The building maintenance scheduled for Friday February 27th at 5:00pm MST has been postponed until 5:00pm March 6th. PSD's website will be down during the maintenance.
 

Compo, G. P., and P. D. Sardeshmukh, 2004: Storm track predictability on seasonal and decadal scales. J. Climate, 17, 3701-3720.


ABSTRACT

This paper is concerned with estimating the predictable variation of extratropical daily weather statistics ("storm tracks") associated with global sea surface temperature (SST) changes on interannual to interdecadal scales, and its magnitude relative to the unpredictable noise. The SST-forced storm track signal in each northern winter in 195099 is estimated as the mean storm track anomaly in an ensemble of atmospheric general circulation model (AGCM) integrations for that winter with prescribed observed SSTs. Two sets of ensembles available from two modeling centers, with anomalous SSTs prescribed either globally or only in the Tropics, are used. Since the storm track signals cannot be derived directly from the archived monthly AGCM output, they are diagnosed from the SST-forced winter-mean 200-mb height signals using an empirical linear storm track model (STM). For two particular winters, the El Niño of JanuaryFebruaryMarch (JFM) 1987 and the La Niña of JFM 1989, the storm track signals and noise are estimated directly, and more accurately, from additional large ensembles of AGCM integrations. The linear STM is remarkably successful at capturing the AGCM's storm track signal in these two winters, and is thus also suitable for estimating the signal in other winters.

The principal conclusions from this analysis are as follows. A predictable SST-forced storm track signal exists in many winters, but its strength and pattern can change substantially from winter to winter. The correlation of the SST-forced and observed storm track anomalies is high enough in the PacificNorth America (PNA) sector to be of practical use. Most of the SST-forced signal is associated with tropical Pacific SST forcing; the central Pacific (Niño-4) is somewhat more important than the eastern Pacific (Niño-3) in this regard. Variations of the pattern correlation of the SST-forced and observed storm track anomaly fields from winter to winter, and among five-winter averages, are generally consistent with variations of the signal strength, and to that extent are identifiable a priori. Larger pattern correlations for the five-winter averages found in the second half of the 50-yr record are consistent with the stronger El Niño SST forcing in the second half. None of these conclusions, however, apply in the Euro-Atlantic sector, where the correlations of the SST-forced and observed storm track anomalies are found to be much smaller. Given also that they are inconsistent with the estimated signal-to-noise ratios in this region, substantial AGCM error in representing the regional response to tropical SST forcing, rather than intrinsically lower Euro-Atlantic storm track predictability, is argued to be behind these lower correlations.