Publications - Advanced Search

or Browse Publications by Year

abstract matches "Summit"

14 matches.

Click on page icon to view abstract.

B
Bergin, M.H., C.I. Davidson, J.E. Dibb, J.L. Jaffrezo, H.D. Kuhns and S.N. Pandis, (1995), A simple model to estimate atmospheric concentrations of aerosol chemical species based on snow core chemistry at Summit, Greenland, Geophysical Research Letters, 22, 24, 3517-3520, 95GL03196

Abstract

A simple model is presented to estimate atmospheric concentrations of chemical species that exist primarily as aerosols based on snow core/ice core chemistry at Summit, Greenland. The model considers the processes of snow, fog, and dry deposition. The deposition parameters for each of the processes are estimated for SO4 2? and Ca2+ and are based on experiments conducted during the 1993 and 1994 summer field seasons. The seasonal mean atmospheric concentrations are estimated based on the deposition parameters and snow cores obtained during the field seasons. The ratios of the estimated seasonal mean airborne concentration divided by the measured mean concentration ( C ¯ a,est / C ¯ a,meas ) for SO4 2? over the 1993 and 1994 field seasons are 0.85 and 0.95, respectively. The C ¯ a,est / C ¯ a,meas ratios for Ca2+ are 0.45 and 0.90 for the 1993 and 1994 field seasons. The uncertainties in the estimated atmospheric concentrations range from 30% to 40% and are due to variability in the input parameters. The model estimates the seasonal mean atmospheric SO4 2? and Ca2+ concentrations to within 15% and 55%, respectively. Although the model is not directly applied to ice cores, the application of the model to ice core chemical signals is briefly discussed.
view Abstract
Bergin, M.H., J.-L. Jaffrezo, C.I. Davidson, J.E. Dibb, S.N. Pandis, R. Hillamo, W. Maenhaut, H.D. Kuhns and T. Makela, (1995), The contributions of snow, fog, and dry deposition to the summer flux of anions and cations at Summit, Greenland, Journal of Geophysical Research-Atmospheres, 100, D8, 16275-16288, 95JD01267

Abstract

Experiments were performed during the period May-July of 1993 at Summit, Greenland. Aerosol mass size distributions as well as daily average concentrations of several anionic and cationic species were measured. Dry deposition velocities for SO4 2? were estimated using surrogate surfaces (symmetric airfoils) as well as impactor data. Real-time concentrations of particles greater than 0.5 ?m and greater than 0.01 ?m were measured. Snow and fog samples from nearly all of the events occurring during the field season were collected. Filter sampler results indicate that SO4 2? is the dominant aerosol anion species, with Na+, NH4 +, and Ca2+ being the dominant cations. Impactor results indicate that MSA and SO4 2? have similar mass size distributions. Furthermore, MSA and SO4 2? have mass in both the accumulation and coarse modes. A limited number of samples for NH4 + indicate that it exists in the accumulation mode. Na, K, Mg, and Ca exist primarily in the coarse mode. Dry deposition velocities estimated from impactor samples and a theory for dry deposition to snow range from 0.017 cm/s +/? 0.011 cm/s for NH4 + to 0.110 cm/s +/? 0.021 cm/s for Ca. SO4 2? dry deposition velocity estimates using airfoils are in the range 0.023 cm/s to 0.062 cm/s, as much as 60% greater than values calculated using the airborne size distribution data. The rough agreement between the airfoil and impactor-estimated dry deposition velocities suggests that the airfoils may be used to approximate the dry deposition to the snow surface. Laser particle counter (LPC) results show that particles > 0.5 ?m in diameter efficiently serve as nuclei to form fog droplets. Condensation nuclei (CN) measurements indicate that particles < 0.5 ?m are not as greatly affected by fog. Furthermore, impactor measurements suggest that from 50% to 80% of the aerosol SO4 2? serves as nuclei for fog droplets. Snow deposition is the dominant mechanism transporting chemicals to the ice sheet. For NO3 ?, a species that apparently exists primarily in the gas phase as HNO3(g), 93% of the seasonal inventory (mass of a deposited chemical species per unit area during the season) is due to snow deposition, which suggests efficient scavenging of HNO3(g) by snowflakes. The contribution of snow deposition to the seasonal inventories of aerosols ranges from 45% for MSA to 76% for NH4 +. The contribution of fog to the seasonal inventories ranges from 13% for Na+ and Ca2+ to 26% and 32% for SO4 2? and MSA. The dry deposition contribution to the seasonal inventories of the aerosol species is as low as 5% for NH4 + and as high as 23% for MSA. The seasonal inventory estimations do not take into consideration the spatial variability caused by blowing and drifting snow. Overall, results indicate that snow deposition of chemical species is the dominant flux mechanism during the summer at Summit and that all three deposition processes should be considered when estimating atmospheric concentrations based on ice core chemical signals.
view Abstract
H
Helmig, D, J Boulter, D David, J. Birks, N. Cullen, K Steffen, B. J. Johnson and S. J. Oltmans, (2002), Ozone and meteorological Summit, Greenland, boundary-layer conditions at during 3-21 June 2000, Atmospheric Environment, 36, 15-16, 2595-2608,

Abstract

The temporal and spatial distributions of boundary-layer ozone were studied during June 2000 at Summit, Greenland, using surface-level measurements and vertical profiling from a tethered balloon platform. Three weeks of continuous ozone surface data, 133 meteorological vertical profile data and 82 ozone vertical profile data sets were collected from the surface to a maximum altitude of 1400 m above ground. The lower atmosphere at Summit was characterized by the prevalence of strong stable conditions with strong surface temperature inversions. These inversions reversed to neutral to slightly unstable conditions between similar to9.00 and 18.00 h local time with the formation of shallow mixing heights of similar to70-250 m above the surface. The surface ozone mixing ratio ranged from 39 to 68 ppbv and occasionally had rapid changes of up to 20 ppb in 12 h. The diurnal mean ozone mixing ratio showed diurnal trends indicating meteorological and photochemical controls of surface ozone. Vertical profiles were within the range of 37-76 ppb and showed strong stratification in the lower troposphere. A high correlation of high ozone/low water vapor air masses indicated the transport of high tropospheric/low stratospheric air into the lower boundary layer. A similar to0.1-3 ppb decline of the ozone mixing ratio towards the surface was frequently observed within the neutrally stable mixed layer during midday hours. These data suggest that the boundary-layer ozone mixing ratio and ozone depletion and deposition to the snowpack are influenced by photochemical processes and/or transport phenomena that follow diurnal dependencies. With 37 ppb of ozone being the lowest mixing ratio measured in all data no evidence was seen for the occurrence of ozone depletion episodes similar to those that have been reported within the boundary layer at coastal Arctic sites during springtime.
view Abstract
Helmig, D, S. J. Oltmans, D CARLSON, J LAMARQUE, A JONES, C LABUSCHAGNE, K ANLAUF and K HAYDEN, (2007), A review of surface ozone in the polar regions, Atmospheric Environment, 41, 24, 5138-5161, doi:10.1016/j.atmosenv.2006.09.053

Abstract

Surface ozone records from ten polar research stations were investigated for the dependencies of ozone on radiative processes, snow-photochemisty, and. synoptic and stratospheric transport. A total of 146 annual data records for the Arctic sites Barrow, Alaska; Summit, Greenland; Alert, Canada; Zeppelinfjellet, Norway; and the Antarctic stations Halley, McMurdo, Neumayer, Sanae, Syowa, and South Pole were analyzed. Mean ozone at the Northern Hemisphere (NH) stations (excluding Summit) is similar to 5ppbv higher than in Antarctica. Statistical analysis yielded best estimates for the projected year 2005 median annual ozone mixing ratios, which for the Arctic stations were 33.5 ppbv at Alert, 28.6 ppbv at Barrow, 46.3ppbv ppb at Summit and 33.7ppbv at Zeppelinfjellet. For the Antarctic stations the corresponding ozone mixing ratios were 21.6 ppbv at Halley, 27.0 ppbv at McMurdo, 24.9 ppbv at Neumayer, 27.2 ppbv at Sanae, 29.4 ppbv at South Pole, and 25.8 ppbv at Syowa. At both Summit (3212m asl) and South Pole (2830m asl), annual mean ozone is higher than at the lower elevation and coastal stations. A trend analysis revealed that all sites in recent years have experienced low to moderate increases in surface ozone ranging from 0.02 to 0.26 ppbv yr(-1), albeit none of these changes were found to be statistically significant trends. A seasonal trend analysis showed above-average increases in ozone during the spring and early summer periods for both Arctic (Alert, Zeppelinfjellet) and Antarctic (McMurdo, Neumayer, South Pole) sites. In contrast, at Barrow, springtime ozone has been declining. All coastal stations experience springtime episodes with rapid depletion of ozone in the boundary layer, attributable to photochemically catalyzed ozone depletion from halogen chemistry. This effect is most obvious at Barrow, followed by Alert. Springtime depletion episodes are less pronounced at Antarctic stations. At South Pole, during the Antarctic spring and summer, photochemical ozone production yields frequent episodes with enhanced surface ozone. Other Antarctic stations show similar, though less frequent spring and summertime periods with enhanced ozone. The Antarctic data provide evidence that austral spring and summertime ozone production in Antarctica is widespread, respectively, affects all stations at least through transport events. This ozone production contributes to a several ppbv enhancement in the annual mean ozone over the Antarctic plateau; however, it is not the determining process in the Antarctic seasonal ozone cycle. Although Summit and South Pole have many similarities in their environmental conditions, this ozone production does not appear to be of equal importance at Summit. Amplitudes of diurnal, summertime ozone cycles at these polar sites are weaker than at lower latitude locations. Amplitudes of seasonal ozone changes are larger in the Southern Hemisphere (by similar to 5 ppbv), most likely due to less summertime photochemical ozone loss and more transport of ozone-rich air to the Arctic during the NH spring and summer months.
view Abstract
Helmig, D, S. J. Oltmans, T MORSE and J DIBB, (2007), What is causing high ozone at Summit, Greenland?, Atmospheric Environment, 41, 24, 5031-5043, doi:10.1016/j.atmosenv.2006.05.084

Abstract

Causes for the unusually high and seasonally anomalous ozone concentrations at Summit, Greenland were investigated. Surface data from continuous monitoring, ozone sonde data, tethered balloon vertical profiling data, correlation of ozone with the radionuclide tracers Be-7 and Pb-210, and synoptic transport analysis were used to identify processes that contribute to sources and sinks of ozone at Summit. Northern Hemisphere (NH) lower free troposphere ozone mixing ratios in the polar regions are similar to 20 ppbv higher than in Antarctica. Ozone at Summit, which is at 3212m above sea level, reflects its altitude location in the lower free troposphere. Transport events that bring high ozone and dry air, likely from lower stratospheric/higher tropospheric origin, were observed similar to 40% of time during June 2000. Comparison of ozone enhancements with radionuclide tracer records shows a year-round correlation of ozone with the stratospheric tracer Be-7. Summit lacks the episodic, sunrise ozone depletion events, which were found to reduce the annual, median ozone at NH coastal sites by up to similar to 3 ppbv. Synoptic trajectory analyses indicated that, under selected conditions, Summit encounters polluted continental air with increased ozone from central and western Europe. Low ozone surface deposition fluxes over long distances upwind of Summit reduce ozone deposition losses in comparison to other NH sites, particularly during the summer months. Surface-layer photochemical ozone production does not appear to have a noticeable influence on Summit's ozone levels. (C) 2007 Published by Elsevier Ltd.
view Abstract
Helmig, D., F BOCQUET, L COHEN and S. J. Oltmans, (2007), Ozone uptake to the polar snowpack at Summit, Greenland, Atmospheric Environment, 41, 24, 5061-5076, doi:10.1016/j.atmosenv.2006.06.064

Abstract

The uptake of atmospheric ozone to the polar, year-round snowpack on glacial ice was studied at Summit, Greenland during three experiments in 2003, 2004, and 2005. Ozone was measured at up to three depths in the snowpack, on the surface, and above the surface at three heights on a tower along with supporting meteorological parameters. Ozone in interstitial air decreased with depth, albeit ozone gradients showed a high variation depending on environmental conditions of solar radiation and wind speed. Under low irradiance levels, up to 90% of ozone was preserved up to 1 m depth in the snowpack. Ozone depletion rates increased significantly with the seasonal and diurnal cycle of solar irradiance, resulting in only 10% of ozone remaining in the snowpack following solar noon during summertime. Faster snowpack air exchange from wind pumping resulted in smaller above-surface-to-within snowpack ozone gradients. These data indicate that the uptake of ozone to polar snowpack is strongly dependent on solar irradiance and wind pumping. Ozone deposition fluxes to the polar snowpack are consequently expected to follow incoming solar radiation levels and to exhibit diurnal and seasonal cycles. The Summit observations are in stark contrast to recent findings in the seasonal, midlatitude snowpack [Bocquet, F., Helmig, D., Oltmans, S.J., 2007. Ozone in the mid-latitude snowpack at Niwot Ridge, Colorado. Arctic, Antarctic and Alpine Research, in press], where mostly light-independent ozone behavior was observed. These contrasting results imply different ozone chemistry and snowpack–atmosphere gas exchange in the snow-covered polar, glacial conditions compared to the temperate, mid-latitude environment.
view Abstract
Helmig, D., Neff, W., L. D. Cohen, F. Bocquet, Samuel J. Oltmans, Andrey A. Grachev, (2009), Spring and summertime diurnal surface ozone fluxes over the polar snow at Summit, Greenland, Geophysical Research Letters, 36, L08809, 10.1029/2008gl036549

Abstract

Continuous surface-layer ozone flux measurements over the polar, year-round snowpack at Summit, Greenland, resulted in deposition velocities (v(d)) that were smaller than most previous assumptions and model inputs. Substantial seasonal differences were seen in the ozone v(d) behavior. Spring, daytime ozone v(d) values showed low variability and were consistently <= 0.01 cm s(-1). During summer, ozone fluxes displayed distinct diurnal cycles, and evidence for regular occurrences of bi-directional behavior. Summer, daytime v(d) ranged between similar to 0.01 to 0.07 cm s(-1). Maximum summertime downward fluxes (ozone deposition) coincided with the hours of maximum solar radiation, i.e., noon afternoon. During summer nighttime hours upward ozone fluxes were observed. These upward fluxes were interpreted as ozone production in a shallow layer near and above the snow surface with resulting upward ozone fluxes out of the shallow surface layer. Comparisons with published observations from temperate, midlatitude sites suggest different controls and behavior of ozone fluxes, and that ozone fluxes over snow depend on a myriad of parameters, including solar irradiance, snow chemical and physical properties, snowpack depth, and the type of substrate underneath the snow. Citation: Helmig, D., L. D. Cohen, F. Bocquet, S. Oltmans, A. Grachev, and W. Neff (2009), Spring and summertime diurnal surface ozone fluxes over the polar snow at Summit, Greenland, Geophys. Res. Lett., 36, L08809, doi:10.1029/2008GL036549.
view Abstract
Hirdman, D, H Sodemann, S Eckhardt, J Burkhart, A. Jefferson, T. Mefford, P Quinn, S Sharma, J Strom and A Stohl, (2010), Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output, Atmospheric Chemistry and Physics, 10, , 10.5194/acp-10-669-2010

Abstract

As a part of the IPY project POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate Chemistry, Aerosols and Transport), this paper studies the sources of equivalent black carbon (EBC), sulphate, light-scattering aerosols and ozone measured at the Arctic stations Zeppelin, Alert, Barrow and Summit during the years 2000–2007. These species are important pollutants and climate forcing agents, and sulphate and EBC are main components of Arctic haze. To determine where these substances originate, the measurement data were combined with calculations using FLEXPART, a Lagrangian particle dispersion model. The climatology of atmospheric transport from surrounding regions on a twenty-day time scale modelled by FLEXPART shows that the stations Zeppelin, Alert and Barrow are highly sensitive to surface emissions in the Arctic and to emissions in high-latitude Eurasia in winter. Emission sensitivities over southern Asia and southern North America are small throughout the year. The high-altitude station Summit is an order of magnitude less sensitive to surface emissions in the Arctic whereas emissions in the southern parts of the Northern Hemisphere continents are more influential relative to the other stations. Our results show that for EBC and sulphate measured at Zeppelin, Alert and Barrow, northern Eurasia is the dominant source region. For sulphate, Eastern Europe and the metal smelting industry in Norilsk are particularly important. For EBC, boreal forest fires also contribute in summer. No evidence for any substantial contribution to EBC from sources in southern Asia is found. European air masses are associated with low ozone concentrations in winter due to titration by nitric oxides, but are associated with high ozone concentrations in summer due to photochemical ozone formation. There is also a strong influence of ozone depletion events in the Arctic boundary layer on measured ozone concentrations in spring and summer. These results will be useful for developing emission reduction strategies for the Arctic.
view Abstract
K
Kahl, J. D. W., D. A. Martinez, H. Kuhns, C. I. Davidson, J.-L. Jaffrezo and J. M. Harris, (1997), Air mass trajectories to Summit, Greenland: A 44-year climatology and some episodic events, Journal of Geophysical Research-Oceans, 102, C12, 26861-26875, 97JC0029

Abstract

The seasonal variation in atmospheric transport patterns to Summit, Greenland, is examined using a 44-year record of daily, 10-day, isobaric back trajectories at the 500-hPa level. Over 24,000 modeled trajectories are aggregated into distinct patterns using cluster analysis. Ten-day trajectories reaching Summit are longest during winter, with 67% extending upwind (westward) as far back as Asia or Europe. Trajectories are shortest during summer, with 46% having 10-day origins over North America. During all seasons a small percentage (3–7%) of trajectories originate in west Asia/Europe and follow a meridional path over the Arctic Ocean before approaching Summit from the northwest. Trajectories at the 700-hPa level tend to be shorter than at 500 hPa, with many of the 700-hPa trajectories from North America tracking over the North Atlantic and approaching Summit from the south. The long-range transport climatology for Summit is similar to a year-round climatology prepared for Dye 3, located 900 km to the south [Davidson et al., 1993b]. An analysis of several aerosol species measured at Summit during summer 1994 reveals examples of the usefulness and also the limitations of using long-range air trajectories to interpret chemical data.
view Abstract
M
Miller, J.E., J.D.W. Kahl, F. Heller and J. M. Harris, (2002), A three-dimensional residence-time analysis of potential summertime atmospheric transport to Summit, Greenland, Annals of Glaciology, 35, 1, 403-408, doi:10.3189/172756402781816663

Abstract

The interannual variations in atmospheric transport patterns to Summit, Greenland, are studied using twice-daily, three-dimensional, 10day backward trajectory data corresponding to the summers (1June-31August) of 1989-98.While previous trajectory climatology studies have been prepared for Summit, the present work considers both the horizontal and vertical components of transport. A three-dimensional residence-time methodology is employed to account for both horizontal and vertical components of transport. The vertical transport component is quantified by passing all trajectories through a three-dimensional grid and tracking the time spent (i.e. the residence time) in each gridcell. This method also allows inspection of trajectory altitude distributions corresponding to transport from upwind regions of interest.The three-dimensional residence-time methodology is shown to be a valuable tool for diagnosing the details of long-range atmospheric transport to remote locations. For Summit, we find that the frequent transport from North America tends to occur at low altitudes, whereas transport from Europe is highly variable. Mean summertime flow patterns are described, as are anomalous patterns during 1990, 1996 and 1998.
view Abstract
N
Neely, R.R., Hayman, M, Thayer, J.P., Hardesty, M, O, M, Shupe, M, , (2012), Depolarization LIDAR at Summit, Greenland for the Detection of Cloud Phase and Stratospheric Aerosols, Journal of Atmospheric and Oceanic Technology, , ,

Abstract

Measurements of cloud properties over Summit,Greenland are necessary to document the full range of cloud conditions and characteristics throughout the Arctic. A new lidar system has been developed to measure depolarization and backscatter of clouds in the lower troposphere and aerosols in the upper troposphere and lower stratosphere. This lidar uses recent developments in optical methods to more accurately characterize system polarization effects. This allows the system to more accurately measure aerosols and cloud polarization ratios through methods that minimize systematic biases. The lidar is located at Summit, Greenland as part of the Integrated Characterization of Energy, Clouds, Atmospheric State, and Precipitation at Summit project and NOAA’s Global Monitoring Division’s stratospheric lidar network.

view Abstract
R
Ryan, S., (2001), Estimating Volcanic CO2 Emission Rates from Atmospheric Measurements on the Slope of Mauna Loa, CHEMICAL GEOLOGY, 177, 1-2, 201-211,

Abstract

The annual quiescent CO2 emissions from the summit of Mauna Loa volcano between 1959 and 1999 were calculated from atmospheric measurements made 6 km downslope at the Mauna Loa Observatory (MLO). Volcanic CO2 is trapped beneath a tens of meters thick temperature inversion at night and produces excess CO2 mixing ratios of up to tens of ppm above background. Measurements of the excess CO2, as a function of height above the ground, and wind direction are combined with the downslope wind speed to estimate the total flux of CO2 trapped near the ground, which provides a minimum estimate of the total volcanic emissions. The CO2 emissions were greatest shortly after each eruption and then decreased exponentially with 1/e time constants of 6.6, 6.5, and 1.6 years for the post-1950, 1975, and 1984 periods. Total emissions for these periods were 3.3, 1.9, and 2.5 x 10(8) kg, respectively. The distribution of quiescent volcanic CO2 with wind direction shifted eastward after the 1975 and 1984 eruptions by a few degrees, coinciding with a shift in eruptive activity from the SW rift (1950) to the NE rift (1984). A broadening of the distribution in 1993-1995 and 1998 is interpreted as indicating a new source high on the SW rift. Published by Elsevier Science B.V.
view Abstract
Ryan, S., E. J. Dlugokencky, P. P. Tans and M. Trudeau, (2006), Mauna Loa volcano is not a methane source: Implications for Mars, Geophysical Research Letters, 33, 12, L12301, doi:10.1029/2006GL026223

Abstract

Thirteen years of continuous atmospheric carbon dioxide and methane measurements at the Mauna Loa Observatory in Hawaii are used to determine the methane emission rate from the summit of Mauna Loa volcano. We find no measurable methane emissions coming from the summit area, with a 95% confidence upper limit of 9 t CH4 yr?1. Recent studies have detected 10 ppb CH4 in the Martian atmosphere, requiring emissions of about 300 t CH4 yr?1. Volcanic activity has been suggested as a source of abiogenic CH4 on Mars, either by magmatic degassing or reactions in hydrothermal fluids heated by a magma intrusion. The most recent lava flows on Mars (2 My ago) are on the Tharsis shield volcanoes, which may still be active. If Mauna Loa is a valid terrestrial analog, our findings suggest that volcanic activity is not a significant source of methane to the Martian atmosphere.
view Abstract
S
Stohl, A., E. Andrews, J. F. Burkhart, C. Forster, A. Herber, S. W. Hoch, D. Kowal, C. Lunder, T. Mefford, J. A. Ogren, S. Sharma, N. Spichtinger, K. Stebel, R. S. Stone, J. Strom, K. Torseth, C. Wehrli and K. E. Yttri, (2006), Pan-Arctic enhancements of light absorbing aerosol concentrations due to North American boreal forest fires during summer 2004, Journal of Geophysical Research-Atmospheres, 111, D22, , doi:10.1029/2006JD007216

Abstract

During summer of 2004, about 2.7 million hectare of boreal forest burned in Alaska, the largest annual area burned on record, and another 3.1 million hectare burned in Canada. This study explores the impact of emissions from these fires on light absorbing aerosol concentration levels, aerosol optical depths (AOD), and albedo at the Arctic stations Barrow (Alaska), Alert (Canada), Summit (Greenland), and Zeppelin/Ny Alesund on Spitsbergen (Norway). The Lagrangian particle dispersion model FLEXPART was run backward from these sites to identify periods that were influenced by forest fire pollution plumes. It is shown that the fires led to enhanced values of particle light absorption coefficients (sigma(ap)) at all of these sites. Barrow, about 1000 km away from the fires, was affected by several fire pollution plumes, one leading to spectacularly high 3-hour mean sigma(ap) values of up to 32 Mm(-1), more than the highest values measured in Arctic Haze. AOD measurements for a wavelength of 500 nm saturated but were estimated at above 4-5 units, unprecedented in the station records. Fire plumes were transported through the atmospheric column over Summit continuously for 2 months, during which all measured AOD values were enhanced, with maxima up to 0.4-0.5 units. Equivalent black carbon concentrations at the surface at Summit were up to 600 ng m(-3) during two major episodes, and Alert saw at least one event with enhanced sigma(ap) values. FLEXPART results show that Zeppelin was located in a relatively unaffected part of the Arctic. Nevertheless, there was a 4-day period with daily mean sigma(ap) > 0.3 Mm(-1), the strongest episode of the summer half year, and enhanced AOD values. Elevated concentrations of the highly source-specific compound levoglucosan positively confirmed that biomass burning was the source of the aerosols at Zeppelin. In summary, this paper shows that boreal forest fires can lead to elevated concentrations of light absorbing aerosols throughout the entire Arctic. Enhanced AOD values suggest a substantial impact of these plumes on radiation transmission in the Arctic atmosphere. During the passage of the largest fire plume, a pronounced drop of the albedo of the snow was observed at Summit. We suggest that this is due to the deposition of light absorbing particles on the snow, with further potentially important consequences for the Arctic radiation budget.
view Abstract