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Outline of Talk 

• Radar Reflectivity Observations 
• Complex Cloud Analysis within the ARPS 

System 
• Case studies and realtime forecasts using 

ARPS 3DVAR/Cloud analysis 
• Radar Reflectivity (and Vr) DA using EnKF 
• Concluding Remarks 

 
 



• Radar reflectivity factor represents total amount of 
scattering of hydrometeors integrated over the drop size 
distributions (DSD). 
 

• Equivalent reflectivity factors  for rain, rain-snow/hail 
mixtures, and dry snow/hail (x  = r, s, h) are given by : 
 
 
 

• Total reflectivity in dBZ: 
 

 
 

Radar Reflectivity Measurement 
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Reflectivity Formulae for Precipitating Hydrometeors 
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Assuming exponential DSD,  
 
 
 
The resulting (equivalent) reflectivity formulae are: 
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where                         is DSD slope 

Ze in mm6/m3  
qr, qs, qh in kg/kg 



Precipitating Hydrometeors (cont.) 

Z = 10log(Ze) 
  

Ze =10(Z/10) 

Hydrometeor mixing ratios are assigned based on inverse of the 
reflectivity formulae. 

Measured Ze is partitioned into Zr, Zs & Zh based on cloud type 
identification scheme and temperature. 
 

Problem is under-determined! Need help!  From physical 
constraints, e.g., numerical model. 
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Solutions 
• 4DVAR uses model equations as a strong 

constraint (but has difficulties with nonlinear ice 
physics), and multi-time level data 

• EnKF uses model constraints in a statistical 
representation, and accumulate info in time. 

• Complex cloud analysis schemes employ physical 
models (e.g., parcel theory) and semi-empirical 
rules, and observations, and update state variables 
that they can. 



  

ARPS Complex Cloud Analysis 
• Construct 3D cloud fields using radar reflectivity data, 

surface cloud observations, satellite data, and the 
background from previous forecast by semi-empirical 
rules. 

• Retrieve hydrometeors and adjusts in-cloud temperature 
and moisture. 



ARPS Cloud Analysis 
• GOES Satellite Data 

 Vis: Cloud fraction 
 IR: Cloud top temperature 

• Radar Data 
 Reflectivity to precipitation hydrometeors 

• Surface Observations 
 Cloudbase height 

• Originated from the LAPS cloud analysis,  with adaptation 
and updates by Jian Zhang and Keith Brewster, et al. 

(also Xue et al. 2003 MAP, Hu et al. 2006 MWR) 



Estimating the Cloud Water 

• Use parcel theory to find saturation dqvsat/dz 
 and increment cloud water 

• Water is carried with parcel - less a 
mixing/dilution factor (Warner curve) 

• Ice created when colder than –10 C 
• Cloud water/ice reduced in later step if 

precipitating hydrometeors are prescribed 
(presumed converted by coalescence or 
aggregation) 



• Original: 
 
 

• Updated: 
– Moist-adiabatic temperature profile 
– Warner entrainment curve 
– Heating applied only in updraft regions 

 

In-cloud temperature adjustment 
(Diabatic Heating) 

( ) ( )πβθ θ picv cqqL /' ∆+∆=∆



• Adjusted to saturation within cloudy regions. 
 

• May be optionally applied to the first analysis 
cycle only. 
 

• Analysis increments may be applied incrementally 
via Incremental Analysis Update (IAU) to reduce 
shock. 
 

• Cloud analysis is typically combined with ADAS 
or 3DVAR (including Vr data) 

 

Moisture adjustment 



Sample Hydrometeor Vertical Cross Sections 

Total Water 

Snow 

Rain 

Hail 



Initial Model Reflectivity and Wind for 
May 3rd, 1999 Tornado Case 



Case Studies and Systematic 
Realtime Forecast Evaluations 



Fort Worth Tornado Case 
 

• Fort Worth area tornadoes of 28 Mar 2000 
• ADAS/3DVAR with Cloud Analysis  
• 9-km ARPS Forecast 18 UTC-06 UTC 
• 3-km ARPS Nested Forecast 23 UTC-06 UTC  
• 10-min analysis cycle for 1 hour using NEXRAD Level-II 

Winds 22 UTC-23 UTC. 
• Experiments 

– Vr and Z 

– Vr Alone 

– Z Alone 

 



Fort Worth Tornado Case  
Analysis domain and period 

3km DA and fcst domain 

Plotting Domain 
Fort Worth 

tornado 
00:15-00:30 

UTC 

Arlington 
tornado 

01:00 UTC 

Tarrant County 

 Analysis focus on 00:15-01:00 UTC 

Ellis 



List of Experiments  

Experiment  
Name 

Use of 
Reflectivity 

Use of radial 
velocity  

Mass continuity 
constraint  

CNTL  Yes Yes 

CLD  Yes No N.A. 

Vr No Yes 

 Three experiments on 3-km grid: 

 Data from single Fort-Worth radar are used 
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Hu et al. (2006a,b) 



Radar observation 

CLD (Z) CNTL (Vr and Z) 

 Radar 
 Observation 

1h 15m  
Prediction 

Reflectivity at 1.45° 
radar elevation at 
00:15 UTC, 
3/29/2000 



Radar observation 

CLD (Z) CNTL (Vr and Z) 

Reflectivity at 1.45° 
radar elevation at 
00:30 UTC, 
3/29/2000 

 Radar 
 Observation 

1h 30m  
Prediction 



Radar observation 

CLD (Z) CNTL (Vr and Z) 

Reflectivity at 1.45° 
radar elevation at 
00:45 UTC, 
3/29/2000 

 Radar 
 Observation 

1h 45m  
Prediction 



Radar observation 

CLD (Z) CNTL (Vr and Z) 

Reflectivity at 1.45° 
radar elevation at 
01:00 UTC, 
3/29/2000 

 Radar 
 Observation 

2h   
Prediction 



Radar observation 

CLD (Z) CNTL (Vr and Z) 

 Radar 
 Observation 

1h 30m  
Prediction 

Vr Only (no cloud analysis) 



Forecast of experiment CNTL 
Radar observation Forecast of CNTL  



Ft Worth Case Conclusions 
• Accurate short-term predictions of individuals cells 

at 3-km grid spacing including development of 
significant surface rotation associated with two 
rotating supercells 

• Reflectivity data via cloud analysis most important. 

• Better forecast with both Z and Vr data 

• Wind data alone not sufficient to develop correct 
storms 



May 8th, 2003 OKC Tornado Case 

OKC tornado 
2210-2238 UTC 
30 km long path 

F4 

(Hu 2005; Hu and Xue 2007) 



50-m Grid Forecast v.s. Observation (Movie) 

Forecast Low-level Reflectivity                 Observed Low-level Reflectivity 

Movie 

43 minute forecast 

50 m grid forecast initialized with 3DVAR/Cloud  
analysis of radar data on 1 km grid 

(May 8, 2003 OK Tornadic Thunderstorm) 

(Hu and Xue 2007 MWR, Xue et al. 2007) 



50-m Grid Forecast   v.s.      Observation 

Forecast Low-level Reflectivity                 Observed Low-level Reflectivity 

Movie 

43 minute forecast                    Used ARPS 3DVAR/Cloud analysis DA 

Prediction using the ARPS Model 
with radar data assimilation 

for the May 8, 2003 OKC Tornado 

Using 3DVAR/Cloud Analysis DA 



Observed Damage Track v.s Predicted Surface Wind Swaths 

3 May 1999 F5-Tornado Outbreak in 
Central Oklahoma 

With 3-moment microphysics 

dx = 250 m 
> 1 hour long track 

Dawson et al. (2009; 2012) 



 

Surface θ ’ (gray shading), Z (blue contours), vertical vorticity (color 
shading), and wind vectors at the time of largest vertical vorticity using 
100 m resolution and with MY1 (a) and MY2 (b) schemes. 

HP storm LP storm 

100 m simulations with MY1 and MY2 schemes 
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Minco Tornado 
10:54pm (0354Z) 

Tornadoes of 8-9 May 2007 El Reno tornado 

Minco tornado 

CASA X-band 
Radar network 



3DVar/Cloud Analysis Assimilation Experiments 

06 02 

3DVar Every 5-minutes 

03 04 05 

4 hr Forecast 1 hour Assimilation 

0000 

3DVar analysis run in 5-minute cycles for 1 hour  
at 2 km resolution 

0100 

1 hour Spin-up 
Forecast 

0130 

(Schenkman et al. 2011a,b) 



88D&CASA 
  

88D & CASA 
  

(Schenkman  
et al. 2011a,b) 

    0350 UTC, 1h 30min forecast           0440 UTC  2h 40m forecast 
      Time of Minco Tornado                  Time of El Reno Tornado 



Study Domian  

14/00 

13/00 

Assimilation of coastal radar data 
for hurricane Ike (2008) 

KLCH 
KHGX 



Data Assimilation Configuration 

DA 

0000 UTC             0600 UTC            1200 UTC           1800 UTC             0000 UTC 

CTRL 
ARPS Forecast with GFS  IC and LBC 

 

Radar data/30 min ARPS  Forecast with Radar DA 

3DVAR + Cloud Anx 

(Zhao and Xue 2009 GRL) 



Intensity and Track Forecasts 



Applications of 3DVAR/Cloud 
Analysis to Realtime Storm-Scale 

Forecasting 



CAPS Storm-Scale Ensemble Forecasting  
for Hazardous Weather Test 

 CAPS/OU has been producing realtime storm-scale 
ensemble forecasts during springs since 2007. 
 

 Assimilation of Level-2 Vr and Z data from all WSR-
88D radars, and sfc obs using ARPS 3DVAR/Cloud 
analysis at 4 and 2 or 1 km resolutions over CONUS 
since 2008. 
 

 
 

 

 
 

 



CAPS 2 km WRF-ARW forecast v.s. observations 
5 minute time intervals 

Initial condition with radar data 

2008 – first year to assimilate radar data 



Observed 
Reflectivity 

I.C. 
with 
radar 

I.C. 
without 
radar 

t = 0 h 

May 26, 2008 Example dx=4km 



t = 1 h 

Observed 
Reflectivity 

fcst 
with 
radar 

fcst 
without 
radar 

May 26, 2008 Case 



t = 2 h 

Observed 
Reflectivity 

fcst 
with 
radar 

fcst 
without 
radar 

May 26, 2008 Case 



t = 3 h 

Observed 
Reflectivity 

fcst 
with 
radar 

fcst 
without 
radar 

May 26, 2008 Case 



Observed 
Reflectivity 

fcst 
with 
radar 

fcst 
without 
radar 

t = 6 h 

May 26, 2008 Case 



Observed 
Reflectivity 

fcst 
with 
radar 

fcst 
without 
radar 

t = 9 h 

May 26, 2008 Case 



OBS 

4 km 
with 
radar 

4 km 
no 

radar 

1 km 
with 
radar 

t = 9 h 



Euitable Threat Scores for 3-hourly Precip. ≥ 0.5 in 

With radar 

no radar 
12 km NAM 

2009 (26-day) 
With radar 

no radar 

12 km NAM 

2008 (32-day) 

2010 (36-day) Radar data impact lasts up to in 12 hours 
 

All high-res models outperform 12km NAM 
 

Probability-matched score generally better 
than any ensemble member 
 
2 km score no-better than the best 4-km 
ensemble member – may be due to physics 
 
1-km score better than any 4-km member 
and than the 4 km PM score in 2009. 
 

With radar 

no radar 

12 km NAM 
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Central Weather Bureau Taiwan  
Hourly Updated ARPS Forecasting System 

 
 

Hourly updated 4-hour forecasts at dx=4km  
 

Using ARPS 3DVAR+Cloud Analysis and ARPS Forecast Model 



3D-VAR vs. no 3D-VAR radar DA 

Cases:4 h accumulated precip 



3D-VAR vs. no 3D-VAR radar DA 

Cases:4 h accumulated precip 



3D-VAR vs. no 3D-VAR radar DA 

Cases:4 h accumulated precip 



Verification of CWB Experimental Forecasts  

w/ radar 

No radar 

With radar 

No radar 

No radar 

w/ radar 
w/ radar 

Treat Score Bias 

Probability of Detection False Alarm Rate 



Issues with cloud analysis 

 Not ‘optimal’ combination of background and 
observations – not weighted by error 

 Can add, not effectively remove storms 

 Semi-emperical hydrometeor partitioning and 
adjustments to cloud water/ice, T and qv. No wind adj. 

 Analysis imbalances, leading to ‘spin-down’ problem. 



ETS of hourly precipitation at 0.5 inch threshold for the 4-km with 
radar (cn) and without radar (c0), and 2 km forecasts, averaged 

over the 2008 CAPS HWT forecasts  

Problems: Balance issues, no direct update to wind from Z,  
difficulty in suppressing spurious storms 



How does EnKF work? 

 Use covariance derived from ensemble 
 
 
 
 
 
 

 Be able to project limited observations (e.g., Z) 
to all state variables 

( )a b o b= + −
T

T

BHx x Z Z
R + HBH

x contains u, v, w, T, qv, p, q’s. 

, , ,
1

1( ) ( )( )
1

N
b b b b

j m m i m j i j
i

Z Z x x
N =

= − −
− ∑TBH

Covariance between mth obs and jth state variable: 



EnKF for (Polarimetric) Radar Data Assimilation 

Radar data used: 
Vr (Zhh > 10 dBZ) 
Zhh (everywhere) 
         : 
KDP (KDP > 0.3 deg./km) 

K is the Kalman Gain, a function  
of background and obs error covariances 
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Analyses of Low level cold pool and reflectivity v.s. Truth 

Truth 

Vr only 

 Vr + Z 

Tong and Xue (2005) – first EnKF study involving Z & ice microphysics 

Effectively suppress spurious precipitation 

Perfect Model OSSEs 



Accurate Analysis of Microphysical Fields 

Vr only 

Truth 

Vr + Z 

qc qr qi qs qh 



Assimilation of Vr + Z v.s. Vr only 
Very Low Ensemble Mean RMS Errors 

Black: Vr only;         Red: Vr + Z;          

Blue: ensemble spread as an estimate of error 

< 1m/s 
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Minco Tornado 
10:54pm (0354Z) 

Tornadoes of 8-9 May 2007 El Reno tornado 

Minco tornado 

CASA X-band 
Radar network 



Assimilation of CASA and 88D radar data using mixed-microphysics 
ensemble: Results of EnKF Analysis using dx=2km 

Final analysis  (0200 UTC ) Reflectivity 
CASA +  
WSR-88D 
EnKF  
Composite 
Radar 
Reflectivity 
Analysis 

WSR-88D 
Observed 
Composite 
Radar 
Reflectivity 

Near-surface winds and potential temperature (0140 UTC) 

CASA + WSR-88D WSR-88D Only KCYR Vr – 0141 UTC 

Snook et al 
(MWR 2011) 



Effects of assimilated CASA data and mixed-microphysics ensemble 
Ensemble-based Probabilistic Convective-scale Forecasts 

1, 2, and 3-Hour Probabilistic Forecasts for P[Z > 25 dBZ] 

2-Hour Probabilistic Forecasts for Presence of Near-surface Vortices 

03:00 UTC 04:00 UTC 05:00 UTC 

CNTL NoCASA NoMMP 

04:00 UTC 04:00 UTC 04:00 UTC 

CNTL CNTL CNTL 

 CNTL: 0.65                NoMMP:  0.35            NoCASA:0.43 

Snook et al 
(MWR 2012) 



443x483x53 grid 
1760 x 1920 km 
 
29-40 radars:  
Vr and Z 

 
Surface obs, 
Soundings 
Profilers 

EnKF Analysis of 
Many Radars  

 

10 May 2010 OK-KS 
tornado outbreak 

Parallel multi-scale EnKF Algorithm (Wang et al. 2012)  



DA procedure 

Hourly surface/profiler/sounding/radar DA 

3 hourly single LBC from deterministic forecast and 
ensemble of LBC from ensemble forecast 

15 Z 18 Z 

40 km 
Regional 

ensemble : 

Storm-scale: 
4 km 21 Z 00 Z 

10 min. interval radar/surface DA 

CNTL_1800 

DA_1800 

CNTL_2100 

DA_2100 



Deterministic forecasts 

CNTL 

EnKF 
radar 

1900 UTC 2200 UTC 2000 UTC 2100 UTC 

(contours = Z observation) 



Concluding Remarks 
• The semi-empirical complex cloud analysis package in the ARPS DA 

system, originating from LAPS cloud analysis, has been shown to be rather 
effective for reflectivity data assimilation for both continental convective 
storms, and tropical cyclones. 

• With the assimilation of radar data, the spin-up problem for precipitation 
forecast is generally gone, but the spin-down problem can still be major due 
to dynamic inconsistency among the analyzed fields. 

• Utilizing ensemble-derived flow-dependent covariance and being able to 
handle highly nonlinear ice physics, EnKF method holds much promise. 

• But, EnKF method can suffer from model error, poor background estimate, 
and the presence and difficulty in correcting errors across many scales.  

• Further research and development of advanced DA methods and efficient 
DA systems that maximize information extraction and dynamic consistency 
of state estimation are still much needed. This is especially important for 
radar DA given the very limited number of parameters measured. 
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