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• Rainrate in coastal mountains is directly correlated to upslope flow at coast, as 
measured by wind profilers and collocated rain gauges over multiple winters.

• Upslope flow at ~1 km is the best indicator of orographic rains.
• In blocked flow, near-surface winds do not provide useful rainrate information.

• Wind direction in the warm sector determined the location of a rain shadow.
• The rain shadow resided partially over a populated watershed.
• Small wind direction variations can modulate winter flooding in complex terrain.

• GPS receivers provide measurements of integrated water vapor (IWV).
• Integrated water vapor flux (upslope × IWV) correlates more strongly with mountain 

rain intensities than do either 1 km upslope flow or IWV separately.
• Rainrate and orographic rain enhancement increases with increasing water vapor flux.

• Vertically pointing S-band radars documented a 
key shallow rain process without a brightband 
(NBB rain), as well as deep brightband (BB) rain.

• Rainrates in West Coast storms can exceed 20 
mm h-1 during NBB rain.

• For comparable rainrates, reflectivities were ~10 
dBZ lower during NBB rain.

• NBB rain is common and hard to detect with 
NEXRAD due to its shallow character.

• 35% of rain in the 1997/98 winter season at CZD 
occurred without a brightband.

• NBB rain has also been observed by ESRL S- 
band profilers in the Sierra and Cascades.

• BB rain is associated with stronger and deeper synoptic-scale ascent and colder (i.e., 
higher) cloud tops than NBB rain.

• Soundings associated with NBB rain showed warmer and moister low-level conditions than 
BB rain and had stronger upslope flow.

• NBB rain is characterized by greater concentrations of small drops and smaller 
concentrations of large drops compared to BB rain.

• Reflectivity-rainfall rate relations for NBB rain are dramatically different than those used 
by operational radars, which has implications for QPE.
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• Wind profilers provided a 7-y climatology of barrier jets in CA’s northern Central Valley.
• SBJ cases are strongest, and occur most often, during the wet, cool season (Oct-Apr). 
• SBJs are situated, on average, at ~1 km above ground level.
• Nearby rain gauges documented precipitation modulation by SBJs.

• The North American Regional Reanalysis (NARR) provides meteorological context for the 
20 strongest vs. 20 weakest SBJ cases during the cool season at CCO (172 cases total).

• Strong SBJ cases are tied to deeper troughs located farther south than weak cases.
• Strong SBJ cases occur with larger, meridionally oriented, incoming vapor fluxes.

• The NARR also captures significant differences in precip. between strong vs. weak SBJs.
• Gauges reveal more intense precip. rates during strong SBJ cases.
• Total accumulations are far greater during strong SBJs (i.e., hydrologically significant).
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