T < 400 \text{ K}$ $k_{298} = 4.8x10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ $f_{298} = 1.2$

Comments on Preferred Values

The preferred rate expression was derived from the data of Ravishankara (1989), Kurylo (1989) and the room temperature data point of Martin and Paraskevopoulos (1983). The recommended value of k_{298} is obtained from the rate expression. The data of Clyne and Holt (1979b) were not used. With the inclusion of the new data of Ravishankara and Kurylo this recommendation is considerably different from that of NASA (1987), which was based primarily on the data of Jeong (1984). The newer data suggest that the latter study may have overestimated the rate constant due to the presence of reactive impurities which can perturb the relatively slow reaction of OH with HFC-134a. This recommendation therefore results in significantly (factor of 2-4) smaller rate constants at stratospheric temperatures.

85

$OH + CH_3CCl_3$ (Halocarbon-140) $\rightarrow H_2O + CH_2CCl_3$

Temp. K.	10 ¹⁵ ·k cm ³ molecule ⁻¹ s ⁻¹	Reference	
296	15	Howard and Evenson (1976b)	
260	7.1	Watson et al. (1977)	
298	15.9		
375	48.5		
278	8.32	Jeong and Kaufman (1979)	
293	10.6		
352	29.3		
400	55.2		
457	102		
222	3.18	Kurylo et al. (1979)	
253	4.47		
263	5.40		
296	10.8		
363	38.5		
293	18.1	Clyne and Holt (1979a)	
310	27.8		
338	45.9		
371	57.3		
399	72.9		
430	86.3		

Rate Coefficient Data

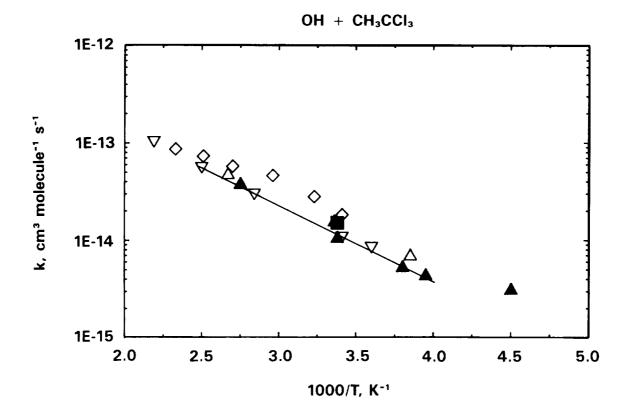
$OH + CH_3CCl_3$ (Halocarbon-140) $\rightarrow H_2O + CH_2CCl_3$

10 ¹² •A cm ³ molecule ⁻¹ s ⁻¹	n	E/R K	Temp. K	Reference
3.72	-	1627	260-375	Watson et al. (1977)
5.04	-	1797	278-457	Jeong and Kaufman (1979)
5.4	-	1810	253-363	Kurylo et al. (1979)
2.4	-	1394	293-430	Clyne and Holt (1979a)

Derived Arrhenius Parameters

		d Evaluations		
5.0	-	1800	222-457	NASA (1987)
5.1	-	1800	250-460	IUPAC (1989)
5.92(-18)	2.0	1129	253-457	Atkinson (1989)

Preferred Values


 $k = 5.0x10^{-12} \exp[-(1800 \pm 300)/T] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ 250 < T < 400 K

 $k_{298} = 1.2 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

 $f_{298} = 1.3$

Comments on Preferred Values

The recommendation is the same as that adopted in NASA (1987). The evaluation is based on the data of Jeong and Kaufman (1979) and Kurylo et al. (1979) excluding the value at 222 K.

88

$OH + CH_3CFCl_2$ (HCFC-141b) \rightarrow H₂O + CH₂CFCl₂

Temp. K.	10 ¹⁵ •k cm ³ molecule ⁻¹ s ⁻¹	Reference		
244	4.13 (FP)	Ravishankara (1989)		
277	5.77 (FP)			
293	7.2			
301	7.78 (FP)			
326	10.9			
347	13.9			
390	22.8	22.8		
434	36.4	36.4		
456	48.1			
243	4.20	4.20 Kurylo (1989)		
273	5.24			
298	7.01			
330	9.62			
350	13.8			
400	19.4			

Rate Coefficient Data

Derived Arrhenius Parameters

10 ¹² ·A cm ³ molecule ⁻¹ s ⁻¹	n	E/R K	Temp.	Reference	
		- r	ione -		

Reviews and Evaluations

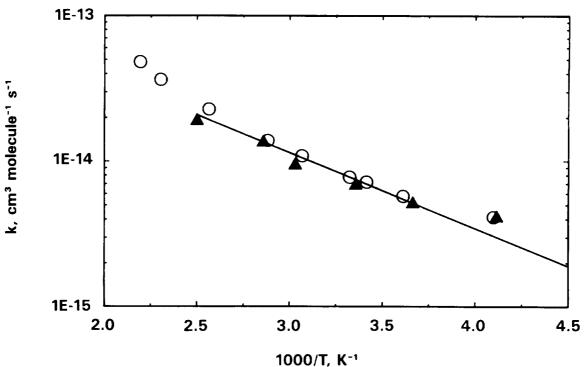
3.4 -	1800
-------	------

NASA (1987) (Estimated; no data)

270-330

$OH + CH_3CFCl_2$ (HCFC-141b) $\rightarrow H_2O + CH_2CFCl_2$

Preferred Values


 $k = 4.2 \times 10^{-13} \exp[-(1200 \pm 300)/T] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ 220 < T < 400 K

 $k_{298} = 7.5 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

 $f_{298} = 1.3$

Comments on Preferred Values

The preferred rate expression is significantly different from that estimated in NASA (1987) due to the recent availability of kinetics data from Ravishankara (1989) and Kurylo (1989). There is noticeable curvature in the Arrhenius plots from both studies. While the data can be fit to a reasonably straight line over the temperature range 240 - 400 K, a temperature range for the fit of 273 - 400 K was adopted. The reaction rate at the lowest temperature, being so slow, is most likely to be affected by impurities. In addition, inclusion of the lowest temperature points in the fit results in an unusually small A-factor. Rate constants derived from this recommendation are a factor of 1-3 times larger than those from NASA (1987) at low temperatures.

OH + HCFC-141b

$OH + CH_3CF_2Cl \ (HCFC-142b) \rightarrow H_2O + CH_2CF_2Cl$

Temp. K.	10 ¹⁵ ·k cm ³ molecule ⁻¹ s ⁻¹	Reference		
296	2.83	Howard and Evenson (1976b)		
273	1.92	Watson et al. (1977)		
298	3.2			
375	10.9			
293	3.7	Handwerk and Zellner (1978)		
373	14			
293	8.4	Clyne and Holt (1979b)		
293	6.0			
323	12.0			
363	14.4			
380	30.9			
417	40.6			
297	4.63	Paraskevopoulos et al. (1983		
243	1.22	Ravishankara (1989)		
268	2.00			
293	3.48			
352	7.94			
395	14.6			
270	2.14	Kurylo (1989)		
298	4.02			
330	6.60			
350	7.97			
375	11.5			
400	17.0			

Rate Coefficient Data

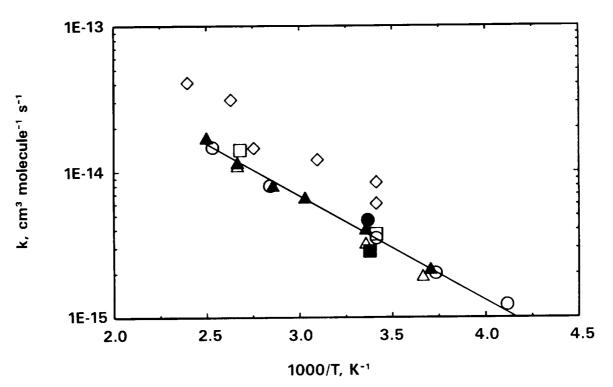
$OH + CH_3CF_2Cl (HCFC-142b) \rightarrow H_2O + CH_2CF_2Cl$

10 ¹² ·A cm ³ molecule ⁻¹ s ⁻¹	n	E/R K	Temp.	Reference
1.15	-	1748	273-375	Watson et al. (1977)
1.8	-	1790	293-373	Handwerk and Zellner (1978)
3.3	-	1800	293-417	Clyne and Holt (1979b)
		Reviews a	nd Evaluation	<u>s</u>
1.5	-	1800	270-380	NASA (1987)
	-	1820	270-380	IUPAC (1989)
1.6	-	1020		/

Derived Arrhenius Parameters

Preferred Values

 $k = 9.6 \times 10^{-13} \exp[-(1650 \pm 250)/T] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ 220 < T < 400 K


 $k_{298} = 3.8 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

 $f_{298} = 1.2$

Comments on Preferred Values

The recommended rate expression is derived from a fit to the temperature dependence data of Ravishankara (1989), Kurylo (1989), Watson et al. (1977) and Handwerk and Zellner (1978), and the room temperature data of Howard and Evenson (1976b), and Paraskevopoulos et al. (1981). The value of k_{298} was derived from the rate expression. The preferred rate expression results in rate constants that are up to 25% larger at stratospheric temperatures than those derived from the NASA (1987) recommendation.

$OH + CH_2FCHF_2$ (HFC-143) \rightarrow H₂O + products

Temp. K.	10 ¹⁵ ·k cm ³ molecule ⁻¹ s ⁻¹	Reference
293	49.8	Clyne and Holt (1979b)
294	46.8	•
335	67.4	
383	90.9	
441	189	
298	18.3	Martin and Paraskevopoulos (1983)

Rate Coefficient Data

Derived Arrhenius Parameters

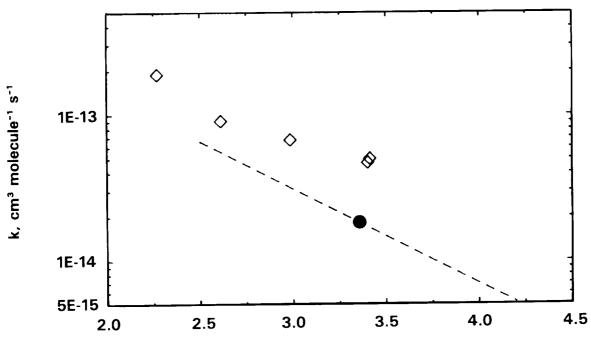
10 ¹² •A cm ³ molecule ⁻¹ s ⁻¹	n	E/R K	Temp. K	Reference
1.48	-	1000	293-441	Clyne and Holt (1979b)

Reviews and Evaluations

- none -

Preferred Values

 $k = 2.8 \times 10^{-12} \exp[-(1500 \pm 500)/T] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ 220 < T < 400 K


 $k_{298} = 1.8 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

 $f_{298} = 2.0$

$OH + CH_2FCHF_2$ (HFC-143) $\rightarrow H_2O + products$

Comments on Preferred Values

The only temperature dependence data for this reaction are those of Clyne and Holt (1979b). Due to the large discrepancy between the room temperature rate constant of Clyne and Holt (1979b) and that measured by Martin and Paraskevopoulos (1983), and the generally poor agreeement between the Clyne and Holt data and that of other workers for several other halomethanes and haloethanes, the Clyne and Holt data were not used in deriving this recommendation. The preferred value of k_{298} is taken from Martin and Paraskevopoulos (1983). The temperature dependence was estimated.

OH + HFC-143

1000/T, K⁻¹

$OH + CH_3CF_3$ (HFC-143a) $\rightarrow H_2O + CH_2CF_3$

Тетр. К.	10 ¹⁵ ·k cm ³ molecule ⁻¹ s ⁻¹	Reference
293	< 1.0	Clyne and Holt (1979b)
333	4.7	
378	12.9	
425	38.4	
298	1.7	Martin and Paraskevopoulos (1983

Rate Coefficient Data

Derived Arrhenius Parameters

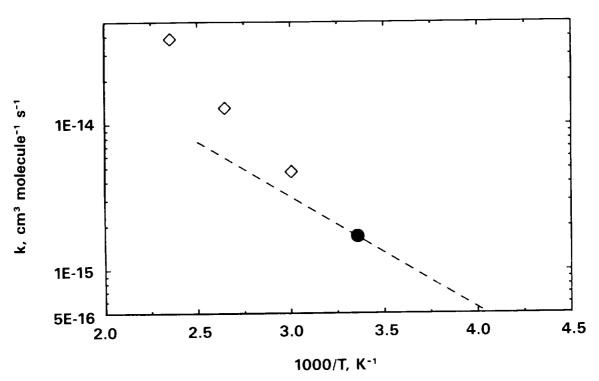
10 ¹² ·A cm ³ molecule ⁻¹ s ⁻¹	n	E/R K	Temp. K	Reference
69	-	3200	293-425	Clyne and Holt (1979b)

Reviews and Evaluations

- none -

Preferred Values

 $k = 6.0 \times 10^{-13} \exp[-(1750 \pm 500)/T] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ 220 < T < 400 K


 $k_{298} = 1.7 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

 $f_{298} = 2.0$

$OH + CH_3CF_3$ (HFC-143a) $\rightarrow H_2O + CH_2CF_3$

Comments on Preferred Values

The only temperature dependence data for this reaction are those of Clyne and Holt (1979b). Due to the large discrepancy between the room temperature rate constant of Clyne and Holt (1979b) and that measured by Martin and Paraskevopoulos (1983), and the generally poor agreeement between the Clyne and Holt data and that of other workers for several other halomethanes and haloethanes, the Clyne and Holt data were not used in deriving this recommendation. The preferred value of k_{298} is taken from Martin and Paraskevopoulos (1983). The temperature dependence was estimated by comparison with HFC 134a.

OH + HFC-143a

$OH + CH_2FCH_2F$ (HFC-152) \rightarrow $H_2O + CH_2FCHF$

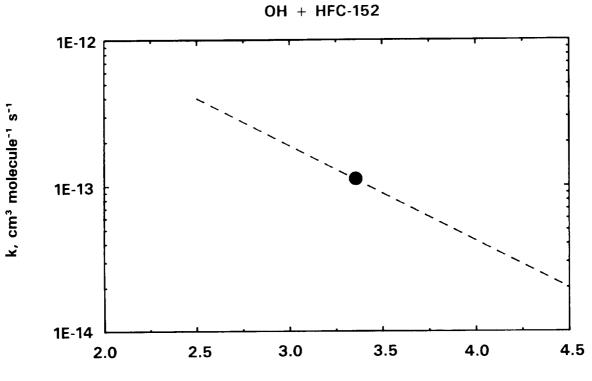
Temp. K.	c	10 ¹⁵ ·k m ³ molecule ⁻	¹ S ⁻¹	Reference
298		112		Martin and Paraskevopoulos (1983
	Ţ	Derived Arrhe	enius Parame	ters

Rate Coefficient Data

Reviews and Evaluations

- none -

Preferred Values


$$k = 1.7 \times 10^{-11} \exp[-(1500 \pm 500)/T] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$
 220 < T < 400 K

 $k_{298} = 1.1 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

 $f_{298} = 2.0$

Comments on Preferred Values

The preferred rate expression is derived by fitting an estimated temperature dependence to the room temperature data of Martin and Paraskevopoulos (1983).

1000/T, K⁻¹

 $C \rightarrow$

$OH + CH_3CHF_2$ (HFC-152a) $\rightarrow H_2O + products$

Temp. K.	10 ¹⁵ ·k cm ³ molecule ⁻¹ s ⁻¹	Reference		
296	31	Howard and Evenson (1976b)		
293	35	Handwerk and Zellner (1978)		
297	37	Nip et al. (1979)		
293	46.6	Clyne and Holt (1979b)		
323	71.6			
363	101			
417	164			
238	15.3	Ravishankara (1989)		
258	20.0			
293	34			
349	64			
388	94.3			
402	113			
409	117			
423	132			
270	29.9	Kurylo (1989)		
298	42.2			
330	53.2			
350	68.1			
375	73.0			
400	103			

Rate Coefficient Data

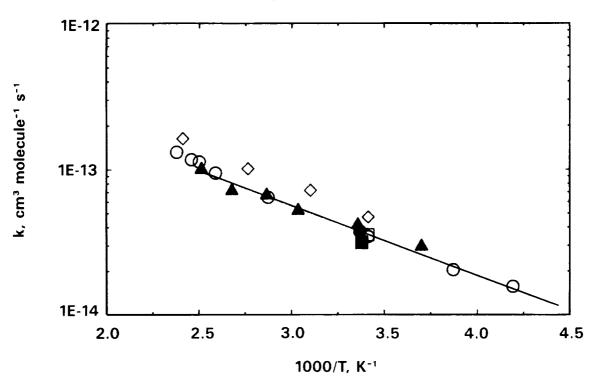
$OH + CH_3CHF_2$ (HFC-152a) \rightarrow H₂O + products

10 ¹² ·A cm ³ molecule ⁻¹ s ⁻¹	n	E/R K	Temp. K	Reference
2.95	-	1200	293-417	Clyne and Holt (1979b)
		Reviews an	d Evaluations	
1.9	-	1200	270-330	NASA (1987)

Derived Arrhenius Parameters

Preferred Values

 $k = 1.5 \times 10^{-12} \exp[-(1100 \pm 200)/T] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ 220 < T < 400 K


 $k_{298} = 3.7 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

 $f_{298} = 1.1$

Comments on Preferred Values

The preferred rate expression is derived from the temperature dependence data of Ravishankara (1989) and Kurylo (1989) and the room temperature data of Howard and Evenson (1976b), Handwerk and Zellner (1978), and Nip et al. (1979). The data of Clyne and Holt (1979b) were not used in this derivation. The value for k_{298} is that calculated from the expression.

OH + HFC-152a

$OH + CH_3CH_2F$ (HFC-161) $\rightarrow H_2O + products$

Temp. K.	10 ¹⁵ ·k cm ³ molecule ⁻¹ s ⁻¹			Reference	
297		232		Nip et al. (1979)	
	_	Derived Arrh	enius Parameter	<u>rs</u>	
10 ¹² ·A m ³ molecule ⁻¹ s ⁻¹	n	E/R K	Temp. K	Reference	

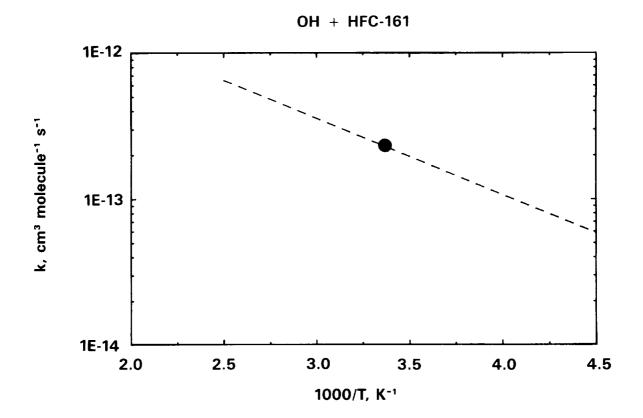
Rate Coefficient Data

- none -

Reviews and Evaluations

- none -

Preferred Values


 $k = 1.3 \times 10^{-11} \exp[-(1200 \pm 300)/T] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ 220 < T < 400 K

 $k_{298} = 2.3 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

 $f_{298} = 2.0$

Comments on Preferred Values

There are no temperature dependence data for this reaction. The temperature dependence of the recommended expression was derived by analogy with members of the homologous series which includes the OH + C_2H_6 and OH + CH₃CHF₂ (HFC 152a) reactions. The value of k₂₉₈ was taken from the study of Nip et al. (1979). Singleton et al. (1980) determined that 85 ± 3 % of the abstraction by OH is from the fluorine substituted methyl group.

104