Halocarbons in the TTL: the roles of oceanic emissions and atmospheric transport

S. Tegtmeier

K. Krüger, B. Quack, E. Atlas, F. Ziska

1GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
2Department of Geosciences, University of Oslo, Oslo, Norway
3Rosenstiel School of Marine and Atmospheric Science, University of Miami, Florida, USA
Motivation

Halogen budget \rightarrow Ozone depletion

Stratosphere

Tropical Tropopause Layer (TTL)

Troposphere

Chemical transformation and washout

Very short lived substances

DOM/POM

hv

Halocarbons $(\text{CHBr}_3, \text{CH}_2\text{Br}_2, \text{CH}_3\text{I})$

Ozone chemistry

Oxidative capacity

Aerosol formation

Distribution in the TTL?
Method

Global bottom-up approach using in-situ observations and high-resolution Chemistry-transport modeling

Stratosphere

- Tropical Tropopause Layer (TTL)

Troposphere

- Chemical transformation and washout
- Very short lived substances

Halocarbons

- \(\text{CHBr}_3\), \(\text{CH}_2\text{Br}_2\), \(\text{CH}_3\text{I}\)

Comparison to aircraft campaigns

- Chemical decay: \(\text{OH} \) chemistry or prescribed lifetime
- \(\text{Br}_y\) partition from \(\text{pTOMCAT}\) (Yang et al., 2010)

Monthly mean emissions derived from observations

- \(\text{FLEXPART}\) (Stohl et al., 2005)
- \(\text{ERA-Interim}\)

Method

Global bottom-up approach using in-situ observations and high-resolution Chemistry-transport modeling
Input for FLEXPART: global VSLS emissions (Ziska climatology)

CHBr$_3$

CH$_2$Br$_2$

CH$_3$I

Ziska et al., ACP, 2013
Results:
Annual mean VMR @ 17 km [ppt]
2008-2010

CH\(_3\)I

CH\(_2\)Br\(_2\)

CHBr\(_3\)
Results:

Annual mean VMR @ 17 km [ppt]

2008-2010

CHBr₃

<table>
<thead>
<tr>
<th>Br [ppt] Based on ...</th>
<th>Inner tropics (10°S-10°N)</th>
<th>Tropics (30°S-30°N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHBr₃ SG</td>
<td>0.8</td>
<td>0.6</td>
</tr>
<tr>
<td>CHBr₃ SG+PG</td>
<td>1.3</td>
<td>1.1</td>
</tr>
<tr>
<td>CH₂Br₂ SG</td>
<td>2.0</td>
<td>1.7</td>
</tr>
<tr>
<td>CH₂Br₂ SG + PG</td>
<td>2.1</td>
<td>2.0</td>
</tr>
<tr>
<td>All</td>
<td>3.4</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Contribution of VSLS to stratospheric bromine budget based on bottom-up approach
CHBr$_3$ in the TTL (1993–2013)
Roles of oceanic emissions and atmospheric transport

2. Pacific
3. Indian Ocean
1. Central America

Analyze maxima, seasonality and long-term changes
CHBr$_3$ over Central America

17 km

- FLEXPART shows observed latitudinal and seasonal variations.
- FLEXPART slightly underestimates observed maxima in NH summer.
CHBr$_3$ over Central America – Emissions and Transport

17 km

Strong sources and fast vertical transport cause maxima over Central America.

Source distribution

Sea surface-to-TTL transit time

Source regions for Central America [%]

Transit time [days] at 17 km for JJA
Seasonality in TTL with maxima in NH summer is driven by:

- **Seasonality in surface-to-TTL transit time**
- **Seasonality in oceanic emissions**
CHBr$_3$ over Central/East Pacific

FLEXPART and aircraft measurements between 16 and 18 km

FLEXPART vs. ATTREX, Feb 2013

- FLEXPART shows observed latitudinal variations.
- Tropical maximum in central Pacific is too far south in simulations.
CHBr$_3$ over the Pacific

Source distribution mostly south of Equator

Transit time distribution roughly symmetric around Equator.
CHBr$_3$ over the Pacific

Source distribution mostly south of Equator

- FLEXPART simulations project Pacific maximum south of Equator as a result of strong sources here.
- More ship campaigns needed to confirm or improve source distribution in the tropical Pacific.
CHBr$_3$ over Indian Ocean – global maximum

Maximum CHBr$_3$ in NH summer over Bay of Bengal and Indian ocean.

But air masses are youngest over the West Pacific (white lines show sea surface-to-TTL transit time distribution).
CHBr₃ over Indian Ocean – Sources

Maximum is caused by strong sources in Arabian sea and Bay of Bengal during NH summer.

→ see talk by Alina Fiehn Wednesday morning for detailed evaluations of VSLS emission and transport processes in the Asian monsoon region
Interannual and long-term changes

Overall increase in TTL CHBr$_3$ abundance due to increasing emissions and decreasing transit times. Strongest trend above the Indian Ocean.
CHBr$_3$ in the TTL – Summary

1. Coinciding sources and fast vertical transport
 - Maximum over Central America
 - Pronounced seasonal cycle.

3. Strong sources in Arabian sea and Bay of Bengal
 - Global Maximum
 - Pronounced seasonal cycle
 - Strongest long-term changes

2. Shortest sea surface-to-TTL transit times over Pacific
 - Maximum south of Equator as a result of the source distribution (based on only a few measurements)
 - Weak seasonal cycle but pronounced interannual variability