FIREX-AQ Chem Otter Science Meeting

Agenda:

- 1. Important information
- 2. Andy Weinheimer: Data update
- 3. <u>Mike Robinson</u>: NO_x , O3, MCE, and box modeling
- 4. <u>Paul Van Rooy</u>: GC × GC analysis of VOCs
- 5. <u>Zach Decker</u>: BBVOCs and CINO₂

- 6. <u>Ale Franchin and Ann Middlebrook</u>: Aerosol oxidation state and optical properties
 - 7. <u>Rebecca Washenfelder</u>: WSOC concentration and absorption in downwind transects
 - 8. Jay Tomlin and Felipe Rivera: SEM analysis for 8/28 Cow Fire
- 9. Zach Decker: Go Pro
- 5 10. <u>Mike Robinson</u>: Met data

1/31/2020

Where to find flight and fire information?

Flight summary:

https://docs.google.com/spreadsheets/d/1puikxaDmMgNoscQ_-I1vTQKAr1jNtZUYtiOtpqJTifU/edit?usp=sharing

Flight Num	Flight Leg	Start Time (UTC)	Stop Time (UTC)	Duration	Time of Day	Start Airport	Start Code	Stop Airport	Stop Code	Fire Name	Fuel Type	Flight Scientist	Instrument Scientist Other Details
1	20190729	07/29/2019 17:20:00	07/29/2019 19:25:00	2:05:00	Afternoon	Rocky Mountain Metro	BJC	Rocky Mountain Metr	BJC	Small ag fire	Grass fire	Mike Robinson	Ale Franchin
2	20190803	08/03/2019 22:08:00	08/04/2019 00:28:00	2:20:00	Afternoon	Boise Airport	BOI	Boise Airport	BOI	None	N/A	Mike Robinson	Rebecca Washenfelde Calibration of met probes
3	20190805_L1	08/05/2019 21:49:00	08/05/2019 22:33:00	0:44:00	Afternoon	Boise Airport	BOI	Twin Falls Airport	TWF	None (Transit)	N/A	Ale Franchin	Geoff Tyndall
4	20190805_L2	08/05/2019 23:43:00	08/06/2019 01:44:00	2:01:00	Afternoon	Twin Falls Airport	TWF	Twin Falls Airport	TWF	Goose		Ale Franchin	Geoff Tyndall
5	20190805_L3	08/06/2019 02:37:00	08/06/2019 03:22:00	0:45:00	Sunset	Twin Falls Airport	TWF	Boise Airport	BOI	None (Transit)	N/A	Ale Franchin	Geoff Tyndall

RA data status:

https://docs.google.com/spreadsheets/d/1ix1jEWzFsehuB1Ad5IAv-i3uZwD9DZS2oIF6nCaj4Cs/edit?usp=sharing

RA and R0 data download:

https://esrl.noaa.gov/csd/groups/csd7/measurements/2019firex-aq/TwinOtter/DataDownload/

Username: firexaq; Password: sm0k3y!

Fire characteristics by Amber Soja and Emily Gargulinski:

https://docs.google.com/spreadsheets/d/1_Jfc3GP9taF8IvP82VHpIX1IgsUvvQV7P9CTxrJNRV8/edit#gid=971771572

How to submit final data?

1. The deadline for final data submission for the Chem Twin Otter is February 14, 2020. Please contact Ken Aikin (kenneth.c.aikin@noaa.gov) if you cannot make this deadline.

2. Format for final data:

- Follow the format of the R0 aircraft met data in submitting a single data file for each flight day rather than each flight leg.
- Use the time wave provided in the aircraft data for expansion of your data.
- Fill in the gaps between flight legs with NaNs.
- We recommend not posting data from the tarmac, so it is best if the valid data from your measurements starts and stops at approximately (or exactly) the same time as the valid data aircraft met data.
- 3. Submit final data:
 - Log into http://dters.com/ftp.al.noaa.gov. Username: firex_aq_otter; Password: sm0k3y!
 - Upload your ICARTT files into the IncomingData folder.
 - Ken will add these files to the data archive.
 - Data will be available at:

https://esrl.noaa.gov/csd/groups/csd7/measurements/2019firex-aq/TwinOtter/DataDownload/ Username: firexaq; Password: sm0k3y!

Shared metadata?

Shared, posted "metadata" products would:

- Save time and prevent duplicated efforts among scientists.
- Allow for more consistency between our analyses.

Possibilities:

- 1. Flag for smoke based on CO and particle mass (e.g. 1 for smoke, -999 otherwise)
- 2. Transect number (T0, T1, T2, etc)
- 3. Age of smoke calculated from fire location and instantaneous wind speed
- 4. Time of smoke emission
- 5. Location of smoke emission
- 6. Integrated sunlight exposure, based on smoke age and solar zenith angle.
- 7. Fire characteristics from Amber and Emily
- 8. Other suggestions?

Ann Middlebrook will contact Christoph Knote and Chris Holmes to ask about this. Ken Aikin could be asked to assemble the metadata into posted ICARTT files.

What's next?

- 1. Complete and post R0 data by February 14, 2020.
- 2. We will have Chem Otter science telecons in January (today!), February, and possibly March.
- 3. During February and March: Coordination of Chem Otter scientific analysis and topics.
- 4. Science meeting for all FIREX-AQ participants in Langley, Virginia during March 17-20, 2020.
 - To register, email your name and group to Caitlin Murphy (caitlin.murphy@nasa.gov) and Bernie Luna (<u>bernadette.luna@nasa.gov</u>).
 - NASA will provide travel support for PI+1 attendance for all NASA-funded teams. More than 2 people per group are welcome if you have travel funds and a presentation for each attendee.
 - Presentations will be organized by topic, rather than by platform.
 - Abstracts are due February 21
- 5. Today: Updates on data and results from each group.

Twin Otter Gas-Phase Instruments

Instrument	Species Measured	Investigators	Institution
Chemiluminescence	NO, NO ₂ , O ₃	<u>Andy Weinheimer</u> , Denise Montzka, Geoff Tyndall, Frank Flocke	NCAR
NO ₂	NO ₂ photolysis rate	<u>Mike Robinson</u>	NOAA CSD
Tenax cartridge sampler	Speciated VOCs	Kelley Barsanti, Lindsey Hatch, Avi Lavi, <u>Paul Van</u> <u>Rooy</u>	UC Riverside
L TOF CIMS	Acids (HNO ₃ , HONO, Organics), acid gases $(N_2O_5, CINO_2)$, Oxygenated organics, Organic nitrates, Halogens	Joel Thornton, Brett Palm, Carley Fredrickson, <u>Zach</u> <u>Decker</u>	University of Washington NOAA
Picarro CRDS	CO, CO ₂ , CH ₄ , H ₂ O	Colm Sweeney, Mike Robinson	NOAA GMD

NCAR NO, NO₂, O₃

- Reduction is ongoing; not far to go. Plan to make the Feb. 14 deadline.
- Our clock was 30-40 seconds fast throughout, and by an increasing amount. Still need to adjust our time base to synchronize in a manner compatible with others.
- No initial results to present at this time.
- What is plan for merges? NOAA will do?

Jhead team update

NOx Enhancement Ratios – Campaign wide

Sized by ozone enhancement ratio

O3 Enhancement Ratios – Campaign wide

Issues w/MCE @GG (8/16 - 8/17)

- Numerous outliers in MCE, warrant investigation
- 80% of these come from Granite Gulch on 8/16 or 8/17

- 0.7

0.2

Box modeling – 8/25/19 Leg 2

MCMv331 w/NOAA BB Mech (Coggon et al) f0am interface (Wolfe et al.)

Update on CO/CO2/CH4/H2O R0 data

Final data will be up next week! Contact me for time aligned CO data if you can't wait that long...

GCxGC analysis (Barsanti Group)

- Contamination makes broad untargeted analysis difficult
- Targeting a list of ~90 compounds to identify and quantify

Targeted Compounds						
à-Pinene	5-Methyl furfural	1-Tetradecene	Anisole	3-Carene	p-Xylene	
Methacrolein	Limonene	Sabinene	Phenol, 2,4,6- trimethyl-	Methyl vinyl ketone	o-Xylene	
Longifolene	Pentanal	Bornyl acetate	Acenaphthene	Acetonitrile	Benzene, (1- methylethyl)-	
Creosol	Styrene	Eugenol	Pyrazine	Phenol, 2,3- dimethyl-	Benzene, propyl-	
Pyrrole	Cyclohexanone	Naphthalene, 1- methyl-	Benzaldehyde	Naphthalene, 2- ethyl-	Benzene, 1-methyl- 3-(1-methylethyl)-	
Indene	m-Cresol	Phenol, 2,5- dimethyl-	Phenol, 2,6- dimethyl-	Phenol, 2,6- dimethoxy-	p-Cymene	
Acenaphthylene	Indole	Terpinolene	Acetone	1-Dodecene	o-Cymene	
1,13- Tetradecadiene	Cyclohexene	Acetylacetone:2	alpha-Phellandrene	Guaiacol, 4-ethyl	Benzene	
ç-Terpinene	Salicylaldehyde	Acetylacetone	à-Methylstyrene	Furan, 2-methyl-	Toluene	
Pyridine	á-Myrcene	Isoeugenol, Z-	N-Methylpyrrol	Ocimene	Ethylbenzene	
Guaiacol	Furan, 2-acetyl-	Naphthalene, 2- methyl-	Naphthalene, 2,6- dimethyl-	Ocimene:2	Furan, 2,5- dimethyl-	
2,3- Dimethylbutadiene	Eucalyptol	Benzofuran	Phthalic anhydride	Phenol, 2,4- dimethyl-	Butanedione	
beta-Pinene	Benzonitrile	Acetophenone	Furfural	Naphthalene, 1- ethyl-	o-Cresol	
Acrolein	2-Butanone	Benzyl alcohol	Furan	Camphene	Phenol, 3,5- dimethyl-	
Camphor	Naphthalene	alpha-Terpinene	Acetic anhydride	á-Phellandrene	Phenylacetylene	
p-Cresol						

• We have identified and quantified 10-40 of these compounds for each flight analyzed.

20190828_L3 Concentrations

• Despite the contamination, after subtracting blank, we are often seeing nice trends: A good sign!

Paul Van Rooy

Data status

- Twin Otter Samples:
 - Targeted compounds have been identified and quantified
 - Next step: volume correct data and post
- Mobile Lab Samples:
 - Tube cartridges analyzed
 - Next step: run standards, identify/quantify samples

GCxGC data to be posted (Twin Otter) 20190816 L2, L3 20190817 L1, L2 20190820 L1, L2, L3 20190821 L1, L2 20190824 L2, L3 20190825 L1, L2, L3 20190827 L1, L2 20190828 L1, L2, L3 20190903 L1, L2, L3 20190904 L1, L2, L3 20190905 L1, L2

Untargeted Approach

 Willing to work with other groups upon request to look for more compounds. If you have a specific compound/flight you are interested in, please feel free to send me an email (pvanr001@ucr.edu)

Paul Van Rooy

UW CIMS

FIREX-AQ Chem Otter Data Meeting 01/31/2020

R0 Will be Available Before the (new) Deadline

• R0 will include

0

0

0

HCN

- C₆H₆O (includes phenol)
- HNCO \circ C₆H₆O₂ (includes catechol)
- HNO_3 C_7H_8O (includes cresol)
- \circ HNO₂ \circ C₅H₁₀O₃
- $\circ CH_2O_2 \circ C_5H_9O_4N$
- $\circ \quad C_2H_4O_2 \quad \circ \quad C_9H_{14}O_4$
- $\circ SO_2 \circ C_{10}H_{16}O_3$
- HCI (tbd) $C_6H_{10}O_5$
- N₂O₅
- CINO₂

BBVOC Oxidation (Oxy. Aromatics)

Day vs Night Emissions and Plume Composition

- No conclusions here
- There are a lot of unanswered questions on how to compare day and night plumes.
- We plan to focus on some of these questions

Nighttime Chemical Pathways → Heterogeneous

Twin Otter Aerosol Instruments

Instrument	Species Measured	Investigators	Institution
High-Resolution AMS	Aerosol composition	<u>Ann Middlebrook, Ale</u> <u>Franchin</u> , Kathy Hayden, Shao-Meng Li	NOAA CSD Environment Canada
Aethelometer	Aerosol absorption at three wavelengths	Ale Franchin	NOAA CSD
Optical Particle Counter	Aerosol size distribution	Ale Franchin, Ann Middlebrook	NOAA CSD
Brown Carbon PILS	Water-soluble aerosol absorption Water-soluble organic carbon concentration	<u>Rebecca Washenfelder,</u> Lisa Azzarello	NOAA CSD
Water and Filter Samples	Aerosol composition, size-resolved absorption	Cora Young, Lisa Azzarello	York University
Aerosol Impactor	Particle morphology, composition, and mixing state	Alex Laskin, <u>Jay Tomlin,</u> <u>Felipe Rivera,</u> Kevin Jankowski	Purdue University

Aerosol Rack Data Status: AMS, UHSAS, and CLAP

- Fit HR-AMS spectra to over 1000 ions
 - Good separation of inorganic/organic ions
- Main AMS species will be reported in final data
 - Folks need to request for particular ions
 - Possibly add carbon oxidation state
- Still working on RO data for all three instruments
 - Want reasonable closure between them
 - Expect to be done by the Feb 14 deadline

Relationship between optical properties and chemical composition

- Is there a chemical signature for absorbing aerosols?
- Is there a difference between day and night, plume age and/or time of day emitted?
- Is there a difference between the plume edges and the plume center?
- Do we see similarities/differences in the altitude profiles?
- By using the CLAP absorption measurement at 653 nm we would like to generate a black carbon proxy, using a MAC from the literature
- Investigate fast oxidation within the first tens of minutes

Fast (10s of minutes) Daytime Oxidation? What Controls Oxidation State at Night?

Need to examine

- fire intensity,
- time since emission
- time in sunlight.

Ale Franchin and Ann Middlebrook

Water Soluble and CLAP Optical Properties and Carbon Oxidation State

Normalized WSOC absorption is enhanced at 325 nm when aerosol is less oxidized, whereas at 465 nm it is fairly constant.

CLAP transmission data at 467 nm also appears relatively constant despite lower oxidation state.

Ale Franchin and Ann Middlebrook

Brown Carbon - PILS

Date	Fire	Availability
7/29	Colorado Test Flight	L1
8/3	McCall Test Flight	L1
8/5	Goose	L1/L2/L3
8/9	Granite/HK/Nethker	L1/L2/ <mark>L3</mark>
8/10	Nethker	L1
8/11	Nethker	L1
8/16	Granite	L1/L2/L3
8/17	Granite	L1/L2
8/20	Little Bear	L1/L2/L3
8/21	Little Bear / Castle	L1/L2/L3
8/24	Cow	L1/L2/L3
8/27	Cow	L1/L2
8/28	Cow	L1/L2/L3
9/3	Cow	L1/L2/L3
9/4	Canyon 66	L1/L2/L3
9/5	Smith Knob	L1/L2

RA Posted

Partial data or problems

No data

RA data posted and roughly time-aligned:

- Water-soluble organic carbon
- Water-soluble absorption from 310 500 nm

Next: Final data!

Rebecca Washenfelder

Example flights with consistent wind direction

A subset of the 40 flights had consistent wind directions and well-organized plumes. Ten examples are shown here: August 9, 16, 17, 24, 25, and 28; September 4 and 5.

Longitude (deg)

WSOC Concentration

Rebecca Washenfelder

Absorption Angstrom Exponent

Absorption Angstrom Exponent (AAE) describes the wavelength-dependence of absorption: $\alpha_{absorption} = K\lambda^{-AAE}$

Literature AAE values for brown carbon are 2 - 6.

Rebecca Washenfelder

For smoke sampled 0 - 3 hours downwind, the water-soluble AAE values were 5 - 7.

August 28th, 2019 (204 Cow Fire) FIREX-AQ Particles CCSEM Data Summary

Sample selection

Representative SEM image for 20190828 sample

K-means cluster analysis for 20190828 Daytime

K-means cluster analysis for 20190828 Nighttime

Note the absence of N containing particles for the nighttime sample

Cluster size distribution for 20190828 sample

5632 particles analyzed

Cluster#1: Elemental carbon Cluster#2: K-containing particles Cluster#3: CO organics Cluster#4: CNO organics Cluster#5: SiO₂ dust particle Particle size distribution

Daytime sample contained more Oxygenated organic particles while nighttime had a noticeable increase in K-containing particles contribution

Twin Otter Other Instruments

Instrument	Species Measured	Investigators	Institution
GoPro	Photons	Zach Decker	NOAA CSD
Meteorology	Temperature, pressure, altitude, wind speed, wind direction	<u>Mike Robinson</u>	NOAA CSD

Flight Footage

Zach Decker

FIREX-AQ Data Meeting 01/31/2020

<u>Intps://drive.google.com/drive/loiders/TrQ022KLVVZikVT00 IntV9AVQbit/pbbjrk?usp-sharing</u>

Photos taken for almost all flights

- Camera was mounted on an interior bubble window with view of inlets.
- Photo taken every 2 seconds
- Drive includes all photos as well as flights in video form.
- Unfortunately photo time stamps are not accurate.

Files are here:

https://drive.google.com/drive/folders /1TQ0zZKLWZikVT6U1ftV9AVQbn7p BbJrk?usp=sharing

Met data update

Questions?

