2019 FIREX-AQ Twin Otter & Mobile Labs Teleconference April 9, 2019

Chem Twin Otter instruments & logistics
 Iulia Gensch – Isotopic analysis of levoglucosan
 NASA Langley & Aerodyne mobile labs
 Twin Otter flight planning and coordination with mobile labs

Instrument	Position	Species Measured	Investigators	Institution	Status
Picarro CRDS	1	CO, CO ₂ , CH ₄ , H ₂ O	Colm Sweeney	NOAA GMD	\checkmark
Met Probe & Diff GPS	1	RH, Temp, Pres, Winds, GPS, flight data	Mike Robinson, Steve Brown	NOAA CSD	\checkmark
Tenax cartridge autosampler	1	Speciated VOC	Kelley Barsanti, Lindsey Hatch, Avi Lavi	UC Riverside	Mainly finished
I ⁻ ToF CIMS	2	Acids (HNO ₃ , HONO, Organics), acid gases (N ₂ O ₅ , CINO ₂), Oxygenated organics, Organic nitrates, Halogens	Joel Thornton, Brett Palm, Carley Fredrickson, Zach Decker	University of Washington / NOAA	Calibrations Re-racking
Aerosol mass spectrometer, UHSAS	3	Aerosol composition + size distributions	Ann Middlebrook, Ale Franchin, Kathy Hayden, Shao-Meng Li	NOAA CSD Environment Canada	Re-racking
Brown carbon PiLS	4a	Spectrally resolved aerosol absorption	Rebecca Washenfelder, Lisa Azzarallo	NOAA CSD York University	Mainly finished
Chemi- luminescence	4b Floor	NO, NO ₂ , O ₃	Andy Weinheimer, Denise Montzka, Geoff Tyndall, Frank Flocke	NCAR	Re-racking
TRAC Sampler	4a	Particle composition, mixing state, morphology	Alex Laskin, Jay Tomlin, Kevin Jankowski	Purdue University	\checkmark
Offline WSOC analysis	4a	Particle composition	Cora Young, Lisa Azzarallo	York University	Incl. w/ BrC
jNO ₂ heads	Camera port	NO ₂ photolysis rates	Mike Robinson	NOAA CSD	Maybe

Links to Information about Twin Otters & Mobile Labs

Chem Twin Otter Payload Spreadsheet

https://docs.google.com/spreadsheets/d/100Tij-AY93KaB43RfqNDitCjnBwwj8q2P09koMyS8J0/edit#gid=660888805

Twin Otter & Mobile Lab Organization Spreadsheet

https://docs.google.com/spreadsheets/d/1UsNUt1p01yPSqkqvTFKMWMBGM4sFbagnt5WP8EsZUUs/edit#gid=0

Please be sure you have access to these sheets and that your information is updated in the appropriate tab

FIREX-AQ 2019 Web Site

https://www.esrl.noaa.gov/csd/projects/firex-aq/

This site is currently being updated

Logistics updates for schedules, shipping, project locations, etc. will be posted here as they are available

SMOKE AGING BY MEANS OF ISOTOPIC ANALYSES

Levoglucosan isotopic compound specific measurements

<u>Needs</u> (triple measurements):

- CSIA: 300ng levoglucosan
- TC: 30 μg OC+EC

and <u>quartz</u> filter

Additional information by isotopes

- sources signatures (specific δ^{13} C)
- extent of chemical degradation

Gensch et al. EST2018

Sang et al. GRL2016

Sang et al. EST2012

Mitglied der Helmholtz-Gemeinschaft

9th April 2019

FIREX-2019 Planning Notes for Ground Team

Agenda

- 1. Calendar
- 2. People
- 3. Equipment
- 4. Gases
- 5. Lodging
- 6. Science Goals
- 7. Straw Plan

Calendar

- Dates in Idaho or on project
- Met Twin Otter

July – mid August

mid July – August

mid July – August

- Chem Twin Otter
- NASA Large
- Aerodyne AML

Aug $7^{th} - 29^{th}$

- 1. <u>Calendar</u>
- 2. <u>People</u>
- 3. Equipment
- 4. <u>Gases</u>
- 5. Lodging
- 6. <u>Science Goals</u>
- 7. Straw Plan

August 2019

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	
				1	2	3	
4	5	6	7	8	9	10	
11	12	13	14	15	16	17	
18	19	20	21	22	23	24	
25	26	27	28	29	30	31	

People going to McCall

Bruce Anderson	NASA Group Leader
Jiaju Chai	Brown
Carolyn Jordan	NASA
Scott Herndon	Aerodyne
Ed Fortner, Conner Daube,	Jordan Krechmer
Phil Croteau, Rob Roscioli	Christoph Dyroff
Megan Claflin, Brian Lerner	Francesca Majluf
Berk Knighton	MSU
Linday Hatch, Kelley Barsanti	UCR
Yuton Liang, Becca Wernis	Berkeley
Ben Sumlin	Washington University StL
Interns (3) + Marc Fiddler	NCA&T State University

People not going to McCall

Allen Goldstein, Nathan Kreisberg	Berkeley/Aerosol Dynamics
Meredith Hastings, Jack Dibb	Brown/UNH
Rodney Weber	Georgia Tech
Susan O'Neil	National Forest Service
Solomon Bililing	NCA&T State University

- 1. Calendar
- 2. <u>People</u>
- 3. Equipment
- 4. <u>Gases</u>
- 5. Lodging
- 6. <u>Science Goals</u>
- 7. <u>Straw Plan</u>

2019 - Instruments

{ARI-AML}

- Gas: CO, HCN, HCHO, C_2H_6 , CO₂, NO, NO₂, H₂O, CH₄, C₂H₂, Vocus-PTR PM: HR AMS,
 - SP2, WU-Stl Optical Properties of BrC

NCAR Spectral Radiometer (Sam Hall) NASA Ceilometer (Jim Szyman) 1. <u>Calendar</u>

- 2. <u>People</u>
- 3. Equipment
- 4. <u>Gases</u>
- 5. Lodging
- 6. Science Goals
- 7. <u>Straw Plan</u>

{ARI-Site @ McCall Activity Barn}

ARI GC-TOF, Berkeley-CTAG, ACSM, ARISense, TWST?

{AERONET team}

2 mobile aeronets. Brent is on travel and we will get an update later. Perhaps Phillipe will comment on these assets?

Property	Instruments	MACH-2	Size Range	Resolution
	Particle Number Density	TSI 3775, hot TSI3775	> 7 nm	1 sec
	Ultrafine Particle Density	TSI 3789	> 2 nm	1 sec
		TSI SMPS w/3772 CPC	10 - 300 nm	60 sec
A area of Miaronhysics		TSI EEPS	6 - 560 nm	1 sec
Aerosol Microphysics	Aerosol Size Distribution	DMT UHSAS	70 - 1,000 nm	1 sec
	Aerosol Size Distribution	TSI APS	500-20,000 nm	1 sec
		TSI Optical Particle	300 - 10,000	1
		Spectrometer	nm	1 sec
	3-λ Scattering	Air Photon Nephelometer	NA	5 sec
	3-λ Scattering, f(RH)	TSI3563 Nephelometer	NA	5 sec
	3-λ Extinction	3-wavelength CAPS	NA	5 sec
Acrosol Optics	7- λ Absorption	Magee Scientific	NA	5 sec
Aerosol Optics	Hyperspectral Extinctiometer	SPEX	NA	60 sec
	3-λ Absorption Photometer	ТАР	NA	5 sec
	3-λ Photo-Acoustic Spectrometers	ARI dPAS-3, ARI dPASS, DMT PASS-3	NA	10 sec
	Aerosol Ionic Composition	PTFE filters + IC	NA	
	Aerosol WSOC	PTFE filters + TOC	NA	intermitten
	EC/OC, Metals	quartz filters; sunset labs, ICP	NA	t
Aerosol Composition and	Black Carbon Mass and Size	DMT SP2, MAAP	60 - 900 nm	1 sec
Mass	PM2.5	MetOne E-BAM	NA	1 hour
	PM2.5, PM10	Teledyne T640	180 - 10,000 nm	1 minute
	cloud/aerosol profiles	Vaisala CL51 Ceiliometer	NA	60 sec
Atmospheric Structure and	Atmospheric Optical Depth, 280 – 660 nm	Pandora Sun Photometer	NA	60 sec
Meteorology	Winds and Navigation Parameters	AirMar 200WX	NA	1 sec
	In Situ T, RH, P, winds	Weather Hawk	NA	1 sec
	CO, CO2, H2O	LGR	NA	1 sec
Chemical Instruments	CO2, H2O	Licor 840	NA	1 sec
Chemical instruments	NOx	LGR NO2 w/O3 titration	NA	1 sec
	O3	thermo scientific	NA	1 sec

1. <u>Calendar</u>

- 2. <u>People</u>
- 3. Equipment
- 4. <u>Gases</u>
- 5. Lodging
- 6. <u>Science Goals</u>
- 7. Straw Plan

Instruments Langley

UNH and Brown will provide NOx, HONO, reactive nitrogen, isotope and mist chamber measurements

2019 - Gases

Compressed gases will be picked up from Airgas in Boise using the tracer truck and/or the AML

Contact Leah Williams for last year's vendor contact to place an order. Let Leah know so she can make sure your order doesn't put us over legal hazard weight.

williams@aerodyne.com

LN2? You will need to make arrangements, truck can't carry big dewars

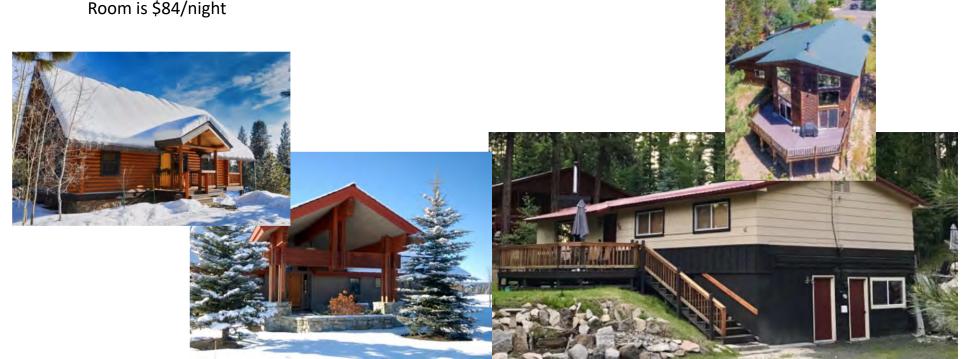
Bring your regulator for your tanks, spares are limited

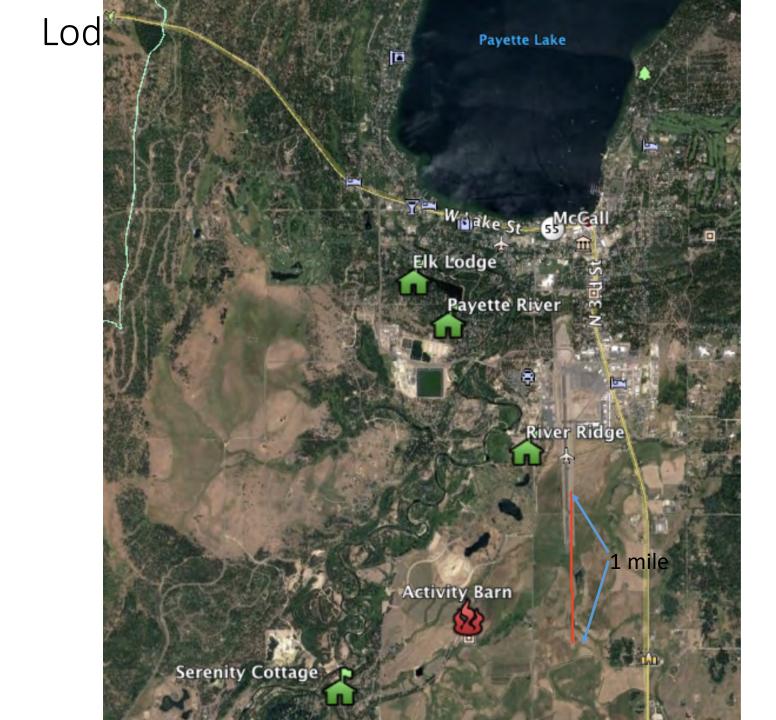
If your instrument is in the AML and consumption is modest you can get away with using "house" zero air

Talk to Conner Daube, <u>daube@aerodyne.com</u>

- 1. <u>Calendar</u>
- 2. <u>People</u>
- 3. Equipment
- 4. <u>Gases</u>
- 5. Lodging
- 6. <u>Science Goals</u>
- 7. <u>Straw Plan</u>

Lodging


- Red Elk Lodge 8/7/2019 8/23/2019, 4 bedroom, 3 bath 1. Interns + postdoc + early setup person
- Serenity Cottage 8/7/2019 8/26/2019, 4 bedroom, 3 bath 2. Yutong, Francesca, Becca, Lindsay
- 3. River Ranch 8/7/2019 - 8/29/2019, 4 bedroom, 3 bath Aerodyne, tbd
- Payette River Cabin 8/10/2019 8/29/2019, 6 bedroom, 3 bathroom 4. Aerodyne, tbd, UCR


The lodging situation is still in flux, but we have a bloc of some rooms to work with that are much more affordable than the hotels in town.

Room is \$84/night

- 2. People
- 3. Equipment
- Gases 4.
- 5. Lodging
- **Science Goals** 6.
- 7. Straw Plan

- 1. <u>Calendar</u>
- 2. <u>People</u>
- 3. Equipment
- 4. <u>Gases</u>
- 5. Lodging
- 6. <u>Science Goals</u>
- 7. Straw Plan

FIREX-AQ Science Questions

1. What are the emissions of gases and aerosols from North American fires?

How do emissions depend on meteorology, fuel, time of day or night, and fire conditions?

How do the relative and absolute amounts of smoldering and flaming impact smoke composition and injection altitude?

What is the amount, composition, and volatility of aerosol precursors including the previously unidentified fraction of the emissions including SVOCs, IVOCs, and BC, BrC and OC aerosols?

What are the emissions of greenhouse gases and air toxics?

How well do inventories represent BB emissions and their radiative properties, and what are the largest uncertainties affecting the inventories?

How does fuel species source impact chemical composition of gases and particulates

2. What chemical transformations affect those emissions?

What are the formation mechanisms for secondary species (ozone and secondary aerosol) and what environmental or chemical conditions control their relative importance?

How do aerosol optical and CCN properties evolve in fire plumes due to secondary production, particle phase transitions, and brown carbon bleaching and production?

How large are the variations in fire emissions compared to the changes from chemical processing?

What fraction of the organic aerosol is primary versus secondary at various time scales? How do nighttime chemical transformations involving NO₃, N_2O_5 and O_3 influence the composition and evolution and the production of secondary organic aerosol in smoke plumes? What are the mechanisms that lead to PAN formation in fire plumes during daytime and nighttime?

What is the diurnal cycle of free radical and oxidant production in fire plumes, and how important are reactions with different oxidants at various times of day

How important is the formation of organic aerosol from aqueous-phase processes?

FIREX-AQ Science Questions

3. What is the local air quality impact of North American fires?

How well do local models predict the BB impact on air toxics including gases and aerosols, and visibility?
How does local meteorology impact fire evolution?
How large are the small-scale temporal and spatial gradients in fire plumes?
How important is nighttime smoke for populated areas and what are the health impacts?
How large are the regional impacts of small prescribed fires?
How much do small prescribed fires lead to population exposure?

4. What are the regional and long-term impacts of North American fires?

How strongly are the composition and distribution of pollutants over North America influenced by BB?

How far afield can BB emissions from prescribed fires impact air quality?

What are the likely future changes in BB impacts that could result from climate change and changes to fire management practices?

5. What are the climate-relevant properties of BB aerosols?

What roles do brown carbon and black carbon, other light-absorbing species, and internal mixtures play in the climate-relevant properties of smoke?

What intensive properties of BB aerosols can remote (i.e. satellite and AERONET) observations determine globally?

How well do regional and global models predict the BB influence on climate?

How can FIREX-AQ measurements improve remote retrievals of smoke?

What are the emissions of greenhouse gases and air toxics?

QUESTIONS THAT CAN BE ADDRESSED WITH MOBILE LAB OBSERVATIONS

Science Goals

At McCall

Quantify biomass burning species in mixed-aged air, assess exposure in alpine-valley town

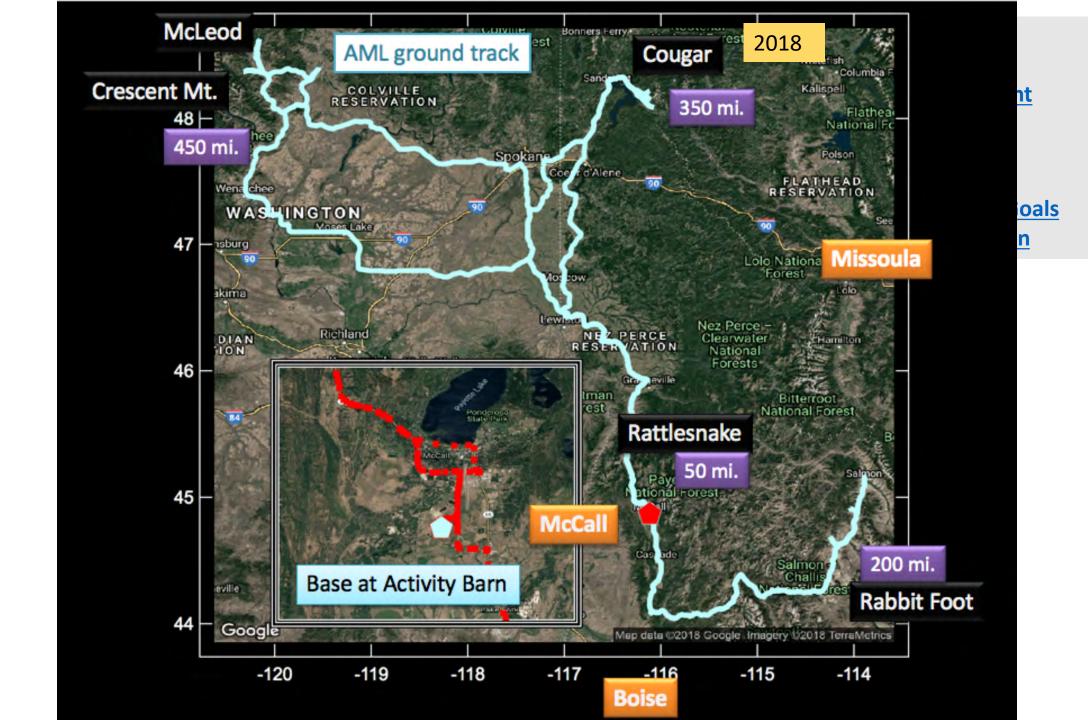
Drive to the Fire

Quantify biomass burning species in relatively fresh air. Drive to smoke flooded valleys to investigate

- vertical structure
- temporal character of flooding/ventilating
- PAM-oxidation flow reactor measurement
- assess acute exposure in alpine-valley town

- 1. <u>Calendar</u>
- 2. <u>People</u>
- 3. Equipment
- 4. <u>Gases</u>
- 5. Lodging
- 6. <u>Science Goals</u>
- 7. <u>Straw Plan</u>

Straw Plan


August 2019

Sunday		Monday		Tuesday		Wednesday		Thursday		Friday		Saturday	
								1		2		3	
4		5		6		Setup		8 Setup 15		9		10	
											Sample McCall		Sample McCall
										16		17	
	Drive Fire		Drive Fire		Sample McCall		Sample McCall		Drive Fire		Drive Fire		Sample McCall
18	3	19	1.1.1	20		2	1	22	2	23		24	<u>. </u>
	Sample McCall		Sample McCall	A CONTRACTOR OF	Sample McCall		Sample McCall		Sample McCall		Drive Fire	[Drive Fire
25	5	26		27		28		29)	30)	31	1.
Î	Sample McCall		Drive Fire		Drive Fire	1	teardown		depart				

1. <u>Calendar</u>

- 2. <u>People</u>
- 3. Equipment
- 4. <u>Gases</u>
- 5. Lodging
- 6. <u>Science Goals</u>
- 7. Straw Plan

Reckless guess on activity to convey likely duty cycle of drive vs park

Twin Otter Flight Planning & Interactions with Mobile Labs

• Frank Flocke has pointed out from the experience with WE-CAN that the operational altitude range in the Idaho mountains will be difficult for the Twin Otters

Peak terrain elevation = 12,000 feet Chem Twin Otter operational ceiling = 12,000 - 14,000 feet Met Twin Otter operational ceiling = 16,000 feet IFR operations (> 2000 feet above terrain) may be impossible for fires in this area

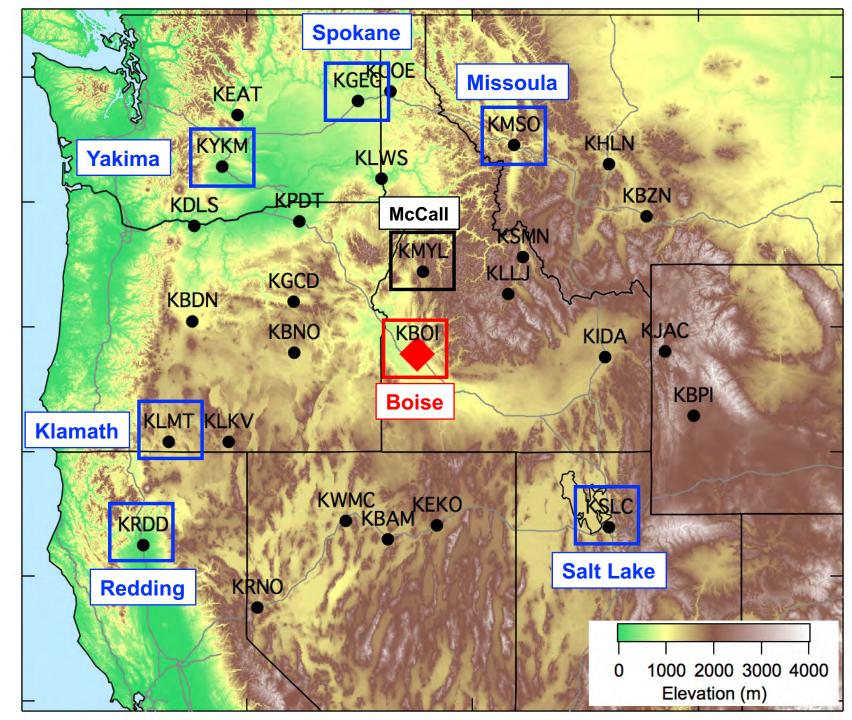
• Flights using missed approaches into smoke filled valleys are likely feasible in that area and are the best interaction with the mobile labs, which will have a base of operations at McCall, near Boise

• Terrain further to the west, especially outflow from the Cascades, is likely to be more tractable for the Twin Otters to fly for fire plume chasing experiments

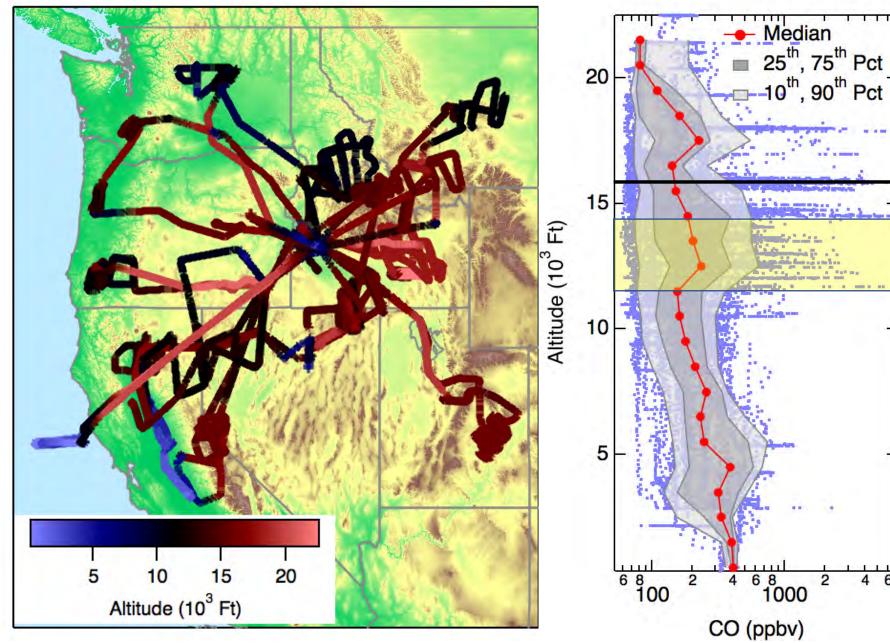
• Suggested operational plan, open for discussion from this group:

- Use Boise as a starting point and central base of operations for both Twin Otters
- Identify alternative bases of operation that can be accessed for periods of ~1 week at a time
- Move the Twin Otter operations as needed to areas with active burning and accessible outflow
- Mobile labs will move to areas of Twin Otter operation if there compelling reason for collaboration

Alternate Airfields


• Request is in to NOAA Aircraft Operations to identify FBOs at six alternate locations

> Missoula, MT Spokane, WA Yakima, WA Klamath / Crater Lake, OR Redding, CA Salt Lake City, UT


• Transits to these airfields would likely require 2-3 days on either side of a move before research flights could resume

Possibility for the chem otter to do this 1-2 times, and for the met otter to do this once

• Short ferries to smaller airfields would still be possible / likely from these bases, but no long ferries would be planned

WE-CAN 2018 Flights and Altitude Ranges

Twin otters will necessarily target lower level plumes than C-130 did during WE-CAN (or than DC-8 will during FIREX-AQ)

Met

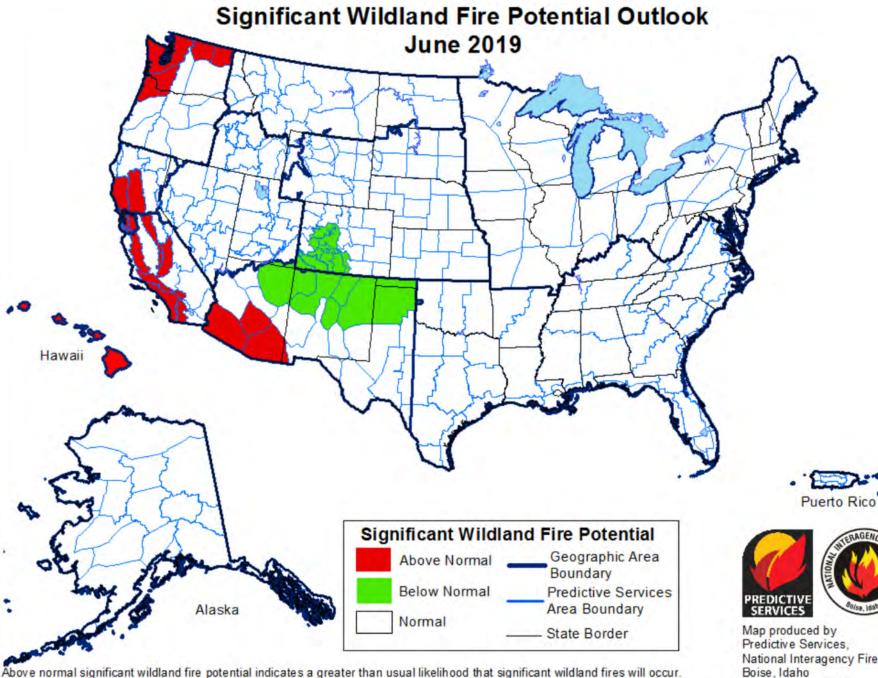
Otter Ceiling

Chem

Otter

Ceiling

Areas with lower terrain on the west coast, Snake River Valley or northern Montana & Idaho will be best for plume chasing

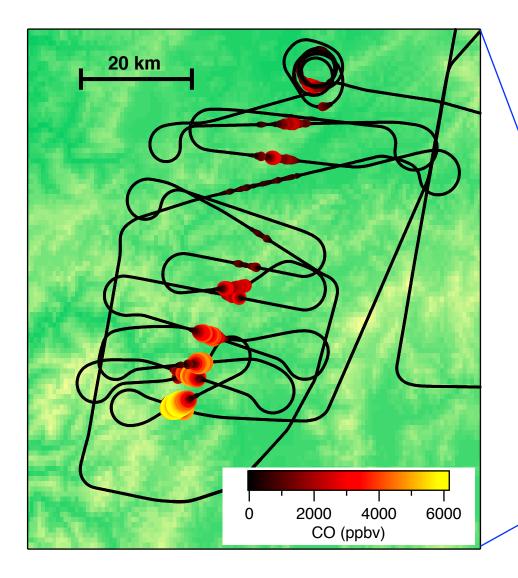

Altitude range difference may allow easier collaboration with DC-8 if same fires are targeted

Smoke impacted valley flights will be best for collaboration with mobile labs

Fire outlook for June 2019

West coast is forecast to be fire impacted in early summer

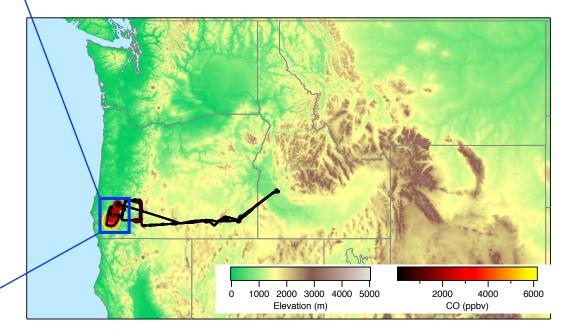
Will look to forecasts such as this in May, June and July to develop plans for locations and schedules during the summer

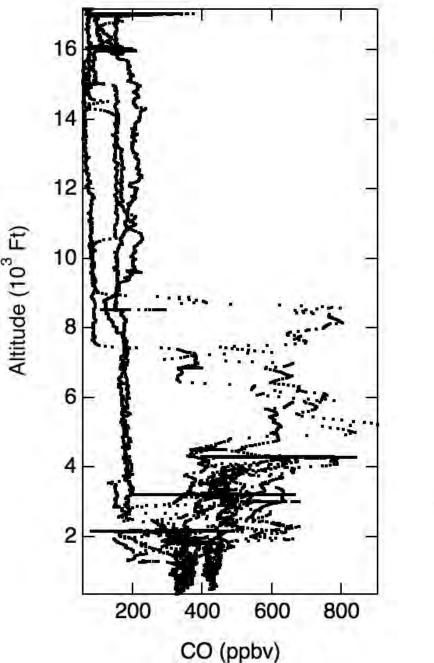


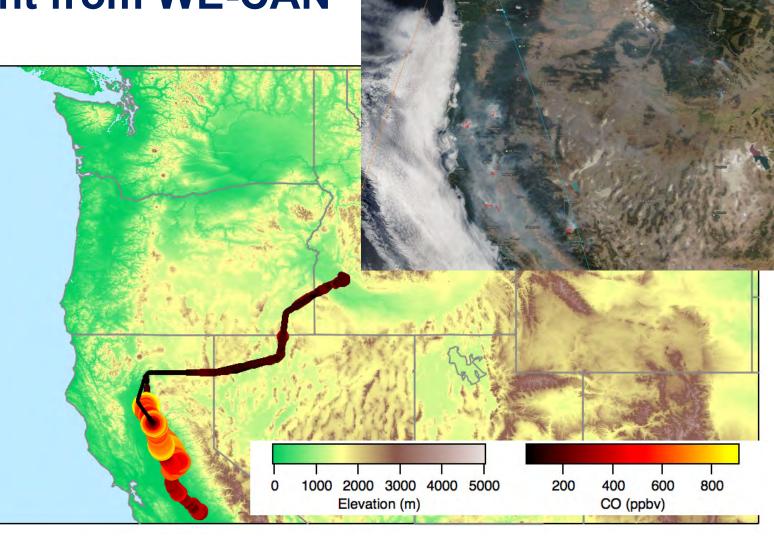
Significant wildland fires should be expected at typical times and intervals during normal significant wildland fire potential conditions.

Significant wildland fires are still possible but less likely than usual during forecasted below normal periods.

Predictive Services, National Interagency Fire Center Boise, Idaho Issued April 1, 2019 Next issuance May 1, 2019


Example Plume Chasing Flight from WE-CAN


July 30, 2018, Flight to the Cascades


Accessible by the Twin Otters from either Klamath or Redding

Mainly in the altitude range of the Twin Otter aircraft

Example Valley Flight from WE-CAN

Twin Otters can access valleys in the entire domain

Chem Otter: Repeated missed approaches for vertical profiling Met Otter: Survey smoke distribution and fire weather from above plume Mobile Labs: Ground based sampling at valley floor

Support for Twin Otter Operations

- 1. Moving truck: Currently looking into rental of 24' moving truck to make enough of the operation mobile so that we can easily relocate from Boise
- 2. Support truck: Will likely use CSD pickup truck with an aircraft GPU, generator and air conditioning unit to support short ferry flights from whichever airfield we are based from.
- 3. Support personnel: Likely a requirement to drive the support truck and assist with mobile operations

There will be only ~10-12 scientists in the field at any one time Additional personnel to drive the support truck and assist with moving will be important Currently working to identify mechanisms to make that happen

Night Flight Schedule

<u> </u>			August 2019			** **
Sun	Mon	Tue	Wed	Thu	Fri	Sat
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	31

Night flights remain a scientific goal for the otters

Also a goal for the mobile labs if they are sampling continuously in smoke impacted valleys during nighttime drainage flow

Full moon will assist with nighttime operations

August 12 – 19 will be the best week for nighttime operations