Recent Developments in the GFDL-AM3 Model

Paul Ginoux
NOAA/GFDL
Princeton, NJ

NOAA Chemical Modeling Workshop
Boulder, CO
October 10-11, 2007
I. Model description

- Configuration of the coupled models
- What is new in AM3 compared to AM2 (GAMDT, 2006) used in CM2.1 for IPCC AR-4 simulations
- Description of chemical tracers
GFDL-AM3 configuration

AM3 Model
m45 grid: Δlat=2°, Δlon=2.5°, 24 levels, Δt=30’
c48: cube-sphere

SIS-Sea Ice Simulator
MOM4 grid, 3 levels

Flux Coupler
Δt=2 hrs

LM3-Land Model
Tiles of land use, land use change

AMIP configuration: Fixed Sea Surface Temperature
What’s new in AM3

- **Deep convection**: Arakawa-Schubert (Moorthi and Suarez, 1992) => Donner scheme (Donner, 1993)
- **Shallow convection**: Arakawa-Schubert => UW shallow (Roode and Bretherton, 2003)
- **Planetary boundary layer**: Anderson et al. (2004) unchanged
- **Stratiform clouds**: Tiedke (1993) unchanged
- **Cloud droplet numbers**: fixed values over land and ocean => prognostic equation (Ming et al., 2007) of Nd
- **Chemistry**: gas species and aerosols, calculated off-line (Horowitz et al., 2006) => prognostic equations for all transported species, based on MOZART (Horowitz et al, 2003) for gas phase, and GOCART (Chin et al., 2000; Ginoux et al. 2001) for aerosols.
What’s new in AM3 cont’d

• **Radiation:**
 - **SW** (Freidenreich and Ramaswamy, 1999): unchanged
 - **LW** (Schwarzkopf and Ramaswamy, 1999): unchanged
 - Gas species and aerosols: off-line => on-line
 - Aerosol optical properties: $\alpha_{SO_4}(RH)$, $\alpha_{SS}(80%)$ => $\alpha_{SO_4}(RH)$, $\alpha_{SS}(RH)$, $\alpha_{OCphyl}(RH)$, $k(\text{dust})$ reduced in visible
 - Clouds: maximum overlap of stratiform clouds => stochastic overlap of stratiform, shallow and deep convective clouds

• **Advection:** m45 Finite Volume (Lin, 2004) => C48 Cube sphere

• **Vertical levels:** 24 => 48 (most of the additional levels in the stratosphere)

• **Nudging capability:** New capability: u, v, T, q, p_s may be nudged by a relaxation method, towards NCEP re-analysis
Chemical tracers in AM3

- **Gas phase:** ~100 species, ~225 reactions (with all species and reactions active throughout the atmosphere), lookup table for photolysis rates, parameterized source of halogens in the stratosphere, full treatment of PSCs. (Horowitz et al., 2003; 2006; Austin et Wilson, 2007)

- **Aerosol mass distribution:**
 - 15 prognostic equations (not including gas species)
 - 5 species: SO$_4$ (log-normal), OC (log-normal), BC (log-normal), SS (5 bins from 0.1 to 10 μm), DU (5 bins from 0.1 to 10 μm)
 - Aging:
 - OC$_{\text{hydrophobic}}$ -> OC$_{\text{hydrophylic}}$ (2 days),
 - BC$_{\text{hydrophobic}}$ -> BC$_{\text{hydrophylic}}$ (1 day)
 - SO$_4$ chemistry: aqueous and gas phases calculate with full chemistry code (MOZART). Option to use simplified sulfate with prescribed O$_3$, NO$_3$, OH, H$_2$O$_2$
Model evaluation

- Vertical resolution on tropospheric O₃
- Nudging on aerosol concentration
- Mixing state on aerosol absorption
- Limiting hygroscopic growth on aerosol distribution
- Comparison of aerosol concentration and optical depth with ground based and remote sensing data.
Effect of increased vertical resolution on O3 profiles

Comparison of O3 vertical profiles with O3-sondes.
Effect of nudging u, v, T, and p_s on aerosol concentration

<table>
<thead>
<tr>
<th>Location</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM2n Izania</td>
<td>0.44</td>
</tr>
<tr>
<td>AM2 Izania</td>
<td>0.05</td>
</tr>
<tr>
<td>AM2n Barb</td>
<td>0.71</td>
</tr>
<tr>
<td>AM2 Barb</td>
<td>0.39</td>
</tr>
<tr>
<td>AM2n Miami</td>
<td>0.76</td>
</tr>
<tr>
<td>AM2 Miami</td>
<td>0.64</td>
</tr>
<tr>
<td>AM2n Bermuda</td>
<td>0.61</td>
</tr>
<tr>
<td>AM2 Bermuda</td>
<td>0.64</td>
</tr>
</tbody>
</table>
Comparison of AOD with AERONET data

Automatic sunphotometer CIMEL

- τ at 340, 378, 499, 613, 870, 940, 1020 nm filters
- Accuracy: 0.01-0.02
- Triplet data every 35 seconds
- From 1993, now more than 200 instruments
- Almacuntar and Principal plane sky radiance
 Inverse algorithm: size, m, ω for 2 modes

\[R = 0.74 \]
Effect of nudging on daily variability of AOD during TCSP field campaign

AERONET sites

La Parguera (Puerto Rico)

Granada (Spain)

Tenosique (Mexico)

Guadeloupe

Greenbelt, MD

AM3 All AOD

Angstrom exponent

AERONET sites

10 La Parguera 19.9°N 67.0°E

27 Tenosique 17.4°N 97.5°E

13 Granada 37.1°N 3.8°W

14 Guadeloupe 16.0°N 61.5°W

Effect of nudging on daily variability of AOD during TCSP field campaign
Simulation of daily AOD for TCSP

Hurricane Dennis

ER2 flight track
Effect of mixing on aerosol absorption properties

1-w(440) AERONET

1-w(440) AERONET

1-w(550) AM3
Off-line Aer
Internal mx

Relative difference (%) model-observation
Effect of limiting hygroscopic growth on aerosol size distribution

\[\frac{dV}{d\ln r} \]

\(\mu m^3/\mu m^2 \)

RH\(\leq97\%\)

AERONET

(Dubovik et al., 2002)

Radius \(\mu m \)

RH\(\leq98\%\)

AERONET

(Dubovik et al., 2002)

Radius \(\mu m \)
Aerosol Size distribution: AM3/AERONET

Greenbelt, MD

AERONET sites

La Parguera

Dakar

AM2 all

OC

SO₄

dust

salt

\frac{dV}{d\ln r} \left[\mu m^3/\mu m^2 \right]

\frac{dV}{d\ln r} \left[\mu m^3/\mu m^2 \right]
Analysis of aerosols by Regions

US Europe Bio Burning Dusty Maritime

AOD is over-estimated in Mediterranean basin due to DU conc.
\(\alpha = f(\text{RH} \leq 98\%) \) seems to provide AOD within \(\sigma \) of AERONET data
Comparison of AOD with AVHRR and MODIS
III. Three examples of applications

• Stratospheric O3 recovery (Austin and Wilson, JGR, 2006)
• Effect of decadal variability of dust on NAO (Ginoux et al., Yoram Kaufman special issue of JGR)
• Interpreting dust variability in Antarctic ice-core: work with PhD student Fuyu Li (Princeton University), to be present at A-train symposium, Lille, October 2007.
Application 1: Recovery of stratospheric ozone

Simulated and observed minimum spring total ozone 1960-2099

Austin and Wilson, JGR, 2006
Application 2: Dust and NAO

LOWDUST

- Model
- Std
- Mean
- 1965

U. Miami data 1965-1969

HIGHDUST

- 1992
- Model

Application 2: cont’d

Sea Level Pressure D-J-F

a. LOWDUST

b. HIGHDUST
c. Difference

MODEL

![Map of Sea Level Pressure for LOWDUST model]

![Map of Sea Level Pressure for HIGHDUST model]

![Map of Sea Level Pressure for Difference between LOWDUST and HIGHDUST models]

d. 1958-1969
e. 1970-1999
f. Difference

ECMWF

![Map of Sea Level Pressure for ECMWF data for 1958-1969]

![Map of Sea Level Pressure for ECMWF data for 1970-1999]

Application 3: Dust in Antarctic ice-cores

Time series of dust in Ross-Island icecore

McConnell et al., PNAS, 2007

Ross Island
Conclusions

- Simulated agree surprisingly well in simulated AOD at the global scale.
- Closure look, shows regional discrepancies and strong sensitivity of hygroscopic property of aerosols in polluted regions.
- The use of maximum RH for hygroscopic growth of aerosols correspond to tune model results to fit the measurements, in particular AERONET data.
- The discrepancies of AOD between AERONET and satellite data (MODIS) are unexplained, and the consistency between models and AERONET seems therefore not fortuitous in polluted regions.
- Succession of comparisons allow to validate several key parameters, but does not allow to understand some major discrepancies. The comparisons should be made simultaneously on all datasets (merged datasets).
- For global models, satellite data and network of well calibrated instruments are the most useful but the limit number of variable retrieved by these instruments necessitate super-sites.
- For climate model, long term datasets are crucial, but only a handful of aerosol sites have been operating before the eighties.