Greenhouse Warming and Ocean Acidification in the Past: Lessons for the Future

James C. Zachos

Earth & Planetary Sciences University of California, Santa Cruz, CA

Climate–Carbon Cycle Feedback Analysis: Results from the C⁴MIP Model Intercomparison

P. FRIEDLINGSTEIN,^a P. Cox,^b R. Betts,^c L. Bopp,^a W. von Bloh,^d V. Brovkin,^d P. Cadule,^e S. Doney,^f M. Eby,^g I. Fung,^h G. Bala,ⁱ J. John,^h C. Jones,^c F. Joos,^j T. Kato,^k M. Kawamiya,^k W. Knorr,¹ K. Lindsay,^m H. D. Matthews,^{g,n} T. Raddatz,^o P. Rayner,^a C. Reick,^o E. Roeckner,^p K.-G. Schnitzler,^p R. Schnur,^p K. Strassmann,^j A. J. Weaver,^g C. Yoshikawa,^k and N. Zeng^q

Short- and Long-Term Changes in pCO₂ & Global Warming

- Are there positive (amplifying) feedbacks that might accelerate the rate of rise in pCO₂?
 - ✓ Stratification/ocean mixing (~10²y)
 ✓ Methane hydrates (~10³y)
- How fast will negative (damping) feedbacks sequester carbon & restore steady state?

Ocean Uptake of Anthropogenic CO₂

Carbon Isotope Signature of Fossil Fuel C

Atmosphere pCO₂/Surface Ocean δ¹³C Last 650 y

pCO₂, Ocean pH & Carbonate Ion Next 100 years

Atmosphere pCO₂/Ocean pH & δ¹³C Next 100,000 years

How can we assess numerical predictions of short- and longterm changes in the carbon cycle?

Past greenhouse events with similar magnitude/rate of change in CO₂

IPCC (2007); Zachos et al., (In press) *Nature*

Deep Sea Sediments: Archive of Ocean History

Microfossil shell chemistry provides information on ocean temperature & carbon chemistry

Present

Past

Temperature (°C)

reduced and oxidized carbon

Paleocene-Eocene Thermal Maximum (PETM)

Paleocene-Eocene Thermal Maximum (PETM) ~ 55 Mya

+5 (23°C)

+6

SST Anomaly (Absolute°C)

 (28°)

+8

(33°C)

+9 (20°C)

Temperature anomalies estimated from $\delta^{18}O$, *Mg/Ca, and TEX*₈₆ *Proxies Kennett & Stott, 1991; Zachos et al., 2003; 2006; Thomas et al., 2002; Sluijs et al., 2006; John et al., submit.*

+5

Some Climatic/Environmental Consequences of the PETM

- Increased aridity in low-latitudes
- Increased precipitation in high-latitudes
- Increased seasonality in precipitation
- Increased frequency of extreme weather events & wildfires
- Changes in the diversity/abundances of fauna & flora
 - Migration, extinction (minor), reduced diversity
 - biogeographic boundaries shift poleward
- Sea level rise of 15 meters

– 3-5 meters thermal expansion

Primary Source of Carbon?

Decompositon of Methane Hydrate - (Dickens et al., 1996)

- Bacterial, $\delta^{13}C = -60\%$.
- ~2000-10000 Pg C (modern reservoir)

Mantle Plume/Mid-ocean Ridge Volcanism - CH₄/CO₂

(Svensen et al., 2004)

- Thermal Corg decomposition, $\delta^{13}C = -7$ to -25%
- Emission rate? 0.1-0.5 Pg C/y
- Dessication & Oxidation of Corg (soils/sediments
 - Forest peats/bogs/swamps/other? $\delta^{13}C = -20$ to -25%
 - Collectively >5000 Pg C

Positive Feedbacks?

e.g., gradual warming of the ocean destabilizes methane hydrates

Source of the Massive Carbon Flux?

Single or multiple?
Rate of release?

✓ Higher-fidelity records
✓ Single shell strategy

Mass of carbon?

✓ Carbon isotope excursion (CIE)
✓ Carbonate saturation changes

ACEX - Arctic coring expedition, Lomonosov Ridge
NJ - New Jersey Margin, *Bass River* and *Wilson Lake* WR- Walvis Ridge (Leg 208), Sites 1262-1267
SR - Shatsky Rise (Leg 198) Sites 1209, 1210, 1211
MR - Maud Rise (Leg 113) Sites 689 and 690

Key PE Boundary Sections

NJ - New Jersey Margin, *Bass River* and *Wilson Lake* WR- Walvis Ridge (Leg 208), Sites 1262-1267
SR - Shatsky Rise (Leg 198) Sites 1209, 1210, 1211 MR - Maud Rise (Leg 113) Sites 689 and 690

Bass River, NJ

- <u>Mid-Shelf Environment;</u> unconsolidated siliciclastic silts & clay
 - < 200 meters
 - Kaolinite rich
 - P-E boundary is conformable
 - *Dinoflagellate* blooms
 - Foraminifera scarce, but well preserved
- <u>High sedimentation rates</u>
 - 5-10x deep sea

Zachos et al., 2006

John et al., submitted

• Multiple/Single Shell Isotope Data

Zachos et al. (2007) Proc.Royal Soc.A

P-E Single Shell C & O-Isotope Data (Southern Ocean, N. Pacific, N. Atlantic Shelf) 1.0 1.0 (Acar 0 (Acar) 690 0 (Acar) 0.0 0.0 Moroz) Bass River (Acar) -1.0 -1.0 δ^{18} O ^{-2.0} -2.0 --3.0 -3.0 -4.0 -4.0 excursion pre-excursion **-**5.0 -5.0 -2 6-2 -1 2 3 5 -1 2 3 5 6 0 0 1 δ¹³C $\delta^{13}C$

- CIE ~ 4.0% (surface ocean)
- Bi-Modal ~ No transitional values

Zachos et al. (2007) Proc.Royal Soc.A

Source of the Massive Carbon Flux?

- Single or multiple?
 Rate of release?

 ✓ Higher-fidelity records
 ✓ Single shell method

 Mass of carbon?

 ✓ Carbon isotope excursion (CIE)
 - Carbonate saturation changes

ACEX - Arctic coring expedition, Lomonosov Ridge
NJ - New Jersey Margin, *Bass River* and *Wilson Lake* WR- Walvis Ridge (Leg 208), Sites 1262-1267
SR - Shatsky Rise (Leg 198) Sites 1209, 1210, 1211
MR - Maud Rise (Leg 113) Sites 689 and 690

ODP Leg 208 Sites

Zachos, Kroon, Blum et al. (2004)

Carbonate Dissolution: Ocean Acidification

dusky-red clay

nannofossil ooze

nannofossil ooze

Zachos, Kroon, Blum et al. (2004)

Zachos, Kroon, Blum et al. (2004)

Zachos et al. Science, 2005

Ocean Acidification and Chemical Erosion (5000 Gt C)

Tyrell et al, 2007

Zachos et al. Science, 2005

PE Carbon Isotope Excursion

- Bulk Sediment C-Isotope Records
- Structure of CIE?
- Dissolution/Reworking

Zeebe et al, in prep

Simulating Massive Carbon Input

- Carbon Cycle Box Model (Walker & Kasting, 1993)
- Ocean/Atmosphere reservoirs

Modeling massive carbon input

Zeebe et al, in prep

Zeebe et al, in prep

Ocean Acidification PETM vs. Future

Zeebe et al, in prep

Future Impact on Marine Calcifiers?

NATURE | VOL 407 | 21 SEPTEMBER 2000 | www.nature.com

letters to nature

Reduced calcification of marine plankton in response to increased atmospheric CO₂

Ulf Riebesell *, Ingrid Zondervan*, Björn Rost*, Philippe D. Tortell†, Richard E. Zeebe*‡ & François M. M. Morel†

* Alfred Wegener Institute for Polar and Marine Research, P.O. Box 120161,

D-27515 Bremerhaven, Germany

† Department of Geosciences & Department of Ecole Princeton University, Princeton, New Jersey 08544,
‡ Lamont-Doherty Earth Observatory, Columbia U New York 10964, USA

🏁 © 2000 Macmillan Magazines Ltd

 $300 \text{ ppmv} \rightarrow$

800 ppmv \rightarrow

Impact of PETM on Calcifiers? Early Paleogene Carbonate Platforms

Scheibner and Speijer, 2007, Earth

Decline in Diversity of Larger Foraminifer & Corals

Scheibner and Speijer, 2007, Earth

Summary

- CIE Magnitude ~ 4.0%
- Mass of carbon released during the PETM >> 4500 Gt
- Multiple sources are required
 ✓ Volcanic (N. Atlantic)
 ✓ Methane hydrates (feedback)
 - ✓ Terrestrial?
- Decreased pH/warming triggered end Paleocene decline in coral diversity

Implications for the future?

- Unabated CO₂ emissions will lead to a severe drop in pH of the surface ocean
- Positive feedbacks will likely accelerate the rise in pCO₂
 - ✓ Reduced vertical mixing
 - \checkmark Saturation state of the ocean surface
- Will methane hydrates dissociate?
 Depends on magnitude of warming & propagation of heat into the upper ocean

Earth System Models

Ridgwell, 2006; Panchuk, Kump, Ridgwell, in review

- GENIE -3-d w/ circulation
- biogeochem/ redox/etc.

synthetic sediment cores

The rate of production at the surface and fate in the ocean interior of organic and inorganic (carbonate) carbon are calculated in the model (based on PO_4 availability).

CaCO₃ preservation in deep-sea sediments is predicted, and historical composition recorded as a function of past changes in accumulation/erosion and bioturbational mixing: generating synthetic sediment cores.

Earth System Models

Long Term CO₂ Legacy

Tyrrell et al., 2007

